This file is indexed.

/usr/include/gromacs/maths.h is in gromacs-dev 4.6.5-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*
 * This file is part of the GROMACS molecular simulation package.
 *
 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
 * Copyright (c) 2001-2004, The GROMACS development team,
 * check out http://www.gromacs.org for more information.
 * Copyright (c) 2012,2013, by the GROMACS development team, led by
 * David van der Spoel, Berk Hess, Erik Lindahl, and including many
 * others, as listed in the AUTHORS file in the top-level source
 * directory and at http://www.gromacs.org.
 *
 * GROMACS is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation; either version 2.1
 * of the License, or (at your option) any later version.
 *
 * GROMACS is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with GROMACS; if not, see
 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
 *
 * If you want to redistribute modifications to GROMACS, please
 * consider that scientific software is very special. Version
 * control is crucial - bugs must be traceable. We will be happy to
 * consider code for inclusion in the official distribution, but
 * derived work must not be called official GROMACS. Details are found
 * in the README & COPYING files - if they are missing, get the
 * official version at http://www.gromacs.org.
 *
 * To help us fund GROMACS development, we humbly ask that you cite
 * the research papers on the package. Check out http://www.gromacs.org.
 */

#ifndef _maths_h
#define _maths_h

#include <math.h>
#include "visibility.h"
#include "types/simple.h"
#include "typedefs.h"

#ifdef __cplusplus
extern "C" {
#endif

#ifndef M_PI
#define M_PI        3.14159265358979323846
#endif

#ifndef M_PI_2
#define M_PI_2      1.57079632679489661923
#endif

#ifndef M_2PI
#define M_2PI       6.28318530717958647692
#endif

#ifndef M_SQRT2
#define M_SQRT2 sqrt(2.0)
#endif

#ifndef M_1_PI
#define M_1_PI      0.31830988618379067154
#endif

#ifndef M_FLOAT_1_SQRTPI /* used in CUDA kernels */
/* 1.0 / sqrt(M_PI) */
#define M_FLOAT_1_SQRTPI 0.564189583547756f
#endif

#ifndef M_1_SQRTPI
/* 1.0 / sqrt(M_PI) */
#define M_1_SQRTPI 0.564189583547756
#endif

#ifndef M_2_SQRTPI
/* 2.0 / sqrt(M_PI) */
#define M_2_SQRTPI  1.128379167095513
#endif

/* Suzuki-Yoshida Constants, for n=3 and n=5, for symplectic integration  */
/* for n=1, w0 = 1 */
/* for n=3, w0 = w2 = 1/(2-2^-(1/3)), w1 = 1-2*w0 */
/* for n=5, w0 = w1 = w3 = w4 = 1/(4-4^-(1/3)), w1 = 1-4*w0 */

#define MAX_SUZUKI_YOSHIDA_NUM 5
#define SUZUKI_YOSHIDA_NUM  5

static const double  sy_const_1[] = { 1. };
static const double  sy_const_3[] = { 0.828981543588751, -0.657963087177502, 0.828981543588751 };
static const double  sy_const_5[] = { 0.2967324292201065, 0.2967324292201065, -0.186929716880426, 0.2967324292201065, 0.2967324292201065 };

static const double* sy_const[] = {
    NULL,
    sy_const_1,
    NULL,
    sy_const_3,
    NULL,
    sy_const_5
};

/*
   static const double sy_const[MAX_SUZUKI_YOSHIDA_NUM+1][MAX_SUZUKI_YOSHIDA_NUM+1] = {
    {},
    {1},
    {},
    {0.828981543588751,-0.657963087177502,0.828981543588751},
    {},
    {0.2967324292201065,0.2967324292201065,-0.186929716880426,0.2967324292201065,0.2967324292201065}
   };*/

GMX_LIBGMX_EXPORT
int     gmx_nint(real a);
real    sign(real x, real y);

real    cuberoot (real a);
GMX_LIBGMX_EXPORT
double  gmx_erfd(double x);
GMX_LIBGMX_EXPORT
double  gmx_erfcd(double x);
GMX_LIBGMX_EXPORT
float   gmx_erff(float x);
GMX_LIBGMX_EXPORT
float   gmx_erfcf(float x);
#ifdef GMX_DOUBLE
#define gmx_erf(x)   gmx_erfd(x)
#define gmx_erfc(x)  gmx_erfcd(x)
#else
#define gmx_erf(x)   gmx_erff(x)
#define gmx_erfc(x)  gmx_erfcf(x)
#endif

GMX_LIBGMX_EXPORT
gmx_bool gmx_isfinite(real x);

/*! \brief Check if two numbers are within a tolerance
 *
 *  This routine checks if the relative difference between two numbers is
 *  approximately within the given tolerance, defined as
 *  fabs(f1-f2)<=tolerance*fabs(f1+f2).
 *
 *  To check if two floating-point numbers are almost identical, use this routine
 *  with the tolerance GMX_REAL_EPS, or GMX_DOUBLE_EPS if the check should be
 *  done in double regardless of Gromacs precision.
 *
 *  To check if two algorithms produce similar results you will normally need
 *  to relax the tolerance significantly since many operations (e.g. summation)
 *  accumulate floating point errors.
 *
 *  \param f1  First number to compare
 *  \param f2  Second number to compare
 *  \param tol Tolerance to use
 *
 *  \return 1 if the relative difference is within tolerance, 0 if not.
 */
static int
gmx_within_tol(double   f1,
               double   f2,
               double   tol)
{
    /* The or-equal is important - otherwise we return false if f1==f2==0 */
    if (fabs(f1-f2) <= tol*0.5*(fabs(f1)+fabs(f2)) )
    {
        return 1;
    }
    else
    {
        return 0;
    }
}



/**
 * Check if a number is smaller than some preset safe minimum
 * value, currently defined as GMX_REAL_MIN/GMX_REAL_EPS.
 *
 * If a number is smaller than this value we risk numerical overflow
 * if any number larger than 1.0/GMX_REAL_EPS is divided by it.
 *
 * \return 1  if 'almost' numerically zero, 0 otherwise.
 */
static int
gmx_numzero(double a)
{
    return gmx_within_tol(a, 0.0, GMX_REAL_MIN/GMX_REAL_EPS);
}


static real
gmx_log2(real x)
{
    const real iclog2 = 1.0/log( 2.0 );

    return log( x ) * iclog2;
}

/*! /brief Multiply two large ints
 *
 *  Returns true when overflow did not occur.
 */
GMX_LIBGMX_EXPORT
gmx_bool
check_int_multiply_for_overflow(gmx_large_int_t  a,
                                gmx_large_int_t  b,
                                gmx_large_int_t *result);

static int gmx_greatest_common_divisor(int p, int q)
{
    int tmp;
    while (q != 0)
    {
        tmp = q;
        q = p % q;
        p = tmp;
    }
    return p;
}

#ifdef __cplusplus
}
#endif

#endif  /* _maths_h */