/usr/include/gromacs/gmx_simd_macros.h is in gromacs-dev 4.6.5-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 | /*
* This file is part of the GROMACS molecular simulation package.
*
* Copyright (c) 1991-2000, University of Groningen, The Netherlands.
* Copyright (c) 2001-2012, The GROMACS Development Team
* Copyright (c) 2012,2013, by the GROMACS development team, led by
* David van der Spoel, Berk Hess, Erik Lindahl, and including many
* others, as listed in the AUTHORS file in the top-level source
* directory and at http://www.gromacs.org.
*
* GROMACS is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* GROMACS is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with GROMACS; if not, see
* http://www.gnu.org/licenses, or write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* If you want to redistribute modifications to GROMACS, please
* consider that scientific software is very special. Version
* control is crucial - bugs must be traceable. We will be happy to
* consider code for inclusion in the official distribution, but
* derived work must not be called official GROMACS. Details are found
* in the README & COPYING files - if they are missing, get the
* official version at http://www.gromacs.org.
*
* To help us fund GROMACS development, we humbly ask that you cite
* the research papers on the package. Check out http://www.gromacs.org.
*/
/* The macros in this file are intended to be used for writing
* architecture-independent SIMD intrinsics code.
* To support a new architecture, adding macros here should be (nearly)
* all that is needed.
*/
#ifdef _gmx_simd_macros_h_
#error "gmx_simd_macros.h included twice"
#else
#define _gmx_simd_macros_h_
/* NOTE: SSE2 acceleration does not include floor or blendv */
/* Uncomment the next line, without other SIMD active, for testing plain-C */
/* #define GMX_SIMD_REFERENCE_PLAIN_C */
#ifdef GMX_SIMD_REFERENCE_PLAIN_C
/* Plain C SIMD reference implementation, also serves as documentation */
#define GMX_HAVE_SIMD_MACROS
/* In general the reference SIMD supports any SIMD width, including 1.
* See types/nb_verlet.h for details
*/
#define GMX_SIMD_REF_WIDTH 4
/* Include plain-C reference implementation, also serves as documentation */
#include "gmx_simd_ref.h"
#define GMX_SIMD_WIDTH_HERE GMX_SIMD_REF_WIDTH
/* float/double SIMD register type */
#define gmx_mm_pr gmx_simd_ref_pr
/* boolean SIMD register type */
#define gmx_mm_pb gmx_simd_ref_pb
/* integer SIMD register type, only for table indexing and exclusion masks */
#define gmx_epi32 gmx_simd_ref_epi32
#define GMX_SIMD_EPI32_WIDTH GMX_SIMD_REF_EPI32_WIDTH
/* Load GMX_SIMD_WIDTH_HERE reals for memory starting at r */
#define gmx_load_pr gmx_simd_ref_load_pr
/* Set all SIMD register elements to *r */
#define gmx_load1_pr gmx_simd_ref_load1_pr
#define gmx_set1_pr gmx_simd_ref_set1_pr
#define gmx_setzero_pr gmx_simd_ref_setzero_pr
#define gmx_store_pr gmx_simd_ref_store_pr
#define gmx_add_pr gmx_simd_ref_add_pr
#define gmx_sub_pr gmx_simd_ref_sub_pr
#define gmx_mul_pr gmx_simd_ref_mul_pr
/* For the FMA macros below, aim for c=d in code, so FMA3 uses 1 instruction */
#define gmx_madd_pr gmx_simd_ref_madd_pr
#define gmx_nmsub_pr gmx_simd_ref_nmsub_pr
#define gmx_max_pr gmx_simd_ref_max_pr
#define gmx_blendzero_pr gmx_simd_ref_blendzero_pr
#define gmx_round_pr gmx_simd_ref_round_pr
/* Not required, only used to speed up the nbnxn tabulated PME kernels */
#define GMX_SIMD_HAVE_FLOOR
#ifdef GMX_SIMD_HAVE_FLOOR
#define gmx_floor_pr gmx_simd_ref_floor_pr
#endif
/* Not required, only used when blendv is faster than comparison */
#define GMX_SIMD_HAVE_BLENDV
#ifdef GMX_SIMD_HAVE_BLENDV
#define gmx_blendv_pr gmx_simd_ref_blendv_pr
#endif
/* Copy the sign of a to b, assumes b >= 0 for efficiency */
#define gmx_cpsgn_nonneg_pr gmx_simd_ref_cpsgn_nonneg_pr
/* Very specific operation required in the non-bonded kernels */
#define gmx_masknot_add_pr gmx_simd_ref_masknot_add_pr
/* Comparison */
#define gmx_cmplt_pr gmx_simd_ref_cmplt_pr
/* Logical operations on SIMD booleans */
#define gmx_and_pb gmx_simd_ref_and_pb
#define gmx_or_pb gmx_simd_ref_or_pb
/* Returns a single int (0/1) which tells if any of the 4 booleans is True */
#define gmx_anytrue_pb gmx_simd_ref_anytrue_pb
/* Conversions only used for PME table lookup */
#define gmx_cvttpr_epi32 gmx_simd_ref_cvttpr_epi32
#define gmx_cvtepi32_pr gmx_simd_ref_cvtepi32_pr
/* These two function only need to be approximate, Newton-Raphson iteration
* is used for full accuracy in gmx_invsqrt_pr and gmx_inv_pr.
*/
#define gmx_rsqrt_pr gmx_simd_ref_rsqrt_pr
#define gmx_rcp_pr gmx_simd_ref_rcp_pr
/* sqrt+inv+sin+cos+acos+atan2 are used for bonded potentials, exp for PME */
#define GMX_SIMD_HAVE_EXP
#ifdef GMX_SIMD_HAVE_EXP
#define gmx_exp_pr gmx_simd_ref_exp_pr
#endif
#define GMX_SIMD_HAVE_TRIGONOMETRIC
#ifdef GMX_SIMD_HAVE_TRIGONOMETRIC
#define gmx_sqrt_pr gmx_simd_ref_sqrt_pr
#define gmx_sincos_pr gmx_simd_ref_sincos_pr
#define gmx_acos_pr gmx_simd_ref_acos_pr
#define gmx_atan2_pr gmx_simd_ref_atan2_pr
#endif
#endif /* GMX_SIMD_REFERENCE_PLAIN_C */
/* The same SIMD macros can be translated to SIMD intrinsics (and compiled
* to instructions for) different SIMD width and float precision.
*
* On x86: The gmx_ prefix is replaced by _mm_ or _mm256_ (SSE or AVX).
* The _pr suffix is replaced by _ps or _pd (for single or double precision).
* Compiler settings will decide if 128-bit intrinsics will
* be translated into SSE or AVX instructions.
*/
#ifdef GMX_USE_HALF_WIDTH_SIMD_HERE
#if defined GMX_X86_AVX_256
/* We have half SIMD width support, continue */
#else
#error "half SIMD width intrinsics are not supported"
#endif
#endif
#ifdef GMX_TARGET_X86
#ifdef GMX_X86_SSE2
/* This is for general x86 SIMD instruction sets that also support SSE2 */
#define GMX_HAVE_SIMD_MACROS
/* Include the highest supported x86 SIMD intrisics + math functions */
#ifdef GMX_X86_AVX_256
#include "gmx_x86_avx_256.h"
#ifdef GMX_DOUBLE
#include "gmx_math_x86_avx_256_double.h"
#else /* GMX_DOUBLE */
#include "gmx_math_x86_avx_256_single.h"
#endif /* GMX_DOUBLE */
#else /* GMX_X86_AVX_256 */
#ifdef GMX_X86_AVX_128_FMA
#include "gmx_x86_avx_128_fma.h"
#ifdef GMX_DOUBLE
#include "gmx_math_x86_avx_128_fma_double.h"
#else /* GMX_DOUBLE */
#include "gmx_math_x86_avx_128_fma_single.h"
#endif /* GMX_DOUBLE */
#else /* GMX_X86_AVX_128_FMA */
#ifdef GMX_X86_SSE4_1
#include "gmx_x86_sse4_1.h"
#ifdef GMX_DOUBLE
#include "gmx_math_x86_sse4_1_double.h"
#else /* GMX_DOUBLE */
#include "gmx_math_x86_sse4_1_single.h"
#endif /* GMX_DOUBLE */
#else /* GMX_X86_SSE4_1 */
#ifdef GMX_X86_SSE2
#include "gmx_x86_sse2.h"
#ifdef GMX_DOUBLE
#include "gmx_math_x86_sse2_double.h"
#else /* GMX_DOUBLE */
#include "gmx_math_x86_sse2_single.h"
#endif /* GMX_DOUBLE */
#else /* GMX_X86_SSE2 */
#error No x86 acceleration defined
#endif /* GMX_X86_SSE2 */
#endif /* GMX_X86_SSE4_1 */
#endif /* GMX_X86_AVX_128_FMA */
#endif /* GMX_X86_AVX_256 */
/* exp and trigonometric functions are included above */
#define GMX_SIMD_HAVE_EXP
#define GMX_SIMD_HAVE_TRIGONOMETRIC
#if !defined GMX_X86_AVX_256 || defined GMX_USE_HALF_WIDTH_SIMD_HERE
#ifndef GMX_DOUBLE
#define GMX_SIMD_WIDTH_HERE 4
#define gmx_mm_pr __m128
#define gmx_mm_pb __m128
#define gmx_epi32 __m128i
#define GMX_SIMD_EPI32_WIDTH 4
#define gmx_load_pr _mm_load_ps
#define gmx_load1_pr _mm_load1_ps
#define gmx_set1_pr _mm_set1_ps
#define gmx_setzero_pr _mm_setzero_ps
#define gmx_store_pr _mm_store_ps
#define gmx_add_pr _mm_add_ps
#define gmx_sub_pr _mm_sub_ps
#define gmx_mul_pr _mm_mul_ps
#ifdef GMX_X86_AVX_128_FMA
#define GMX_SIMD_HAVE_FMA
#define gmx_madd_pr(a, b, c) _mm_macc_ps(a, b, c)
#define gmx_nmsub_pr(a, b, c) _mm_nmacc_ps(a, b, c)
#else
#define gmx_madd_pr(a, b, c) _mm_add_ps(c, _mm_mul_ps(a, b))
#define gmx_nmsub_pr(a, b, c) _mm_sub_ps(c, _mm_mul_ps(a, b))
#endif
#define gmx_max_pr _mm_max_ps
#define gmx_blendzero_pr _mm_and_ps
#define gmx_cmplt_pr _mm_cmplt_ps
#define gmx_and_pb _mm_and_ps
#define gmx_or_pb _mm_or_ps
#ifdef GMX_X86_SSE4_1
#define gmx_round_pr(x) _mm_round_ps(x, 0x0)
#define GMX_SIMD_HAVE_FLOOR
#define gmx_floor_pr _mm_floor_ps
#else
#define gmx_round_pr(x) _mm_cvtepi32_ps(_mm_cvtps_epi32(x))
#endif
#ifdef GMX_X86_SSE4_1
#define GMX_SIMD_HAVE_BLENDV
#define gmx_blendv_pr _mm_blendv_ps
#endif
static gmx_inline gmx_mm_pr gmx_cpsgn_nonneg_pr(gmx_mm_pr a, gmx_mm_pr b)
{
/* The value -0.0 has only the sign-bit set */
gmx_mm_pr sign_mask = _mm_set1_ps(-0.0);
return _mm_or_ps(_mm_and_ps(a, sign_mask), b);
};
static gmx_inline gmx_mm_pr gmx_masknot_add_pr(gmx_mm_pb a, gmx_mm_pr b, gmx_mm_pr c)
{
return _mm_add_ps(b, _mm_andnot_ps(a, c));
};
#define gmx_anytrue_pb _mm_movemask_ps
#define gmx_cvttpr_epi32 _mm_cvttps_epi32
#define gmx_cvtepi32_pr _mm_cvtepi32_ps
#define gmx_rsqrt_pr _mm_rsqrt_ps
#define gmx_rcp_pr _mm_rcp_ps
#define gmx_exp_pr gmx_mm_exp_ps
#define gmx_sqrt_pr gmx_mm_sqrt_ps
#define gmx_sincos_pr gmx_mm_sincos_ps
#define gmx_acos_pr gmx_mm_acos_ps
#define gmx_atan2_pr gmx_mm_atan2_ps
#else /* ifndef GMX_DOUBLE */
#define GMX_SIMD_WIDTH_HERE 2
#define gmx_mm_pr __m128d
#define gmx_mm_pb __m128d
#define gmx_epi32 __m128i
#define GMX_SIMD_EPI32_WIDTH 4
#define gmx_load_pr _mm_load_pd
#define gmx_load1_pr _mm_load1_pd
#define gmx_set1_pr _mm_set1_pd
#define gmx_setzero_pr _mm_setzero_pd
#define gmx_store_pr _mm_store_pd
#define gmx_add_pr _mm_add_pd
#define gmx_sub_pr _mm_sub_pd
#define gmx_mul_pr _mm_mul_pd
#ifdef GMX_X86_AVX_128_FMA
#define GMX_SIMD_HAVE_FMA
#define gmx_madd_pr(a, b, c) _mm_macc_pd(a, b, c)
#define gmx_nmsub_pr(a, b, c) _mm_nmacc_pd(a, b, c)
#else
#define gmx_madd_pr(a, b, c) _mm_add_pd(c, _mm_mul_pd(a, b))
#define gmx_nmsub_pr(a, b, c) _mm_sub_pd(c, _mm_mul_pd(a, b))
#endif
#define gmx_max_pr _mm_max_pd
#define gmx_blendzero_pr _mm_and_pd
#ifdef GMX_X86_SSE4_1
#define gmx_round_pr(x) _mm_round_pd(x, 0x0)
#define GMX_SIMD_HAVE_FLOOR
#define gmx_floor_pr _mm_floor_pd
#else
#define gmx_round_pr(x) _mm_cvtepi32_pd(_mm_cvtpd_epi32(x))
/* gmx_floor_pr is not used in code for pre-SSE4_1 hardware */
#endif
#ifdef GMX_X86_SSE4_1
#define GMX_SIMD_HAVE_BLENDV
#define gmx_blendv_pr _mm_blendv_pd
#endif
static gmx_inline gmx_mm_pr gmx_cpsgn_nonneg_pr(gmx_mm_pr a, gmx_mm_pr b)
{
gmx_mm_pr sign_mask = _mm_set1_pd(-0.0);
return _mm_or_pd(_mm_and_pd(a, sign_mask), b);
};
static gmx_inline gmx_mm_pr gmx_masknot_add_pr(gmx_mm_pb a, gmx_mm_pr b, gmx_mm_pr c)
{
return _mm_add_pd(b, _mm_andnot_pd(a, c));
};
#define gmx_cmplt_pr _mm_cmplt_pd
#define gmx_and_pb _mm_and_pd
#define gmx_or_pb _mm_or_pd
#define gmx_anytrue_pb _mm_movemask_pd
#define gmx_cvttpr_epi32 _mm_cvttpd_epi32
#define gmx_cvtepi32_pr _mm_cvtepi32_pd
#define gmx_rsqrt_pr(r) _mm_cvtps_pd(_mm_rsqrt_ps(_mm_cvtpd_ps(r)))
#define gmx_rcp_pr(r) _mm_cvtps_pd(_mm_rcp_ps(_mm_cvtpd_ps(r)))
#define gmx_exp_pr gmx_mm_exp_pd
#define gmx_sqrt_pr gmx_mm_sqrt_pd
#define gmx_sincos_pr gmx_mm_sincos_pd
#define gmx_acos_pr gmx_mm_acos_pd
#define gmx_atan2_pr gmx_mm_atan2_pd
#endif /* ifndef GMX_DOUBLE */
#else
/* We have GMX_X86_AVX_256 and not GMX_USE_HALF_WIDTH_SIMD_HERE,
* so we use 256-bit SIMD.
*/
#ifndef GMX_DOUBLE
#define GMX_SIMD_WIDTH_HERE 8
#define gmx_mm_pr __m256
#define gmx_mm_pb __m256
#define gmx_epi32 __m256i
#define GMX_SIMD_EPI32_WIDTH 8
#define gmx_load_pr _mm256_load_ps
#define gmx_load1_pr(x) _mm256_set1_ps((x)[0])
#define gmx_set1_pr _mm256_set1_ps
#define gmx_setzero_pr _mm256_setzero_ps
#define gmx_store_pr _mm256_store_ps
#define gmx_add_pr _mm256_add_ps
#define gmx_sub_pr _mm256_sub_ps
#define gmx_mul_pr _mm256_mul_ps
#define gmx_madd_pr(a, b, c) _mm256_add_ps(c, _mm256_mul_ps(a, b))
#define gmx_nmsub_pr(a, b, c) _mm256_sub_ps(c, _mm256_mul_ps(a, b))
#define gmx_max_pr _mm256_max_ps
#define gmx_blendzero_pr _mm256_and_ps
#define gmx_round_pr(x) _mm256_round_ps(x, 0x0)
#define GMX_SIMD_HAVE_FLOOR
#define gmx_floor_pr _mm256_floor_ps
#define GMX_SIMD_HAVE_BLENDV
#define gmx_blendv_pr _mm256_blendv_ps
static gmx_inline gmx_mm_pr gmx_cpsgn_nonneg_pr(gmx_mm_pr a, gmx_mm_pr b)
{
gmx_mm_pr sign_mask = _mm256_set1_ps(-0.0);
return _mm256_or_ps(_mm256_and_ps(a, sign_mask), b);
};
static gmx_inline gmx_mm_pr gmx_masknot_add_pr(gmx_mm_pb a, gmx_mm_pr b, gmx_mm_pr c)
{
return _mm256_add_ps(b, _mm256_andnot_ps(a, c));
};
/* Less-than (we use ordered, non-signaling, but that's not required) */
#define gmx_cmplt_pr(x, y) _mm256_cmp_ps(x, y, 0x11)
#define gmx_and_pb _mm256_and_ps
#define gmx_or_pb _mm256_or_ps
#define gmx_anytrue_pb _mm256_movemask_ps
#define gmx_cvttpr_epi32 _mm256_cvttps_epi32
#define gmx_rsqrt_pr _mm256_rsqrt_ps
#define gmx_rcp_pr _mm256_rcp_ps
#define gmx_exp_pr gmx_mm256_exp_ps
#define gmx_sqrt_pr gmx_mm256_sqrt_ps
#define gmx_sincos_pr gmx_mm256_sincos_ps
#define gmx_acos_pr gmx_mm256_acos_ps
#define gmx_atan2_pr gmx_mm256_atan2_ps
#else /* ifndef GMX_DOUBLE */
#define GMX_SIMD_WIDTH_HERE 4
#define gmx_mm_pr __m256d
#define gmx_mm_pb __m256d
/* We use 128-bit integer registers because of missing 256-bit operations */
#define gmx_epi32 __m128i
#define GMX_SIMD_EPI32_WIDTH 4
#define gmx_load_pr _mm256_load_pd
#define gmx_load1_pr(x) _mm256_set1_pd((x)[0])
#define gmx_set1_pr _mm256_set1_pd
#define gmx_setzero_pr _mm256_setzero_pd
#define gmx_store_pr _mm256_store_pd
#define gmx_add_pr _mm256_add_pd
#define gmx_sub_pr _mm256_sub_pd
#define gmx_mul_pr _mm256_mul_pd
#define gmx_madd_pr(a, b, c) _mm256_add_pd(c, _mm256_mul_pd(a, b))
#define gmx_nmsub_pr(a, b, c) _mm256_sub_pd(c, _mm256_mul_pd(a, b))
#define gmx_max_pr _mm256_max_pd
#define gmx_blendzero_pr _mm256_and_pd
#define gmx_round_pr(x) _mm256_round_pd(x, 0x0)
#define GMX_SIMD_HAVE_FLOOR
#define gmx_floor_pr _mm256_floor_pd
#define GMX_SIMD_HAVE_BLENDV
#define gmx_blendv_pr _mm256_blendv_pd
static gmx_inline gmx_mm_pr gmx_cpsgn_nonneg_pr(gmx_mm_pr a, gmx_mm_pr b)
{
gmx_mm_pr sign_mask = _mm256_set1_pd(-0.0);
return _mm256_or_pd(_mm256_and_pd(a, sign_mask), b);
};
static gmx_inline gmx_mm_pr gmx_masknot_add_pr(gmx_mm_pb a, gmx_mm_pr b, gmx_mm_pr c)
{
return _mm256_add_pd(b, _mm256_andnot_pd(a, c));
};
/* Less-than (we use ordered, non-signaling, but that's not required) */
#define gmx_cmplt_pr(x, y) _mm256_cmp_pd(x, y, 0x11)
#define gmx_and_pb _mm256_and_pd
#define gmx_or_pb _mm256_or_pd
#define gmx_anytrue_pb _mm256_movemask_pd
#define gmx_cvttpr_epi32 _mm256_cvttpd_epi32
#define gmx_rsqrt_pr(r) _mm256_cvtps_pd(_mm_rsqrt_ps(_mm256_cvtpd_ps(r)))
#define gmx_rcp_pr(r) _mm256_cvtps_pd(_mm_rcp_ps(_mm256_cvtpd_ps(r)))
#define gmx_exp_pr gmx_mm256_exp_pd
#define gmx_sqrt_pr gmx_mm256_sqrt_pd
#define gmx_sincos_pr gmx_mm256_sincos_pd
#define gmx_acos_pr gmx_mm256_acos_pd
#define gmx_atan2_pr gmx_mm256_atan2_pd
#endif /* ifndef GMX_DOUBLE */
#endif /* 128- or 256-bit x86 SIMD */
#endif /* GMX_X86_SSE2 */
#endif /* GMX_TARGET_X86 */
#ifdef GMX_CPU_ACCELERATION_IBM_QPX
/* This hack works on the compilers that can reach this code. A real
solution with broader scope will be proposed in master branch. */
#define gmx_always_inline __attribute__((always_inline))
/* This is for the A2 core on BlueGene/Q that supports IBM's QPX
vector built-in functions */
#define GMX_HAVE_SIMD_MACROS
#ifdef __clang__
#include <qpxmath.h>
#else
#include "mass_simd.h"
#endif
/* No need to version the code by the precision, because the QPX AXU
extends to and truncates from double precision for free. */
#define GMX_SIMD_WIDTH_HERE 4
typedef vector4double gmx_mm_pr;
typedef vector4double gmx_mm_pb;
typedef vector4double gmx_epi32;
#define GMX_SIMD_EPI32_WIDTH 4
static gmx_inline gmx_mm_pr gmx_always_inline gmx_load_pr(const real *a)
{
#ifdef NDEBUG
return vec_ld(0, (real *) a);
#else
return vec_lda(0, (real *) a);
#endif
}
static gmx_inline gmx_mm_pr gmx_always_inline gmx_load1_pr(const real *a)
{
return vec_splats(*a);
}
static gmx_inline gmx_mm_pr gmx_always_inline gmx_set1_pr(real a)
{
return vec_splats(a);
}
static gmx_inline gmx_mm_pr gmx_always_inline gmx_setzero_pr()
{
return vec_splats(0.0);
}
static gmx_inline void gmx_always_inline gmx_store_pr(real *a, gmx_mm_pr b)
{
#ifdef NDEBUG
vec_st(b, 0, a);
#else
vec_sta(b, 0, a);
#endif
}
static gmx_inline gmx_mm_pr gmx_always_inline gmx_add_pr(gmx_mm_pr a, gmx_mm_pr b)
{
return vec_add(a, b);
}
static gmx_inline gmx_mm_pr gmx_always_inline gmx_sub_pr(gmx_mm_pr a, gmx_mm_pr b)
{
return vec_sub(a, b);
}
static gmx_inline gmx_mm_pr gmx_always_inline gmx_mul_pr(gmx_mm_pr a, gmx_mm_pr b)
{
return vec_mul(a, b);
}
static gmx_inline gmx_mm_pr gmx_always_inline gmx_madd_pr(gmx_mm_pr a, gmx_mm_pr b, gmx_mm_pr c)
{
return vec_madd(a, b, c);
}
static gmx_inline gmx_mm_pr gmx_always_inline gmx_nmsub_pr(gmx_mm_pr a, gmx_mm_pr b, gmx_mm_pr c)
{
return vec_nmsub(a, b, c);
}
static gmx_inline gmx_mm_pr gmx_always_inline gmx_max_pr(gmx_mm_pr a, gmx_mm_pr b)
{
return vec_sel(b, a, vec_sub(a, b));
}
static gmx_inline gmx_mm_pr gmx_always_inline gmx_blendzero_pr(gmx_mm_pr a, gmx_mm_pr b)
{
return vec_sel(gmx_setzero_pr(), a, b);
}
static gmx_inline gmx_mm_pb gmx_always_inline gmx_cmplt_pr(gmx_mm_pr a, gmx_mm_pr b)
{
return vec_cmplt(a, b);
}
static gmx_inline gmx_mm_pb gmx_always_inline gmx_and_pb(gmx_mm_pb a, gmx_mm_pb b)
{
return vec_and(a, b);
}
static gmx_inline gmx_mm_pb gmx_always_inline gmx_or_pb(gmx_mm_pb a, gmx_mm_pb b)
{
return vec_or(a, b);
}
static gmx_inline gmx_mm_pr gmx_always_inline gmx_round_pr(gmx_mm_pr a)
{
return vec_round(a);
}
#define GMX_SIMD_HAVE_FLOOR
static gmx_inline gmx_mm_pr gmx_always_inline gmx_floor_pr(gmx_mm_pr a)
{
return vec_floor(a);
}
#define GMX_SIMD_HAVE_BLENDV
static gmx_inline gmx_mm_pr gmx_always_inline gmx_blendv_pr(gmx_mm_pr a, gmx_mm_pr b, gmx_mm_pr c)
{
return vec_sel(b, a, gmx_cmplt_pr(gmx_setzero_pr(), c));
}
static gmx_inline gmx_mm_pr gmx_always_inline gmx_cpsgn_nonneg_pr(gmx_mm_pr a, gmx_mm_pr b)
{
return vec_cpsgn(a, b);
};
static gmx_inline gmx_mm_pr gmx_always_inline gmx_masknot_add_pr(gmx_mm_pb a, gmx_mm_pr b, gmx_mm_pr c)
{
return vec_add(b, vec_sel(c, gmx_setzero_pr(), a));
};
static gmx_inline gmx_bool gmx_always_inline
GMX_SIMD_IS_TRUE(real x)
{
return x >= 0.0;
}
static gmx_inline gmx_epi32 gmx_always_inline gmx_cvttpr_epi32(gmx_mm_pr a)
{
return vec_ctiwuz(a);
}
/* Don't want this, we have floor */
/* #define gmx_cvtepi32_pr vec_cvtepi32 */
/* A2 core on BG/Q delivers relative error of 2^-14, whereas Power ISA
Architecture only promises 2^-8. So probably no need for
Newton-Raphson iterates at single or double. */
static gmx_inline gmx_mm_pr gmx_always_inline gmx_rsqrt_pr(gmx_mm_pr a)
{
return vec_rsqrte(a);
}
/* A2 core on BG/Q delivers relative error of 2^-14, whereas Power ISA
Architecture only promises 2^-5. So probably no need for
Newton-Raphson iterates at single or double. */
static gmx_inline gmx_mm_pr gmx_always_inline gmx_rcp_pr(gmx_mm_pr a)
{
return vec_re(a);
}
/* Note that here, and below, we use the built-in SLEEF port when
compiling on BlueGene/Q with clang */
#define GMX_SIMD_HAVE_EXP
static gmx_inline gmx_mm_pr gmx_always_inline gmx_exp_pr(gmx_mm_pr a)
{
#ifdef __clang__
#ifndef GMX_DOUBLE
return xexpf(a);
#else
return xexp(a);
#endif
#else
#ifndef GMX_DOUBLE
return expf4(a);
#else
return expd4(a);
#endif
#endif
}
static gmx_inline gmx_mm_pr gmx_always_inline gmx_sqrt_pr(gmx_mm_pr a)
{
#ifdef NDEBUG
return vec_swsqrt_nochk(a);
#else
return vec_swsqrt(a);
#endif
}
#define GMX_SIMD_HAVE_TRIGONOMETRIC
static gmx_inline int gmx_always_inline gmx_sincos_pr(gmx_mm_pr a, gmx_mm_pr *b, gmx_mm_pr *c)
{
#ifdef __clang__
#ifndef GMX_DOUBLE
xsincosf(a, b, c);
#else
xsincos(a, b, c);
#endif
#else
#ifndef GMX_DOUBLE
sincosf4(a, b, c);
#else
sincosd4(a, b, c);
#endif
#endif
return 1;
}
static gmx_inline gmx_mm_pr gmx_always_inline gmx_acos_pr(gmx_mm_pr a)
{
#ifdef __clang__
#ifndef GMX_DOUBLE
return xacosf(a);
#else
return xacos(a);
#endif
#else
#ifndef GMX_DOUBLE
return acosf4(a);
#else
return acosd4(a);
#endif
#endif
}
/* NB The order of parameters here is correct; the
documentation of atan2[df]4 in SIMD MASS is wrong. */
static gmx_inline gmx_mm_pr gmx_always_inline gmx_atan2_pr(gmx_mm_pr a, gmx_mm_pr b)
{
#ifdef __clang__
#ifndef GMX_DOUBLE
return xatan2f(a, b);
#else
return xatan2(a, b);
#endif
#else
#ifndef GMX_DOUBLE
return atan2f4(a, b);
#else
return atan2d4(a, b);
#endif
#endif
}
static gmx_inline int gmx_always_inline
gmx_anytrue_pb(gmx_mm_pb a)
{
/* The "anytrue" is done solely on the QPX AXU (which is the only
available FPU). This is awkward, because pretty much no
"horizontal" SIMD-vector operations exist, unlike x86 where
SSE4.1 added various kinds of horizontal operations. So we have
to make do with shifting vector elements and operating on the
results. This makes for lots of data dependency, but the main
alternative of storing to memory and reloading is not going to
help, either. OpenMP over 2 or 4 hardware threads per core will
hide much of the latency from the data dependency. The
vec_extract() lets the compiler correctly use a floating-point
comparison on the zeroth vector element, which avoids needing
memory at all.
*/
gmx_mm_pb vec_shifted_left_0 = a;
gmx_mm_pb vec_shifted_left_1 = vec_sldw(a, a, 1);
gmx_mm_pb vec_shifted_left_2 = vec_sldw(a, a, 2);
gmx_mm_pb vec_shifted_left_3 = vec_sldw(a, a, 3);
gmx_mm_pb vec_return = vec_or(vec_or(vec_shifted_left_2, vec_shifted_left_3),
vec_or(vec_shifted_left_0, vec_shifted_left_1));
return (0.0 < vec_extract(vec_return, 0));
};
#undef gmx_always_inline
#endif /* GMX_CPU_ACCELERATION_IBM_QPX */
#ifdef GMX_HAVE_SIMD_MACROS
/* Generic functions to extract a SIMD aligned pointer from a pointer x.
* x should have at least GMX_SIMD_WIDTH_HERE elements extra compared
* to how many you want to use, to avoid indexing outside the aligned region.
*/
static gmx_inline real *
gmx_simd_align_real(const real *x)
{
return (real *)(((size_t)((x)+GMX_SIMD_WIDTH_HERE)) & (~((size_t)(GMX_SIMD_WIDTH_HERE*sizeof(real)-1))));
}
static gmx_inline int *
gmx_simd_align_int(const int *x)
{
return (int *)(((size_t)((x)+GMX_SIMD_WIDTH_HERE)) & (~((size_t)(GMX_SIMD_WIDTH_HERE*sizeof(int )-1))));
}
/* Include the math functions which only need the above macros,
* generally these are the ones that don't need masking operations.
*/
#ifdef GMX_DOUBLE
#include "gmx_simd_math_double.h"
#else
#include "gmx_simd_math_single.h"
#endif
#endif /* GMX_HAVE_SIMD_MACROS */
#endif /* _gmx_simd_macros_h_ */
|