This file is indexed.

/usr/lib/grass64/include/grass/iostream/empq_adaptive_impl.h is in grass-dev 6.4.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/****************************************************************************
 * 
 *  MODULE:	iostream
 *
 *  COPYRIGHT (C) 2007 Laura Toma
 *   
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *****************************************************************************/


#ifndef __EMPQ_ADAPTIVE_IMPL_H
#define __EMPQ_ADAPTIVE_IMPL_H

#include <stdio.h>
#include <assert.h>

#include "ami_config.h"
#include "ami_stream.h"
#include "mm.h"
#include "mm_utils.h"
#include "empq_adaptive.h"

#include "ami_sort.h"


// EMPQAD_DEBUG defined in "empqAdaptive.H"




//------------------------------------------------------------
//allocate an internal pqueue of size precisely twice 
//the size of the pqueue within the em_pqueue;
//
//This constructor uses a user defined amount of memory

template<class T, class Key> 
EMPQueueAdaptive<T,Key>::EMPQueueAdaptive(size_t inMem) {
  regim = INMEM;
  EMPQAD_DEBUG cout << "EMPQUEUEADAPTIVE: starting in-memory pqueue" 
		    << endl;
  
  //------------------------------------------------------------
  //set the size precisely as in empq constructor since we cannot 
  //really call the em__pqueue constructor, because we don't want 
  //the space allocated; we just want the sizes;
  //AMI_err ae;
  EMPQAD_DEBUG cout << "EMPQUEUEADAPTIVE: desired memory: " 
		    << ( (float)inMem/ (1<< 20)) << "MB" << endl;
  
  initPQ(inMem);
};


//------------------------------------------------------------
// This more resembles the original constuctor which is greedy
template<class T, class Key> 
EMPQueueAdaptive<T,Key>::EMPQueueAdaptive() {
  regim = INMEM;
  EMPQAD_DEBUG cout << "EMPQUEUEADAPTIVE: starting in-memory pqueue" 
		    << endl;
  
  //------------------------------------------------------------
  //set the size precisely as in empq constructor since we cannot 
  //really call the em__pqueue constructor, because we don't want 
  //the space allocated; we just want the sizes;
  size_t mm_avail = getAvailableMemory();
  EMPQAD_DEBUG cout << "EMPQUEUEADAPTIVE: available memory: " 
		    << ( (float)mm_avail/ (1<< 20)) << "MB" << endl;
  

  initPQ(mm_avail);

};


//------------------------------------------------------------
// This metod initialized the PQ based on the memory passed 
// into it
template<class T, class Key>
void
EMPQueueAdaptive<T,Key>::initPQ(size_t initMem) {
  AMI_err ae;
  EMPQAD_DEBUG cout << "EMPQUEUEADAPTIVE: desired memory: " 
		    << ( (float)initMem/ (1<< 20)) << "MB" << endl;
  
  /* same calculations as empq constructor in order to estimate
     overhead memory; this is because we want to allocate a pqueue of
     size exactly double the size of the pqueue inside the empq;
     switching from this pqueue to empq when the memory fills up will
     be simple */
  //------------------------------------------------------------
  //AMI_STREAM memory usage
  size_t sz_stream;
  AMI_STREAM<T> dummy;
  if ((ae = dummy.main_memory_usage(&sz_stream,
				    MM_STREAM_USAGE_MAXIMUM)) !=
      AMI_ERROR_NO_ERROR) {
    cerr << "EMPQueueAdaptive constr: failing to get stream_usage\n";
    exit(1);
  }  


  //account for temporary memory usage
  unsigned short max_nbuf = 2;
  unsigned int buf_arity = initMem/(2 * sz_stream);
  if (buf_arity > MAX_STREAMS_OPEN) buf_arity = MAX_STREAMS_OPEN; 
  unsigned long mm_overhead = buf_arity*sizeof(merge_key<Key>) + 
    max_nbuf * sizeof(em_buffer<T,Key>) +
    2*sz_stream + max_nbuf*sz_stream;
  mm_overhead *= 8; //overestimate..this should be fixed with
  //a precise accounting of the extra memory required

  EMPQAD_DEBUG cout << "sz_stream: " << sz_stream << " buf_arity: " << buf_arity <<
    " mm_overhead: " << mm_overhead << " mm_avail: " << initMem << ".\n";



  EMPQAD_DEBUG cout << "EMPQUEUEADAPTIVE: memory overhead set to " 
		    << ((float)mm_overhead / (1 << 20)) << "MB" << endl;
  if (mm_overhead > initMem) {
    cerr << "overhead bigger than available memory ("<< initMem << "); "
	 << "increase -m and try again\n";
    exit(1);
  }
  initMem -= mm_overhead;
  //------------------------------------------------------------


  long pqsize = initMem/sizeof(T);
  EMPQAD_DEBUG cout << "EMPQUEUEADAPTIVE: pqsize set to " << pqsize << endl;

  //initialize in memory pqueue and set em to NULL
  im = new MinMaxHeap<T>(pqsize);
  assert(im);
  em = NULL;
};


template<class T, class Key> 
EMPQueueAdaptive<T,Key>::~EMPQueueAdaptive() {
  switch(regim) {
  case INMEM:
	delete im;
	break;
  case EXTMEM:
	delete em; 
	break;
  case EXTMEM_DEBUG:
	delete dim;
	delete em; 
	break;
  }
};



//return the maximum nb of elts that can fit
template<class T, class Key> 
long 
EMPQueueAdaptive<T,Key>::maxlen() const {
  long m=-1;
  switch(regim) {
  case INMEM:
	assert(im);
	m = im->get_maxsize();
	break;
  case EXTMEM:
	assert(em);
	m = em->maxlen();
	break;
  case EXTMEM_DEBUG:
	m = em->maxlen();
	break;
  }
  return m;
};




//return true if empty
template<class T, class Key> 
bool
EMPQueueAdaptive<T,Key>::is_empty() const {
  bool v = false;
  switch(regim) {
  case INMEM:
	assert(im);
	v = im->empty();
	break;
  case EXTMEM:
	assert(em);
	v = em->is_empty(); 
	break;
  case EXTMEM_DEBUG:
	assert(dim->empty() == em->is_empty());
	v = em->is_empty(); 
	break;
  }
  return v;
};


//return true if full
template<class T, class Key> 
bool
EMPQueueAdaptive<T,Key>::is_full() const { 
  cerr << "EMPQueueAdaptive::is_full(): sorry not implemented\n";
  assert(0);
  exit(1);
}


//return the element with minimum priority in the structure
template<class T, class Key> 
bool
EMPQueueAdaptive<T,Key>::min(T& elt) {
  bool v=false, v1;
  T tmp;
  switch(regim) {
  case INMEM:
	assert(im);
	v = im->min(elt);
	break;
  case EXTMEM:
	assert(em);
	v = em->min(elt);
	break;
  case EXTMEM_DEBUG:
	v1 = dim->min(tmp);
	v = em->min(elt);
	//dim->verify();
	if(!(tmp==elt)) {
	  cerr << "------------------------------" << endl;
	  cerr << dim << endl;
	  cerr << "------------------------------" << endl;
	  em->print();
	  cerr << "------------------------------" << endl;
	  cerr << "tmp=" << tmp << endl;
	  cerr << "elt=" << elt << endl;
	  cerr << "------------------------------" << endl;
	  dim->destructiveVerify();
	}
	assert(v == v1);
	assert(tmp == elt);
	break;
  }
  return v;
};

/* switch over to using an external priority queue */
template<class T, class Key> 
void
EMPQueueAdaptive<T,Key>::clear() {
  switch(regim) {
  case INMEM:
    im->clear();
    break;
  case EXTMEM:
    em->clear();
    break;
  case EXTMEM_DEBUG:
    dim->clear();
    break;
  }
}


template<class T, class Key> 
void
EMPQueueAdaptive<T,Key>::verify() {
  switch(regim) {
  case INMEM:
	im->verify();
	break;
  case EXTMEM:
	break;
  case EXTMEM_DEBUG:
	dim->verify();
	break;
  }
}

//extract all elts with min key, add them and return their sum
template<class T, class Key> 
bool 
EMPQueueAdaptive<T,Key>::extract_all_min(T& elt) {
  bool v=false, v1;
  T tmp;
  switch(regim) {
  case INMEM:
	assert(im);
	v = im->extract_all_min(elt);
	break;
  case EXTMEM:
	assert(em);
	v = em->extract_all_min(elt);
	break;
  case EXTMEM_DEBUG:
	v1 =  dim->extract_all_min(tmp);
	v = em->extract_all_min(elt);
	assert(dim->size() == em->size());
	assert(v == v1);
	assert(tmp == elt);
	break;
  }
  return v;
};

//return the nb of elements in the structure 
template<class T, class Key> 
long
EMPQueueAdaptive<T,Key>::size() const {
  long v=0, v1;
  switch(regim) {
  case INMEM:
	assert(im);
	v = im->size();
	break;
  case EXTMEM:
	assert(em);
	v = em->size();
	break;
  case EXTMEM_DEBUG:
	v1 = dim->size();
	v = em->size();
	assert(v == v1);
	break;
  }
  return v;
}




// ----------------------------------------------------------------------
template<class T, class Key> 
bool 
EMPQueueAdaptive<T,Key>::extract_min(T& elt) {
    bool v=false, v1;
	T tmp;
	switch(regim) {
	case INMEM:
	  assert(im);
	  v = im->extract_min(elt);
	  break;
	case EXTMEM:
	  assert(em);
	  v = em->extract_min(elt);
	  break;
	case EXTMEM_DEBUG:
	  v1 =  dim->extract_min(tmp);
	  v = em->extract_min(elt);
	  assert(v == v1);
	  assert(tmp == elt);
	  assert(dim->size() == em->size());
	  break;
    }
	return v;
};
 



//------------------------------------------------------------
 /* insert an element; if regim == INMEM, try insert it in im, and if
    it is full, extract_max pqsize/2 elements of im into a stream,
    switch to EXTMEM and insert the stream into em; if regim is
    EXTMEM, insert in em; */
template<class T, class Key> 
bool 
EMPQueueAdaptive<T,Key>::insert(const T& elt) {
  bool v=false;
  switch(regim) {
  case INMEM:
	if (!im->full()) {
      im->insert(elt);
	  v = true;
    } else {
	  makeExternal();
	  v = em->insert(elt);      //insert the element
	} 
	break;
  case EXTMEM:
	v = em->insert(elt);
	break;
  case EXTMEM_DEBUG:
	dim->insert(elt);
	v = em->insert(elt);
	assert(dim->size() == em->size());
	break;
  }
  return v;
};

template<class T, class Key> 
void
EMPQueueAdaptive<T,Key>::makeExternalDebug() {
  assert(size() == 0);
  switch(regim) {
  case INMEM:
	makeExternal();
	break;
  case EXTMEM:
	break;
  case EXTMEM_DEBUG:
	assert(0);
	break;
  }
  dim = new UnboundedMinMaxHeap<T>();
  regim = EXTMEM_DEBUG;
}



template<class T>
class baseCmpType {
public:
  static int compare(const T& x, const T& y) {
    return  (x < y ? -1 : (x > y ? 1 : 0));
  }

};

/* switch over to using an external priority queue */
template<class T, class Key> 
void
EMPQueueAdaptive<T,Key>::makeExternal() {
  AMI_err ae;
#ifndef NDEBUG
  long sizeCheck;
  sizeCheck = size();
#endif

  assert(regim == INMEM);  
  regim = EXTMEM;

  EMPQAD_DEBUG cout << endl 
			 << "EMPQUEUEADAPTIVE: memory full: "
			 << "switching to external-memory pqueue " << endl;
  
  //create an AMI_stream and write in it biggest half elts of im;
  AMI_STREAM<T> *amis0 = new AMI_STREAM<T>();
  AMI_STREAM<T> *amis1;
  assert(amis0 && amis1);
  unsigned long pqsize = im->size();
  //assert(im->size() == im->get_maxsize());
  T x;
  for (unsigned long i=0; i< pqsize/2; i++) {
	int z = im->extract_max(x);
	assert(z);
	ae = amis0->write_item(x);
	assert(ae == AMI_ERROR_NO_ERROR);
  }
  assert(amis0->stream_len() == pqsize/2);
  EMPQAD_DEBUG { cout << "written " << pqsize/2 
			   << " elts to stream\n"; cout.flush(); }
  
  assert(im->size() == pqsize/2 + (pqsize % 2));
  
  EMPQAD_DEBUG LOG_avail_memo();
  
  //sort the stream
  baseCmpType<T> fun;
  AMI_sort(amis0, &amis1, &fun); //XXX laura: replaced this to use a cmp obj
  delete amis0;
  EMPQAD_DEBUG { cout << "sorted the stream\n"; cout.flush(); }
  
  EMPQAD_DEBUG LOG_avail_memo();
  
  //set im to NULL and initialize em from im and amis1
  em = new em_pqueue<T,Key>(im, amis1);
  im = NULL;
  assert(em);
  EMPQAD_DEBUG { cout << "empq initialized from im\n"; cout.flush(); }
  EMPQAD_DEBUG {em->print_size();}
  
  EMPQAD_DEBUG LOG_avail_memo();
#ifndef NDEBUG
  assert(sizeCheck == size());
#endif
};

#endif