This file is indexed.

/usr/share/gnubik/scripts/mellor-solve.scm is in gnubik 2.4-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
;;   Copyright (c) 2004 Dale Mellor
;;
;;   This program is free software; you can redistribute it and/or modify
;;   it under the terms of the GNU General Public License as published by
;;   the Free Software Foundation; either version 3 of the License, or
;;   (at your option) any later version.
;;
;;   This program is distributed in the hope that it will be useful,
;;   but WITHOUT ANY WARRANTY; without even the implied warranty of
;;   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;;   GNU General Public License for more details.
;;
;;   You should have received a copy of the GNU General Public License
;;   along with this program.  If not, see <http://www.gnu.org/licenses/>.

;; I'm not normally one for global variables, but this is so pervasive
;; throughout this unit I couldn't resist. It is the scheme reflection of
;; GNUbik's own cube object.

(define cube '())




;; Whenever we access the cube, or perform moves on it, we call a function which
;; performs symbolic rotations about the sides l, r, b and f. This way, we only
;; have to work out one quarter of the total moves to solve the cube, and the
;; rest come by symmetry. The following variable gets a function which performs
;; the rotations (it will be a function which takes a string in and gives a
;; transformed string back).

(define rotated-flubrd-symbol '())




;; Function to create the procedure that gets assigned to the variable binding
;; above, given the number of turns required. For example, if one turn is
;; requested, then any algorithms which are centred around the front face will,
;; unwittingly, be applying themselves to the right face.

(define (rotated-flubrd-symbol-set! turns)
  (set! rotated-flubrd-symbol
        (lambda (s)
          (do ((s (string-copy s))
               (j 0 (+ 1 j)))
              ((eq? j turns) s)
            (do ((i 0 (+ i 1))) ((eq? i (string-length s))
                                 s)
              (string-set! s i
                           (case (string-ref s i)
                             ((#\l) #\f)
                             ((#\f) #\r)
                             ((#\r) #\b)
                             ((#\b) #\l)
                             (else (string-ref s i)))))))))




;; So, if proc is designed to solve a block on the front face, we apply it to
;; four different rotations of the symbolic letters and have it solve a block on
;; four faces.

(define (repeat-for-all-rotations proc)
  (do ((i 0 (+ i 1))) ((eq? i 4))
    (rotated-flubrd-symbol-set! i)
    (proc)))




;; Wrapper around get-colour-symbolic which applies the cube rotation first,
;; i.e. it is influenced by the script later setting rotated-flubrd-symbol by
;; calling rotated-flubrd-symbol-set!

(define (lookup-colour s)
  (get-colour-symbolic cube (rotated-flubrd-symbol s)))




;; Wrapper around move-face which applies the cube rotation first. Note that
;; this takes a string consisting of multiple moves, each one represented by two
;; letters, e.g. "f+"; the single-letter symbols which move-face accepts cannot
;; be used here.

(define (do-moves moves)
  (do ((moves moves (substring moves 2))) ((string-null? moves))
    (move-face cube (rotated-flubrd-symbol (substring moves 0 2)))))
 



;; This introduces xsubstring, which allows us to perform cyclic rotations on
;; the characters of a string.

(use-modules ((srfi srfi-13)))




;; Think about fixing the uf block, but then apply the algorithms with the cube
;; symbolically rotated four times. Look for the required block in all possible
;; locations, and when it is found lookup the moves that are needed to bring it
;; to uf, without upsetting any of the other top edges.

(define (mellor-top-edge-solve)
  (repeat-for-all-rotations
   (lambda ()
     (let ((u (lookup-colour "u"))
           (f (lookup-colour "f")))
       (let trial ((moves '(("fu" . "f-u+l-u-")
                            
                            ("ur" . "r-u-r+u+")
                            ("ru" . "r-f-")
                            ("bu" . "b-u-r-u+")
                            ("ub" . "b-u-u-b+u-u-")
                            ("ul" . "l+u+l-u-")
                            ("lu" . "l+f+")
                            
                            ("fr" . "u-r+u+")
                            ("rf" . "f-")
                            ("rb" . "r+r+f-r-r-")
                            ("br" . "u-r-u+")
                            ("lb" . "l+l+f+l-l-")
                            ("bl" . "u+l+u-")
                            ("fl" . "u+l-u-")
                            ("lf" . "f+")
                            
                            ("fd" . "d+r+f-r-")
                            ("df" . "f+f+")
                            ("rd" . "r+f-r-")
                            ("dr" . "d-f+f+")
                            ("db" . "d+d+f+f+")
                            ("bd" . "d-r+f-r-")
                            ("dl" . "d+f+f+")
                            ("ld" . "l-f+l+"))))
         (if (not (null? moves))
             (if (and (eq? u (lookup-colour (caar moves)))
                      (eq? f (lookup-colour (xsubstring (caar moves) 1 3))))
                 (do-moves (cdar moves))
                 (trial (cdr moves)))))))))




;; Concentrate on getting the block ufr correct, but then apply the procedure to
;; all four sides of the cube. Look for the correct block in all locations, and
;; then lookup the moves required to get it to ufr.

(define (mellor-top-corner-solve)
  (repeat-for-all-rotations
   (lambda ()
     (let ((top-colour (lookup-colour "u"))
           (front-colour (lookup-colour "f"))
           (right-colour (lookup-colour "r")))
       (let loop ((moves '(("rfd" .   "r-d-r+")
                           ("fld" . "d+r-d-r+")
                           ("lbd" . "f+d-d-f-")
                           ("brd" . "f+d-f-")
                           
                           ("fdr" .   "f+d+f-")
                           ("rdb" . "d-f+d+f-")
                           ("bdl" . "r-d-d-r+")
                           ("ldf" . "r-d+r+")
                           
                           ("drf" .     "r-d+r+f+d-d-f-")
                           ("dfl" .   "d+r-d+r+f+d-d-f-")
                           ("dlb" . "d-d-r-d+r+f+d-d-f-")
                           ("dbr" .   "d-r-d+r+f+d-d-f-")

                           ("fru" . "f+d-d-f-r-d-d-r+")
                           ("ruf" . "r-d-d-r+f+d-d-f-")
                           ("urb" . "b-d-d-b+r-d+r+")
                           ("rbu" . "r+d+r-r-d-d-r+")
                           ("bur" . "f+b-d-f-b+")
                           ("ubl" . "b+d-b-r-d-d-r+")
                           ("blu" . "b+r-d-d-r+b-")
                           ("lub" . "l-f+d-d-f-l+")
                           ("ulf" . "l+d-l-r-d+r+")
                           ("lfu" . "l+r-d+r+l-")
                           ("ful" . "f-d-f+f+d-d-f-"))))
         (if (not (null? moves))
             (if (and (eq? (lookup-colour (caar moves))
                           top-colour)
                      (eq? (lookup-colour (xsubstring (caar moves) 1 4))
                           front-colour)
                      (eq? (lookup-colour (xsubstring (caar moves) 2 5))
                           right-colour))
                 (do-moves (cdar moves))
                 (loop (cdr moves)))))))))

    


;; Consider the fr block. If the block is to be found in the bottom slice, get
;; it into one of two `starting positions' (either fd or rd) and then move it up
;; into fr by looping back. If the piece is not found here, it must be in one of
;; the other middle edge positions; for now we just check if we are holding a
;; middle edge block at fr and if so we drop it to the bottom slice, so that a
;; repeat of the algorithm will eventually put it in its correct place, and by
;; the time the repeat comes around our own block will hopefully have been
;; dropped down.

(define (mellor-middle-slice-solve)
  (do ((i 0 (+ 1 i))) ((eq? i 3))
    (repeat-for-all-rotations
     (lambda ()
       (let ((front-colour (lookup-colour "f"))
             (right-colour (lookup-colour "r")))
         (let loop ()
           (cond ((and (eq? (lookup-colour "fd") front-colour)
                       (eq? (lookup-colour "df") right-colour))
                  (do-moves "d-r-d+r+d+f+d-f-"))
                 ((and (eq? (lookup-colour "df") front-colour)
                       (eq? (lookup-colour "fd") right-colour))
                  (do-moves "d+") (loop))
                 ((and (eq? (lookup-colour "rd") right-colour)
                       (eq? (lookup-colour "dr") front-colour))
                  (do-moves "d+f+d-f-d-r-d+r+"))
                 ((and (eq? (lookup-colour "dr") right-colour)
                       (eq? (lookup-colour "rd") front-colour))
                  (do-moves "d-") (loop))
                 ((and (eq? (lookup-colour "ld") front-colour)
                       (eq? (lookup-colour "dl") right-colour))
                  (do-moves "d+") (loop))
                 ((and (eq? (lookup-colour "dl") front-colour)
                       (eq? (lookup-colour "ld") right-colour))
                  (do-moves "d+d+") (loop))
                 ((and (eq? (lookup-colour "bd") front-colour)
                       (eq? (lookup-colour "db") right-colour))
                  (do-moves "d+d+") (loop))
                 ((and (eq? (lookup-colour "db") front-colour)
                       (eq? (lookup-colour "bd") right-colour))
                  (do-moves "d-") (loop))

                 ((and (eq? (lookup-colour "fr") front-colour)
                       (eq? (lookup-colour "rf") right-colour))
                  noop)
                 
                 ((let ((bottom-colour (lookup-colour "d")))
                    (and (not (eq? (lookup-colour "fr") bottom-colour))
                         (not (eq? (lookup-colour "rf") bottom-colour))))
                  (do-moves "d+f+d-f-d-r-d+r+") (loop)))))))))




;; Procedure which answers the question, `Is the fdr block located in the right
;; place (regardless of orientation)?'

(define (placed-fdr?)
  (eq? (+ (ash 1 (lookup-colour "fdr"))
          (ash 1 (lookup-colour "dfr"))
          (ash 1 (lookup-colour "rdf")))
       (+ (ash 1 (lookup-colour "f"  ))
          (ash 1 (lookup-colour "d"  ))
          (ash 1 (lookup-colour "r"  )))))




;; We look at all the bottom corners, and set a bit in a bit-mask when one is in
;; the right place. There are six patterns to look for: four in which two
;; adjacent blocks are out of place, and two in which diagonal blocks are out of
;; place. When we find one of these, we apply a symbolic rotation to the cube so
;; that the missing pieces are in set positions, and then apply appriopriate set
;; moves. Otherwise, either all the pieces are already in place, or else we just
;; shift the bottom slice around and loop until we find a pattern.

(define (mellor-bottom-corner-place)
  (let ((fix-2 (lambda () (do-moves "r-d-r+f+d+f-r-d+r+d-d-")))
        (fix-d (lambda () (do-moves "r-d-r+f+d-d-f-r-d+r+d-"))))
    (let loop ()
      (case (do ((i 0 (+ i 1)) (a 0 a))
                ((eq? i 4) a)
              (rotated-flubrd-symbol-set! i)
              (set! a (+ a (if (placed-fdr?) (ash 1 i) 0))))
        ((3)  (rotated-flubrd-symbol-set! 3) (fix-2))
        ((6)  (rotated-flubrd-symbol-set! 0) (fix-2))
        ((12) (rotated-flubrd-symbol-set! 1) (fix-2))
        ((9)  (rotated-flubrd-symbol-set! 2) (fix-2))
        ((5)  (rotated-flubrd-symbol-set! 1) (fix-d))
        ((10) (rotated-flubrd-symbol-set! 0) (fix-d))
        ((15) noop)
        (else (do-moves "d+") (loop))))))




;; Very similar methodology to the above; look for patterns of blocks with the
;; right orientation, and then apply set-piece moves (depending on whether three
;; or two pieces are out of position). In all cases, we loop until we have a
;; solution because sometimes it takes more than one effort to get things
;; correct (we could go for a more intelligent approach than this...)

(define (mellor-bottom-corner-orient)
  (let ((base-colour (lookup-colour "d"))
        (fix-2 (lambda () (do-moves "f-f-r-d+r+f+d+f-u-f+d-f-r-d-r+u+f-f-")))
        (fix-3 (lambda () (do-moves "r-d-r+d-r-d-d-r+d-d-"))))
    (let loop ()
      (case (do ((i 0 (+ i 1)) (a 0 a))
                ((eq? i 4) a)
              (rotated-flubrd-symbol-set! i)
              (set! a (+ a (if (eq? (lookup-colour "dfr") base-colour)
                               (ash 1 i)
                               0))))
        ((0)  (rotated-flubrd-symbol-set! 0) (fix-3) (loop))
        ((8)  (rotated-flubrd-symbol-set! 0) (fix-3) (loop))
        ((1)  (rotated-flubrd-symbol-set! 1) (fix-3) (loop))
        ((2)  (rotated-flubrd-symbol-set! 2) (fix-3) (loop))
        ((4)  (rotated-flubrd-symbol-set! 3) (fix-3) (loop))
        ((6)  (rotated-flubrd-symbol-set! 0) (fix-2) (loop))
        ((12) (rotated-flubrd-symbol-set! 1) (fix-2) (loop))
        ((9)  (rotated-flubrd-symbol-set! 2) (fix-2) (loop))
        ((3)  (rotated-flubrd-symbol-set! 3) (fix-2) (loop))
        ((10 5) (fix-2) (loop))))))




;; Almost the same again; look at the pattern of correctly placed bottom edges,
;; and apply set-piece moves to a logically rotated cube so that the pieces are
;; in a certain pattern which we can solve. Again, it might take several efforts
;; to get this right, so we loop until a solution is found (again we could do
;; better than this if we tried!)

(define (mellor-bottom-edge-place)
  (let ((fix (lambda () (do-moves "r+l-f+r-l+d-d-r+l-f+r-l+"))))
    (let loop ()
      (case (do ((i 0 (+ 1 i)) (a 0 a))
                ((eq? i 4) a)
              (rotated-flubrd-symbol-set! i)
              (let ((side-colour (lookup-colour "f")))
                (set! a (+ a (if (or (eq? (lookup-colour "fd") side-colour)
                                     (eq? (lookup-colour "df") side-colour))
                                 (ash 1 i)
                                 0)))))
        ((0) (fix) (loop))
        ((1) (rotated-flubrd-symbol-set! 0) (fix) (loop))
        ((2) (rotated-flubrd-symbol-set! 1) (fix) (loop))
        ((4) (rotated-flubrd-symbol-set! 2) (fix) (loop))
        ((8) (rotated-flubrd-symbol-set! 3) (fix) (loop))))))




;; A similar approach again, but looking for patterns and applying moves to get
;; the bottom edges in the correct orientation.

(define (mellor-bottom-edge-orient)
  (let ((base-colour (get-colour-symbolic cube "d"))
        (fix-adjacent (lambda () (do-moves "f-f-r-r-r-u-d+b-b-u-u-d-d-f-u-f+u-u-d-d-b+b+u+d-r+u+r-r-f-f-")))
        (fix-opposite (lambda () (do-moves "r-r-l-l-r-u-d+b-b-u-u-d-d-f-u-u-f+u-u-d-d-b-b-u+d-r+u-u-r-r-l-l-"))))
    (let loop ()
      (case (do ((i 0 (+ i 1)) (a 0 a))
                ((eq? i 4) a)
              (rotated-flubrd-symbol-set! i)
              (set! a (+ a (if (eq? (lookup-colour "df") base-colour)
                               (ash 1 i)
                               0))))
        ((0) (fix-opposite) (loop))
        ((3) (rotated-flubrd-symbol-set! 2) (fix-adjacent))
        ((6) (rotated-flubrd-symbol-set! 3) (fix-adjacent))
        ((12) (rotated-flubrd-symbol-set! 0) (fix-adjacent))
        ((9) (rotated-flubrd-symbol-set! 1) (fix-adjacent))
        ((5) (rotated-flubrd-symbol-set! 0) (fix-opposite))
        ((10) (rotated-flubrd-symbol-set! 1) (fix-opposite))))))




;; Apply all the various stages for fixing a cube in order, but allow the user
;; to specify when to stop.

(define (mellor-solve stage)
  (set! cube (gnubik-cube-state))
  (if (check-cube-structure cube)
      (do ((i 0 (+ i 1)) (stage-list (list mellor-top-edge-solve
                                           mellor-top-corner-solve
                                           mellor-middle-slice-solve
                                           mellor-bottom-corner-place
                                           mellor-bottom-corner-orient
                                           mellor-bottom-edge-place
                                           mellor-bottom-edge-orient)
                                     (cdr stage-list)))
          ((eq? i stage) (execute-move-buffer!))
        ((car stage-list)))))




;; Provide plenty of menu entries to give the user some control over the solving
;; algorithm (he may want to perform part of the solution himself!)

(define _ gettext)

(define solvers (gnubik-create-menu (_ "_Solvers")))
(define m3 (gnubik-create-menu (_ "_3×3") solvers))
(define menu (gnubik-create-menu "_Mellor" m3))


(gnubik-register-script (_ "_Full cube")
                        '(mellor-solve 7) menu)

(gnubik-register-script (_ "Bottom _edge place")
                        '(mellor-solve 6) menu)

(gnubik-register-script (_ "Bottom _corner orient")
                        '(mellor-solve 5) menu)

(gnubik-register-script (_ "_Bottom corner place")
                        '(mellor-solve 4) menu)

(gnubik-register-script (_ "_Middle slice")
                        '(mellor-solve 3) menu)

(gnubik-register-script (_ "_Top slice")
                        '(mellor-solve 2) menu)

(gnubik-register-script (_ "_Top edges")
                        '(mellor-solve 1) menu)