/usr/include/genius/mpwrap.h is in genius-dev 1.0.16-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 | /* GENIUS Calculator
* Copyright (C) 1997-2012 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
* This file is part of Genius.
*
* Genius is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef MPWRAP_H_
#define MPWRAP_H_
#ifdef HAVE_GMP2_INCLUDE_DIR
#include <gmp2/gmp.h>
#else
#include <gmp.h>
#endif
/* FIXME: we may need the same as above */
#include <mpfr.h>
enum {
MPW_INTEGER = 1,
MPW_RATIONAL,
MPW_FLOAT
};
/*number structures, this is where low level stuff is stored so it will be
different for each lib, members should never be directly accessed!*/
/*real only structure*/
typedef struct _MpwRealNum {
union {
struct _MpwRealNum *next; /*used for free lists*/
int usage; /*used for copy-on-write*/
} alloc; /*private union for memory managment stuff*/
union {
mpz_t ival;
mpq_t rval;
mpfr_t fval;
} data;
guint8 type;
} MpwRealNum;
/*any number (includes complex) so it includes an imaginary member if
i is not equal to gel_zero
this is used as the number type*/
struct _mpw_t {
MpwRealNum *r; /*real*/
MpwRealNum *i; /*imaginary*/
};
#define MPW_IS_COMPLEX(n) ((n)->i != gel_zero)
#define MPW_IS_REAL(n) ((n)->i == gel_zero)
/* Should not be used outside */
extern MpwRealNum *gel_zero;
extern MpwRealNum *gel_one;
typedef struct _mpw_t mpw_t[1];
typedef struct _mpw_t *mpw_ptr;
/* FIXME: this is evil, error_num is used elsewhere, should
* be some more generalized error interface */
enum {
MPW_NO_ERROR=0,
MPW_INTERNAL_ERROR,
MPW_NUMERICAL_ERROR,
};
/*************************************************************************/
/*high level stuff */
/*************************************************************************/
/*set default precision*/
void mpw_set_default_prec(unsigned long int i);
/*initialize a number*/
void mpw_init_set(mpw_ptr rop,mpw_ptr op);
/* Maybe it is overkill to try to keep bin compat? */
void mpw_init(mpw_ptr op);
static inline void
mpw_init_inline (mpw_ptr op)
{
op->r = gel_zero;
gel_zero->alloc.usage++;
op->i = gel_zero;
gel_zero->alloc.usage++;
}
#define mpw_init(op) mpw_init_inline(op)
/* don't try to decomplexify the number */
#define mpw_init_set_no_uncomplex(rop,op) \
{ (rop)->r = (op)->r; \
(rop)->r->alloc.usage++; \
(rop)->i = (op)->i; \
(rop)->i->alloc.usage++; }
/*clear memory held by number*/
void mpw_clear(mpw_ptr op);
/*make them the same type without loosing information*/
void mpw_make_same_type(mpw_ptr op1,mpw_ptr op2);
void mpw_set(mpw_ptr rop,mpw_ptr op);
void mpw_set_d(mpw_ptr rop,double d);
void mpw_set_d_complex (mpw_ptr rop, double real, double imag);
void mpw_set_si(mpw_ptr rop,signed long int i);
void mpw_set_ui(mpw_ptr rop,unsigned long int i);
void mpw_set_mpz_use (mpw_ptr rop, mpz_ptr op);
void mpw_set_mpq_use (mpw_ptr rop, mpq_ptr op);
void mpw_set_mpf_use (mpw_ptr rop, mpfr_ptr op);
mpz_ptr mpw_peek_real_mpz (mpw_ptr op);
mpq_ptr mpw_peek_real_mpq (mpw_ptr op);
mpfr_ptr mpw_peek_real_mpf (mpw_ptr op);
mpz_ptr mpw_peek_imag_mpz (mpw_ptr op);
mpq_ptr mpw_peek_imag_mpq (mpw_ptr op);
mpfr_ptr mpw_peek_imag_mpf (mpw_ptr op);
/* Just quick hacks to get a mpf, tmp should be an unused mpfr_t,
rop should be mpfr_ptr and op should be mpw_ptr */
#define MPW_MPF_REAL(rop,op,tmp) { \
if (op->r->type == MPW_FLOAT) { \
rop = op->r->data.fval; \
} else if (op->r->type == MPW_INTEGER) { \
mpfr_init (tmp); \
mpfr_set_z (tmp, op->r->data.ival, GMP_RNDN); \
rop = tmp; \
} else /* if (op->r->type == MPW_RATIONAL) */ { \
mpfr_init (tmp); \
mpfr_set_q (tmp, op->r->data.rval, GMP_RNDN); \
rop = tmp; \
} \
}
#define MPW_MPF_IMAG(rop,op,tmp) { \
if (op->i->type == MPW_FLOAT) { \
rop = op->i->data.fval; \
} else if (op->i->type == MPW_INTEGER) { \
mpfr_init (tmp); \
mpfr_set_z (tmp, op->i->data.ival, GMP_RNDN); \
rop = tmp; \
} else /* if (op->r->type == MPW_RATIONAL) */ { \
mpfr_init (tmp); \
mpfr_set_q (tmp, op->i->data.rval, GMP_RNDN); \
rop = tmp; \
} \
}
#define MPW_MPF_KILL(rop,tmp) { if (rop == tmp) mpfr_clear (tmp); }
void mpw_abs(mpw_ptr rop,mpw_ptr op);
void mpw_abs_sq(mpw_ptr rop,mpw_ptr op);
int mpw_sgn(mpw_ptr op);
/* sign of the real part */
int mpw_re_sgn(mpw_ptr op) G_GNUC_PURE;
/* sign of the im part */
int mpw_im_sgn(mpw_ptr op) G_GNUC_PURE;
void mpw_neg(mpw_ptr rop,mpw_ptr op);
void mpw_add(mpw_ptr rop,mpw_ptr op1, mpw_ptr op2);
void mpw_add_ui(mpw_ptr rop,mpw_ptr op, unsigned long i);
void mpw_sub(mpw_ptr rop,mpw_ptr op1, mpw_ptr op2);
void mpw_sub_ui(mpw_ptr rop,mpw_ptr op, unsigned long i);
void mpw_ui_sub(mpw_ptr rop,unsigned long i, mpw_ptr op);
/* exact zero, not a float! */
gboolean mpw_exact_zero_p (mpw_ptr op) G_GNUC_PURE;
/* any zero will do */
gboolean mpw_zero_p (mpw_ptr op) G_GNUC_PURE;
void mpw_mul(mpw_ptr rop,mpw_ptr op1, mpw_ptr op2);
void mpw_mul_ui(mpw_ptr rop,mpw_ptr op, unsigned int i);
void mpw_div(mpw_ptr rop,mpw_ptr op1, mpw_ptr op2);
void mpw_div_ui(mpw_ptr rop,mpw_ptr op, unsigned int i);
void mpw_ui_div(mpw_ptr rop,unsigned int i,mpw_ptr op);
void mpw_mod(mpw_ptr rop,mpw_ptr op1, mpw_ptr op2);
void mpw_invert(mpw_ptr rop, mpw_ptr op1, mpw_ptr mod);
void mpw_gcd(mpw_ptr rop,mpw_ptr op1, mpw_ptr op2);
void mpw_lcm(mpw_ptr rop,mpw_ptr op1, mpw_ptr op2);
void mpw_jacobi(mpw_ptr rop,mpw_ptr op1, mpw_ptr op2);
void mpw_legendre(mpw_ptr rop,mpw_ptr op1, mpw_ptr op2);
void mpw_kronecker(mpw_ptr rop,mpw_ptr op1, mpw_ptr op2);
void mpw_lucnum (mpw_ptr rop, mpw_ptr op);
void mpw_nextprime (mpw_ptr rop, mpw_ptr op);
gboolean mpw_perfect_square(mpw_ptr op);
gboolean mpw_perfect_power(mpw_ptr op);
gboolean mpw_even_p(mpw_ptr op);
gboolean mpw_odd_p(mpw_ptr op);
void mpw_pow(mpw_ptr rop,mpw_ptr op1, mpw_ptr op2);
void mpw_pow_ui(mpw_ptr rop,mpw_ptr op, unsigned long int e);
void mpw_powm(mpw_ptr rop,mpw_ptr op1, mpw_ptr op2, mpw_ptr mod);
void mpw_powm_ui(mpw_ptr rop,mpw_ptr op, unsigned long int e, mpw_ptr mod);
void mpw_sqrt(mpw_ptr rop,mpw_ptr op);
void mpw_exp(mpw_ptr rop,mpw_ptr op);
void mpw_ln(mpw_ptr rop,mpw_ptr op);
void mpw_log2(mpw_ptr rop,mpw_ptr op);
void mpw_log10(mpw_ptr rop,mpw_ptr op);
void mpw_sin(mpw_ptr rop,mpw_ptr op);
void mpw_cos(mpw_ptr rop,mpw_ptr op);
void mpw_sinh(mpw_ptr rop,mpw_ptr op);
void mpw_cosh(mpw_ptr rop,mpw_ptr op);
void mpw_arctan(mpw_ptr rop,mpw_ptr op);
void mpw_arctan2(mpw_ptr rop,mpw_ptr op1, mpw_ptr op2);
void mpw_pi (mpw_ptr rop);
void mpw_ln2 (mpw_ptr rop);
void mpw_euler_constant (mpw_ptr rop);
void mpw_catalan_constant (mpw_ptr rop);
void mpw_i (mpw_ptr rop);
void mpw_rand (mpw_ptr rop);
void mpw_randint (mpw_ptr rop, mpw_ptr op);
void mpw_conj (mpw_ptr rop, mpw_ptr op);
int mpw_cmp(mpw_ptr op1, mpw_ptr op2);
int mpw_cmp_ui(mpw_ptr op, unsigned long int i);
gboolean mpw_eql(mpw_ptr op1, mpw_ptr op2);
/* must also be of same type! */
gboolean mpw_symbolic_eql(mpw_ptr op1, mpw_ptr op2);
gboolean mpw_eql_ui(mpw_ptr op, unsigned long int i);
void mpw_fac_ui(mpw_ptr rop,unsigned long int i);
void mpw_fac(mpw_ptr rop,mpw_ptr op);
void mpw_dblfac(mpw_ptr rop,mpw_ptr op);
void mpw_bin_ui(mpw_ptr rop, mpw_ptr op, unsigned long int r);
/*make a number int if possible*/
void mpw_make_int(mpw_ptr rop);
/*make number into a float, this might be neccessary for unprecise
calculations*/
void mpw_make_float(mpw_ptr rop);
/*init the mp stuff*/
void mpw_init_mp(void);
/*get a string (g_malloc'ed) with the number in it*/
char * mpw_getstring (mpw_ptr num,
int max_digits,
gboolean scientific_notation,
gboolean results_as_floats,
gboolean mixed_fractions,
/* FIXME: solve dependency, this is defined in calc.h */
/* GelOutputStyle */int style,
int integer_output_base,
gboolean add_parenths);
char * mpw_getstring_chop (mpw_ptr num,
int max_digits,
gboolean scientific_notation,
gboolean results_as_floats,
gboolean mixed_fractions,
/* FIXME: solve dependency, this is defined in calc.h */
/* GelOutputStyle */int style,
int integer_output_base,
gboolean add_parenths,
int chop,
int chop_when,
gboolean force_chop);
void mpw_set_str_float(mpw_ptr rop,const char *s,int base);
/*reads only the imaginary part (use add for real part)*/
void mpw_set_str_complex(mpw_ptr rop,const char *s,int base);
void mpw_set_str_complex_int(mpw_ptr rop,const char *s,int base);
void mpw_set_str_int(mpw_ptr rop,const char *s,int base);
void mpw_set_str (mpw_ptr rop, const char *s, int base);
gboolean mpw_is_complex(mpw_ptr op);
gboolean mpw_is_integer(mpw_ptr op);
gboolean mpw_is_rational(mpw_ptr op);
gboolean mpw_is_float(mpw_ptr op);
#define mpw_is_real_part_float(op) ((op)->r->type == MPW_FLOAT)
#define mpw_is_complex_float(op) \
( ((op)->r->type == MPW_FLOAT) || \
(MPW_IS_COMPLEX (op) && ((op)->i->type == MPW_FLOAT)) )
#define mpw_is_complex_rational_or_integer(op) \
( ((op)->r->type <= MPW_RATIONAL) && \
( ! MPW_IS_COMPLEX (op) || ((op)->i->type <= MPW_RATIONAL)) )
#define mpw_is_complex_integer(op) \
( ((op)->r->type == MPW_INTEGER) && \
( ! MPW_IS_COMPLEX (op) || ((op)->i->type == MPW_INTEGER)) )
void mpw_im(mpw_ptr rop, mpw_ptr op);
void mpw_re(mpw_ptr rop, mpw_ptr op);
void mpw_round(mpw_ptr rop, mpw_ptr op);
void mpw_floor(mpw_ptr rop, mpw_ptr op);
void mpw_ceil(mpw_ptr rop, mpw_ptr op);
void mpw_trunc(mpw_ptr rop, mpw_ptr op);
/*try to get a long number representation of the number*/
long mpw_get_long(mpw_ptr op);
unsigned long mpw_get_ulong(mpw_ptr op);
/*try to get a double representation of the number*/
double mpw_get_double(mpw_ptr op);
void mpw_get_complex_double(mpw_ptr op, double *r, double *i);
void mpw_denominator(mpw_ptr rop, mpw_ptr op);
void mpw_numerator(mpw_ptr rop, mpw_ptr op);
/* is the exponent less then -chop_when */
gboolean mpw_chop_p (mpw_ptr num, int chop_when);
#endif
|