This file is indexed.

/usr/share/gccxml-0.9/GCC/3.3/bits/stl_list.h is in gccxml 0.9.0+git20130511-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
// List implementation -*- C++ -*-

// Copyright (C) 2001, 2002, 2005 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996,1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file stl_list.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef __GLIBCPP_INTERNAL_LIST_H
#define __GLIBCPP_INTERNAL_LIST_H

#include <bits/concept_check.h>

namespace std
{
  // Supporting structures are split into common and templated types; the
  // latter publicly inherits from the former in an effort to reduce code
  // duplication.  This results in some "needless" static_cast'ing later on,
  // but it's all safe downcasting.
  
  /// @if maint Common part of a node in the %list.  @endif
  struct _List_node_base
  {
    _List_node_base* _M_next;   ///< Self-explanatory
    _List_node_base* _M_prev;   ///< Self-explanatory
  };
  
  /// @if maint An actual node in the %list.  @endif
  template<typename _Tp>
    struct _List_node : public _List_node_base
  {
    _Tp _M_data;                ///< User's data.
  };
  
  
  /**
   *  @if maint
   *  @brief Common part of a list::iterator.
   *
   *  A simple type to walk a doubly-linked list.  All operations here should
   *  be self-explanatory after taking any decent introductory data structures
   *  course.
   *  @endif
  */
  struct _List_iterator_base
  {
    typedef size_t                        size_type;
    typedef ptrdiff_t                     difference_type;
    typedef bidirectional_iterator_tag    iterator_category;
  
    /// The only member points to the %list element.
    _List_node_base* _M_node;
  
    _List_iterator_base(_List_node_base* __x)
    : _M_node(__x)
    { }
  
    _List_iterator_base()
    : _M_node()
    { }
  
    /// Walk the %list forward.
    void
    _M_incr()
    { _M_node = _M_node->_M_next; }
  
    /// Walk the %list backward.
    void
    _M_decr()
    { _M_node = _M_node->_M_prev; }
  
    bool
    operator==(const _List_iterator_base& __x) const
    { return _M_node == __x._M_node; }
  
    bool
    operator!=(const _List_iterator_base& __x) const
    { return _M_node != __x._M_node; }
  };
  
  /**
   *  @brief A list::iterator.
   *
   *  In addition to being used externally, a list holds one of these
   *  internally, pointing to the sequence of data.
   *
   *  @if maint
   *  All the functions are op overloads.
   *  @endif
  */
  template<typename _Tp, typename _Ref, typename _Ptr>
    struct _List_iterator : public _List_iterator_base
  {
    typedef _List_iterator<_Tp,_Tp&,_Tp*>             iterator;
    typedef _List_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
    typedef _List_iterator<_Tp,_Ref,_Ptr>             _Self;
  
    typedef _Tp                                       value_type;
    typedef _Ptr                                      pointer;
    typedef _Ref                                      reference;
    typedef _List_node<_Tp>                           _Node;
  
    _List_iterator(_Node* __x)
    : _List_iterator_base(__x)
    { }
  
    _List_iterator()
    : _List_iterator_base()
    { }
  
    _List_iterator(const iterator& __x)
    : _List_iterator_base(__x._M_node)
    { }
  
    reference
    operator*() const
    { return static_cast<_Node*>(_M_node)->_M_data; }
    // Must downcast from List_node_base to _List_node to get to _M_data.
  
    pointer
    operator->() const
    { return &(operator*()); }
  
    _Self&
    operator++()
    {
      this->_M_incr();
      return *this;
    }
  
    _Self
    operator++(int)
    {
      _Self __tmp = *this;
      this->_M_incr();
      return __tmp;
    }
  
    _Self&
    operator--()
    {
      this->_M_decr();
      return *this;
    }
  
    _Self
    operator--(int)
    {
      _Self __tmp = *this;
      this->_M_decr();
      return __tmp;
    }
  };
  
  
  /// @if maint Primary default version.  @endif
  /**
   *  @if maint
   *  See bits/stl_deque.h's _Deque_alloc_base for an explanation.
   *  @endif
  */
  template<typename _Tp, typename _Allocator, bool _IsStatic>
    class _List_alloc_base
  {
  public:
    typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
            allocator_type;
  
    allocator_type
    get_allocator() const { return _M_node_allocator; }
  
    _List_alloc_base(const allocator_type& __a)
    : _M_node_allocator(__a)
    { }
  
  protected:
    _List_node<_Tp>*
    _M_get_node()
    { return _M_node_allocator.allocate(1); }
  
    void
    _M_put_node(_List_node<_Tp>* __p)
    { _M_node_allocator.deallocate(__p, 1); }
  
    // NOTA BENE
    // The stored instance is not actually of "allocator_type"'s type.  Instead
    // we rebind the type to Allocator<List_node<Tp>>, which according to
    // [20.1.5]/4 should probably be the same.  List_node<Tp> is not the same
    // size as Tp (it's two pointers larger), and specializations on Tp may go
    // unused because List_node<Tp> is being bound instead.
    //
    // We put this to the test in get_allocator above; if the two types are
    // actually different, there had better be a conversion between them.
    //
    // None of the predefined allocators shipped with the library (as of 3.1)
    // use this instantiation anyhow; they're all instanceless.
    typename _Alloc_traits<_List_node<_Tp>, _Allocator>::allocator_type
             _M_node_allocator;
  
    _List_node<_Tp>* _M_node;
  };
  
  /// @if maint Specialization for instanceless allocators.  @endif
  template<typename _Tp, typename _Allocator>
    class _List_alloc_base<_Tp, _Allocator, true>
  {
  public:
    typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
            allocator_type;
  
    allocator_type
    get_allocator() const { return allocator_type(); }
  
    _List_alloc_base(const allocator_type&)
    { }
  
  protected:
    // See comment in primary template class about why this is safe for the
    // standard predefined classes.
    typedef typename _Alloc_traits<_List_node<_Tp>, _Allocator>::_Alloc_type
            _Alloc_type;
  
    _List_node<_Tp>*
    _M_get_node()
    { return _Alloc_type::allocate(1); }
  
    void
    _M_put_node(_List_node<_Tp>* __p)
    { _Alloc_type::deallocate(__p, 1); }
  
    _List_node<_Tp>* _M_node;
  };
  
  
  /**
   *  @if maint
   *  See bits/stl_deque.h's _Deque_base for an explanation.
   *  @endif
  */
  template <typename _Tp, typename _Alloc>
    class _List_base
    : public _List_alloc_base<_Tp, _Alloc,
                              _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
  {
  public:
    typedef _List_alloc_base<_Tp, _Alloc,
                             _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
            _Base;
    typedef typename _Base::allocator_type allocator_type;
  
    _List_base(const allocator_type& __a)
    : _Base(__a)
    {
      this->_M_node = this->_M_get_node();
      this->_M_node->_M_next = this->_M_node;
      this->_M_node->_M_prev = this->_M_node;
    }
  
    // This is what actually destroys the list.
    ~_List_base()
    {
      __clear();
      this->_M_put_node(this->_M_node);
    }
  
    void
    __clear();
  };
  
  
  /**
   *  @brief  A standard container with linear time access to elements, and
   *  fixed time insertion/deletion at any point in the sequence.
   *
   *  @ingroup Containers
   *  @ingroup Sequences
   *
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
   *  <a href="tables.html#66">reversible container</a>, and a
   *  <a href="tables.html#67">sequence</a>, including the
   *  <a href="tables.html#68">optional sequence requirements</a> with the
   *  %exception of @c at and @c operator[].
   *
   *  This is a @e doubly @e linked %list.  Traversal up and down the %list
   *  requires linear time, but adding and removing elements (or @e nodes) is
   *  done in constant time, regardless of where the change takes place.
   *  Unlike std::vector and std::deque, random-access iterators are not
   *  provided, so subscripting ( @c [] ) access is not allowed.  For algorithms
   *  which only need sequential access, this lack makes no difference.
   *
   *  Also unlike the other standard containers, std::list provides specialized 
   *  algorithms %unique to linked lists, such as splicing, sorting, and
   *  in-place reversal.
   *
   *  @if maint
   *  A couple points on memory allocation for list<Tp>:
   *
   *  First, we never actually allocate a Tp, we allocate List_node<Tp>'s
   *  and trust [20.1.5]/4 to DTRT.  This is to ensure that after elements from
   *  %list<X,Alloc1> are spliced into %list<X,Alloc2>, destroying the memory of
   *  the second %list is a valid operation, i.e., Alloc1 giveth and Alloc2
   *  taketh away.
   *
   *  Second, a %list conceptually represented as
   *  @code
   *    A <---> B <---> C <---> D
   *  @endcode
   *  is actually circular; a link exists between A and D.  The %list class
   *  holds (as its only data member) a private list::iterator pointing to
   *  @e D, not to @e A!  To get to the head of the %list, we start at the tail
   *  and move forward by one.  When this member iterator's next/previous
   *  pointers refer to itself, the %list is %empty.
   *  @endif
  */
  template<typename _Tp, typename _Alloc = allocator<_Tp> >
    class list : protected _List_base<_Tp, _Alloc>
  {
    // concept requirements
    __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
  
    typedef _List_base<_Tp, _Alloc>                       _Base;
  
  public:
    typedef _Tp                                           value_type;
    typedef value_type*                                   pointer;
    typedef const value_type*                             const_pointer;
    typedef _List_iterator<_Tp,_Tp&,_Tp*>                 iterator;
    typedef _List_iterator<_Tp,const _Tp&,const _Tp*>     const_iterator;
    typedef std::reverse_iterator<const_iterator>     const_reverse_iterator;
    typedef std::reverse_iterator<iterator>                 reverse_iterator;
    typedef value_type&                                   reference;
    typedef const value_type&                             const_reference;
    typedef size_t                                        size_type;
    typedef ptrdiff_t                                     difference_type;
    typedef typename _Base::allocator_type                allocator_type;
  
  protected:
    // Note that pointers-to-_Node's can be ctor-converted to iterator types.
    typedef _List_node<_Tp>                               _Node;
  
    /** @if maint
     *  One data member plus two memory-handling functions.  If the _Alloc
     *  type requires separate instances, then one of those will also be
     *  included, accumulated from the topmost parent.
     *  @endif
    */
    using _Base::_M_node;
    using _Base::_M_put_node;
    using _Base::_M_get_node;
  
    /**
     *  @if maint
     *  @param  x  An instance of user data.
     *
     *  Allocates space for a new node and constructs a copy of @a x in it.
     *  @endif
    */
    _Node*
    _M_create_node(const value_type& __x)
    {
      _Node* __p = _M_get_node();
      try {
        _Construct(&__p->_M_data, __x);
      }
      catch(...)
      {
        _M_put_node(__p);
        __throw_exception_again;
      }
      return __p;
    }
  
    /**
     *  @if maint
     *  Allocates space for a new node and default-constructs a new instance
     *  of @c value_type in it.
     *  @endif
    */
    _Node*
    _M_create_node()
    {
      _Node* __p = _M_get_node();
      try {
        _Construct(&__p->_M_data);
      }
      catch(...)
      {
        _M_put_node(__p);
        __throw_exception_again;
      }
      return __p;
    }
  
  public:
    // [23.2.2.1] construct/copy/destroy
    // (assign() and get_allocator() are also listed in this section)
    /**
     *  @brief  Default constructor creates no elements.
    */
    explicit
    list(const allocator_type& __a = allocator_type())
    : _Base(__a) { }
  
    /**
     *  @brief  Create a %list with copies of an exemplar element.
     *  @param  n  The number of elements to initially create.
     *  @param  value  An element to copy.
     * 
     *  This constructor fills the %list with @a n copies of @a value.
    */
    list(size_type __n, const value_type& __value,
         const allocator_type& __a = allocator_type())
      : _Base(__a)
      { this->insert(begin(), __n, __value); }
  
    /**
     *  @brief  Create a %list with default elements.
     *  @param  n  The number of elements to initially create.
     * 
     *  This constructor fills the %list with @a n copies of a
     *  default-constructed element.
    */
    explicit
    list(size_type __n)
      : _Base(allocator_type())
      { this->insert(begin(), __n, value_type()); }
  
    /**
     *  @brief  %List copy constructor.
     *  @param  x  A %list of identical element and allocator types.
     * 
     *  The newly-created %list uses a copy of the allocation object used
     *  by @a x.
    */
    list(const list& __x)
      : _Base(__x.get_allocator())
      { this->insert(begin(), __x.begin(), __x.end()); }
  
    /**
     *  @brief  Builds a %list from a range.
     *  @param  first  An input iterator.
     *  @param  last  An input iterator.
     * 
     *  Create a %list consisting of copies of the elements from [first,last).
     *  This is linear in N (where N is distance(first,last)).
     *
     *  @if maint
     *  We don't need any dispatching tricks here, because insert does all of
     *  that anyway.
     *  @endif
    */
    template<typename _InputIterator>
      list(_InputIterator __first, _InputIterator __last,
           const allocator_type& __a = allocator_type())
      : _Base(__a)
      { this->insert(begin(), __first, __last); }
  
    /**
     *  The dtor only erases the elements, and note that if the elements
     *  themselves are pointers, the pointed-to memory is not touched in any
     *  way.  Managing the pointer is the user's responsibilty.
    */
    ~list() { }
  
    /**
     *  @brief  %List assignment operator.
     *  @param  x  A %list of identical element and allocator types.
     * 
     *  All the elements of @a x are copied, but unlike the copy constructor,
     *  the allocator object is not copied.
    */
    list&
    operator=(const list& __x);
  
    /**
     *  @brief  Assigns a given value to a %list.
     *  @param  n  Number of elements to be assigned.
     *  @param  val  Value to be assigned.
     *
     *  This function fills a %list with @a n copies of the given value.
     *  Note that the assignment completely changes the %list and that the
     *  resulting %list's size is the same as the number of elements assigned.
     *  Old data may be lost.
    */
    void
    assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); }
  
    /**
     *  @brief  Assigns a range to a %list.
     *  @param  first  An input iterator.
     *  @param  last   An input iterator.
     *
     *  This function fills a %list with copies of the elements in the
     *  range [first,last).
     *
     *  Note that the assignment completely changes the %list and that the
     *  resulting %list's size is the same as the number of elements assigned.
     *  Old data may be lost.
    */
    template<typename _InputIterator>
      void
      assign(_InputIterator __first, _InputIterator __last)
      {
        // Check whether it's an integral type.  If so, it's not an iterator.
        typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
        _M_assign_dispatch(__first, __last, _Integral());
      }
  
    /// Get a copy of the memory allocation object.
    allocator_type
    get_allocator() const { return _Base::get_allocator(); }
  
    // iterators
    /**
     *  Returns a read/write iterator that points to the first element in the
     *  %list.  Iteration is done in ordinary element order.
    */
    iterator
    begin() { return static_cast<_Node*>(_M_node->_M_next); }
  
    /**
     *  Returns a read-only (constant) iterator that points to the first element
     *  in the %list.  Iteration is done in ordinary element order.
    */
    const_iterator
    begin() const { return static_cast<_Node*>(_M_node->_M_next); }
  
    /**
     *  Returns a read/write iterator that points one past the last element in
     *  the %list.  Iteration is done in ordinary element order.
    */
    iterator
    end() { return _M_node; }
  
    /**
     *  Returns a read-only (constant) iterator that points one past the last
     *  element in the %list.  Iteration is done in ordinary element order.
    */
    const_iterator
    end() const { return _M_node; }
  
    /**
     *  Returns a read/write reverse iterator that points to the last element in
     *  the %list.  Iteration is done in reverse element order.
    */
    reverse_iterator
    rbegin() { return reverse_iterator(end()); }
  
    /**
     *  Returns a read-only (constant) reverse iterator that points to the last
     *  element in the %list.  Iteration is done in reverse element order.
    */
    const_reverse_iterator
    rbegin() const { return const_reverse_iterator(end()); }
  
    /**
     *  Returns a read/write reverse iterator that points to one before the
     *  first element in the %list.  Iteration is done in reverse element
     *  order.
    */
    reverse_iterator
    rend() { return reverse_iterator(begin()); }
  
    /**
     *  Returns a read-only (constant) reverse iterator that points to one
     *  before the first element in the %list.  Iteration is done in reverse
     *  element order.
    */
    const_reverse_iterator
    rend() const
    { return const_reverse_iterator(begin()); }
  
    // [23.2.2.2] capacity
    /**
     *  Returns true if the %list is empty.  (Thus begin() would equal end().)
    */
    bool
    empty() const { return _M_node->_M_next == _M_node; }
  
    /**  Returns the number of elements in the %list.  */
    size_type
    size() const { return distance(begin(), end()); }
  
    /**  Returns the size() of the largest possible %list.  */
    size_type
    max_size() const { return size_type(-1); }
  
    /**
     *  @brief  Resizes the %list to the specified number of elements.
     *  @param  new_size  Number of elements the %list should contain.
     *  @param  x  Data with which new elements should be populated.
     *
     *  This function will %resize the %list to the specified number of
     *  elements.  If the number is smaller than the %list's current size the
     *  %list is truncated, otherwise the %list is extended and new elements
     *  are populated with given data.
    */
    void
    resize(size_type __new_size, const value_type& __x);
  
    /**
     *  @brief  Resizes the %list to the specified number of elements.
     *  @param  new_size  Number of elements the %list should contain.
     *
     *  This function will resize the %list to the specified number of
     *  elements.  If the number is smaller than the %list's current size the
     *  %list is truncated, otherwise the %list is extended and new elements
     *  are default-constructed.
    */
    void
    resize(size_type __new_size) { this->resize(__new_size, value_type()); }
  
    // element access
    /**
     *  Returns a read/write reference to the data at the first element of the
     *  %list.
    */
    reference
    front() { return *begin(); }
  
    /**
     *  Returns a read-only (constant) reference to the data at the first
     *  element of the %list.
    */
    const_reference
    front() const { return *begin(); }
  
    /**
     *  Returns a read/write reference to the data at the last element of the
     *  %list.
    */
    reference
    back() { return *(--end()); }
  
    /**
     *  Returns a read-only (constant) reference to the data at the last
     *  element of the %list.
    */
    const_reference
    back() const { return *(--end()); }
  
    // [23.2.2.3] modifiers
    /**
     *  @brief  Add data to the front of the %list.
     *  @param  x  Data to be added.
     *
     *  This is a typical stack operation.  The function creates an element at
     *  the front of the %list and assigns the given data to it.  Due to the
     *  nature of a %list this operation can be done in constant time, and
     *  does not invalidate iterators and references.
    */
    void
    push_front(const value_type& __x) { this->insert(begin(), __x); }
  
  #ifdef _GLIBCPP_DEPRECATED
    /**
     *  @brief  Add data to the front of the %list.
     *
     *  This is a typical stack operation.  The function creates a
     *  default-constructed element at the front of the %list.  Due to the
     *  nature of a %list this operation can be done in constant time.  You
     *  should consider using push_front(value_type()) instead.
     *
     *  @note This was deprecated in 3.2 and will be removed in 3.4.  You must
     *        define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
     *        c++config.h.
    */
    void
    push_front() { this->insert(begin(), value_type()); }
  #endif
  
    /**
     *  @brief  Removes first element.
     *
     *  This is a typical stack operation.  It shrinks the %list by one.
     *  Due to the nature of a %list this operation can be done in constant
     *  time, and only invalidates iterators/references to the element being
     *  removed.
     *
     *  Note that no data is returned, and if the first element's data is
     *  needed, it should be retrieved before pop_front() is called.
    */
    void
    pop_front() { this->erase(begin()); }
  
    /**
     *  @brief  Add data to the end of the %list.
     *  @param  x  Data to be added.
     *
     *  This is a typical stack operation.  The function creates an element at
     *  the end of the %list and assigns the given data to it.  Due to the
     *  nature of a %list this operation can be done in constant time, and
     *  does not invalidate iterators and references.
    */
    void
    push_back(const value_type& __x) { this->insert(end(), __x); }
  
  #ifdef _GLIBCPP_DEPRECATED
    /**
     *  @brief  Add data to the end of the %list.
     *
     *  This is a typical stack operation.  The function creates a
     *  default-constructed element at the end of the %list.  Due to the nature
     *  of a %list this operation can be done in constant time.  You should
     *  consider using push_back(value_type()) instead.
     *
     *  @note This was deprecated in 3.2 and will be removed in 3.4.  You must
     *        define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
     *        c++config.h.
    */
    void
    push_back() { this->insert(end(), value_type()); }
  #endif
  
    /**
     *  @brief  Removes last element.
     *
     *  This is a typical stack operation.  It shrinks the %list by one.
     *  Due to the nature of a %list this operation can be done in constant
     *  time, and only invalidates iterators/references to the element being
     *  removed.
     *
     *  Note that no data is returned, and if the last element's data is
     *  needed, it should be retrieved before pop_back() is called.
    */
    void
    pop_back()
    {
      iterator __tmp = end();
      this->erase(--__tmp);
    }
  
    /**
     *  @brief  Inserts given value into %list before specified iterator.
     *  @param  position  An iterator into the %list.
     *  @param  x  Data to be inserted.
     *  @return  An iterator that points to the inserted data.
     *
     *  This function will insert a copy of the given value before the specified
     *  location.
     *  Due to the nature of a %list this operation can be done in constant
     *  time, and does not invalidate iterators and references.
    */
    iterator
    insert(iterator __position, const value_type& __x);
  
  #ifdef _GLIBCPP_DEPRECATED
    /**
     *  @brief  Inserts an element into the %list.
     *  @param  position  An iterator into the %list.
     *  @return  An iterator that points to the inserted element.
     *
     *  This function will insert a default-constructed element before the
     *  specified location.  You should consider using
     *  insert(position,value_type()) instead.
     *  Due to the nature of a %list this operation can be done in constant
     *  time, and does not invalidate iterators and references.
     *
     *  @note This was deprecated in 3.2 and will be removed in 3.4.  You must
     *        define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
     *        c++config.h.
    */
    iterator
    insert(iterator __position) { return insert(__position, value_type()); }
  #endif
  
    /**
     *  @brief  Inserts a number of copies of given data into the %list.
     *  @param  position  An iterator into the %list.
     *  @param  n  Number of elements to be inserted.
     *  @param  x  Data to be inserted.
     *
     *  This function will insert a specified number of copies of the given data
     *  before the location specified by @a position.
     *
     *  Due to the nature of a %list this operation can be done in constant
     *  time, and does not invalidate iterators and references.
    */
    void
    insert(iterator __pos, size_type __n, const value_type& __x)
    { _M_fill_insert(__pos, __n, __x); }
  
    /**
     *  @brief  Inserts a range into the %list.
     *  @param  pos  An iterator into the %list.
     *  @param  first  An input iterator.
     *  @param  last   An input iterator.
     *
     *  This function will insert copies of the data in the range [first,last)
     *  into the %list before the location specified by @a pos.
     *
     *  Due to the nature of a %list this operation can be done in constant
     *  time, and does not invalidate iterators and references.
    */
    template<typename _InputIterator>
      void
      insert(iterator __pos, _InputIterator __first, _InputIterator __last)
      {
        // Check whether it's an integral type.  If so, it's not an iterator.
        typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
        _M_insert_dispatch(__pos, __first, __last, _Integral());
      }
  
    /**
     *  @brief  Remove element at given position.
     *  @param  position  Iterator pointing to element to be erased.
     *  @return  An iterator pointing to the next element (or end()).
     *
     *  This function will erase the element at the given position and thus
     *  shorten the %list by one.
     *
     *  Due to the nature of a %list this operation can be done in constant
     *  time, and only invalidates iterators/references to the element being
     *  removed.
     *  The user is also cautioned that
     *  this function only erases the element, and that if the element is itself
     *  a pointer, the pointed-to memory is not touched in any way.  Managing
     *  the pointer is the user's responsibilty.
    */
    iterator
    erase(iterator __position);
  
    /**
     *  @brief  Remove a range of elements.
     *  @param  first  Iterator pointing to the first element to be erased.
     *  @param  last  Iterator pointing to one past the last element to be
     *                erased.
     *  @return  An iterator pointing to the element pointed to by @a last
     *           prior to erasing (or end()).
     *
     *  This function will erase the elements in the range [first,last) and
     *  shorten the %list accordingly.
     *
     *  Due to the nature of a %list this operation can be done in constant
     *  time, and only invalidates iterators/references to the element being
     *  removed.
     *  The user is also cautioned that
     *  this function only erases the elements, and that if the elements
     *  themselves are pointers, the pointed-to memory is not touched in any
     *  way.  Managing the pointer is the user's responsibilty.
    */
    iterator
    erase(iterator __first, iterator __last)
    {
      while (__first != __last)
        erase(__first++);
      return __last;
    }
  
    /**
     *  @brief  Swaps data with another %list.
     *  @param  x  A %list of the same element and allocator types.
     *
     *  This exchanges the elements between two lists in constant time.
     *  (It is only swapping a single pointer, so it should be quite fast.)
     *  Note that the global std::swap() function is specialized such that
     *  std::swap(l1,l2) will feed to this function.
    */
    void
    swap(list& __x) { std::swap(_M_node, __x._M_node); }
  
    /**
     *  Erases all the elements.  Note that this function only erases the
     *  elements, and that if the elements themselves are pointers, the
     *  pointed-to memory is not touched in any way.  Managing the pointer is
     *  the user's responsibilty.
    */
    void
    clear() { _Base::__clear(); }
  
    // [23.2.2.4] list operations
    /**
     *  @doctodo
    */
    void
    splice(iterator __position, list& __x)
    {
      if (!__x.empty())
        this->_M_transfer(__position, __x.begin(), __x.end());
    }
  
    /**
     *  @doctodo
    */
    void
    splice(iterator __position, list&, iterator __i)
    {
      iterator __j = __i;
      ++__j;
      if (__position == __i || __position == __j) return;
      this->_M_transfer(__position, __i, __j);
    }
  
    /**
     *  @doctodo
    */
    void
    splice(iterator __position, list&, iterator __first, iterator __last)
    {
      if (__first != __last)
        this->_M_transfer(__position, __first, __last);
    }
  
    /**
     *  @doctodo
    */
    void
    remove(const _Tp& __value);
  
    /**
     *  @doctodo
    */
    template<typename _Predicate>
      void
      remove_if(_Predicate);
  
    /**
     *  @doctodo
    */
    void
    unique();
  
    /**
     *  @doctodo
    */
    template<typename _BinaryPredicate>
      void
      unique(_BinaryPredicate);
  
    /**
     *  @doctodo
    */
    void
    merge(list& __x);
  
    /**
     *  @doctodo
    */
    template<typename _StrictWeakOrdering>
      void
      merge(list&, _StrictWeakOrdering);
  
    /**
     *  @doctodo
    */
    void
    reverse() { __List_base_reverse(this->_M_node); }
  
    /**
     *  @doctodo
    */
    void
    sort();
  
    /**
     *  @doctodo
    */
    template<typename _StrictWeakOrdering>
      void
      sort(_StrictWeakOrdering);
  
  protected:
    // Internal assign functions follow.
  
    // called by the range assign to implement [23.1.1]/9
    template<typename _Integer>
      void
      _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
      {
        _M_fill_assign(static_cast<size_type>(__n),
                       static_cast<value_type>(__val));
      }
  
    // called by the range assign to implement [23.1.1]/9
    template<typename _InputIter>
      void
      _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type);
  
    // Called by assign(n,t), and the range assign when it turns out to be the
    // same thing.
    void
    _M_fill_assign(size_type __n, const value_type& __val);
  
  
    // Internal insert functions follow.
  
    // called by the range insert to implement [23.1.1]/9
    template<typename _Integer>
      void
      _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
                         __true_type)
      {
        _M_fill_insert(__pos, static_cast<size_type>(__n),
                       static_cast<value_type>(__x));
      }
  
    // called by the range insert to implement [23.1.1]/9
    template<typename _InputIterator>
      void
      _M_insert_dispatch(iterator __pos,
                         _InputIterator __first, _InputIterator __last,
                         __false_type)
      {
        for ( ; __first != __last; ++__first)
          insert(__pos, *__first);
      }
  
    // Called by insert(p,n,x), and the range insert when it turns out to be
    // the same thing.
    void
    _M_fill_insert(iterator __pos, size_type __n, const value_type& __x)
    {
      for ( ; __n > 0; --__n)
        insert(__pos, __x);
    }
  
  
    // Moves the elements from [first,last) before position.
    void
    _M_transfer(iterator __position, iterator __first, iterator __last)
    {
      if (__position != __last) {
        // Remove [first, last) from its old position.
        __last._M_node->_M_prev->_M_next     = __position._M_node;
        __first._M_node->_M_prev->_M_next    = __last._M_node;
        __position._M_node->_M_prev->_M_next = __first._M_node;
  
        // Splice [first, last) into its new position.
        _List_node_base* __tmp      = __position._M_node->_M_prev;
        __position._M_node->_M_prev = __last._M_node->_M_prev;
        __last._M_node->_M_prev     = __first._M_node->_M_prev;
        __first._M_node->_M_prev    = __tmp;
      }
    }
  };
  
  
  /**
   *  @brief  List equality comparison.
   *  @param  x  A %list.
   *  @param  y  A %list of the same type as @a x.
   *  @return  True iff the size and elements of the lists are equal.
   *
   *  This is an equivalence relation.  It is linear in the size of the
   *  lists.  Lists are considered equivalent if their sizes are equal,
   *  and if corresponding elements compare equal.
  */
  template<typename _Tp, typename _Alloc>
  inline bool
    operator==(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
    {
      typedef typename list<_Tp,_Alloc>::const_iterator const_iterator;
      const_iterator __end1 = __x.end();
      const_iterator __end2 = __y.end();
  
      const_iterator __i1 = __x.begin();
      const_iterator __i2 = __y.begin();
      while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) {
        ++__i1;
        ++__i2;
      }
      return __i1 == __end1 && __i2 == __end2;
    }
  
  /**
   *  @brief  List ordering relation.
   *  @param  x  A %list.
   *  @param  y  A %list of the same type as @a x.
   *  @return  True iff @a x is lexographically less than @a y.
   *
   *  This is a total ordering relation.  It is linear in the size of the
   *  lists.  The elements must be comparable with @c <.
   *
   *  See std::lexographical_compare() for how the determination is made.
  */
  template<typename _Tp, typename _Alloc>
    inline bool
    operator<(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
    {
      return lexicographical_compare(__x.begin(), __x.end(),
                                     __y.begin(), __y.end());
    }
  
  /// Based on operator==
  template<typename _Tp, typename _Alloc>
    inline bool
    operator!=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
    { return !(__x == __y); }
  
  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator>(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
    { return __y < __x; }
  
  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator<=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
    { return !(__y < __x); }
  
  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator>=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
    { return !(__x < __y); }
  
  /// See std::list::swap().
  template<typename _Tp, typename _Alloc>
    inline void
    swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
    { __x.swap(__y); }
} // namespace std

#endif /* __GLIBCPP_INTERNAL_LIST_H */