This file is indexed.

/usr/share/gccxml-0.9/GCC/3.3/bits/stl_deque.h is in gccxml 0.9.0+git20130511-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
// Deque implementation -*- C++ -*-

// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file stl_deque.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef __GLIBCPP_INTERNAL_DEQUE_H
#define __GLIBCPP_INTERNAL_DEQUE_H

#include <bits/concept_check.h>
#include <bits/stl_iterator_base_types.h>
#include <bits/stl_iterator_base_funcs.h>

namespace std
{ 
  /**
   *  @if maint
   *  @brief This function controls the size of memory nodes.
   *  @param  size  The size of an element.
   *  @return   The number (not byte size) of elements per node.
   *
   *  This function started off as a compiler kludge from SGI, but seems to
   *  be a useful wrapper around a repeated constant expression.  The '512' is
   *  tuneable (and no other code needs to change), but no investigation has
   *  been done since inheriting the SGI code.
   *  @endif
  */
  inline size_t 
  __deque_buf_size(size_t __size) 
  { return __size < 512 ? size_t(512 / __size) : size_t(1); }
  
  
  /**
   *  @brief A deque::iterator.
   *
   *  Quite a bit of intelligence here.  Much of the functionality of deque is
   *  actually passed off to this class.  A deque holds two of these internally,
   *  marking its valid range.  Access to elements is done as offsets of either
   *  of those two, relying on operator overloading in this class.
   *
   *  @if maint
   *  All the functions are op overloads except for _M_set_node.
   *  @endif
  */
  template <typename _Tp, typename _Ref, typename _Ptr>
    struct _Deque_iterator
  {
    typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;
    typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
    static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }
  
    typedef random_access_iterator_tag iterator_category;
    typedef _Tp                        value_type;
    typedef _Ptr                       pointer;
    typedef _Ref                       reference;
    typedef size_t                     size_type;
    typedef ptrdiff_t                  difference_type;
    typedef _Tp**                      _Map_pointer;
    typedef _Deque_iterator            _Self;
  
    _Tp* _M_cur;
    _Tp* _M_first;
    _Tp* _M_last;
    _Map_pointer _M_node;
  
    _Deque_iterator(_Tp* __x, _Map_pointer __y) 
      : _M_cur(__x), _M_first(*__y),
        _M_last(*__y + _S_buffer_size()), _M_node(__y) {}
    _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
    _Deque_iterator(const iterator& __x)
      : _M_cur(__x._M_cur), _M_first(__x._M_first), 
        _M_last(__x._M_last), _M_node(__x._M_node) {}
  
    reference operator*() const { return *_M_cur; }
    pointer operator->() const { return _M_cur; }
  
    _Self& operator++() {
      ++_M_cur;
      if (_M_cur == _M_last) {
        _M_set_node(_M_node + 1);
        _M_cur = _M_first;
      }
      return *this; 
    }
    _Self operator++(int)  {
      _Self __tmp = *this;
      ++*this;
      return __tmp;
    }
  
    _Self& operator--() {
      if (_M_cur == _M_first) {
        _M_set_node(_M_node - 1);
        _M_cur = _M_last;
      }
      --_M_cur;
      return *this;
    }
    _Self operator--(int) {
      _Self __tmp = *this;
      --*this;
      return __tmp;
    }
  
    _Self& operator+=(difference_type __n)
    {
      difference_type __offset = __n + (_M_cur - _M_first);
      if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
        _M_cur += __n;
      else {
        difference_type __node_offset =
          __offset > 0 ? __offset / difference_type(_S_buffer_size())
                     : -difference_type((-__offset - 1) / _S_buffer_size()) - 1;
        _M_set_node(_M_node + __node_offset);
        _M_cur = _M_first + 
          (__offset - __node_offset * difference_type(_S_buffer_size()));
      }
      return *this;
    }
  
    _Self operator+(difference_type __n) const
    {
      _Self __tmp = *this;
      return __tmp += __n;
    }
  
    _Self& operator-=(difference_type __n) { return *this += -__n; }
   
    _Self operator-(difference_type __n) const {
      _Self __tmp = *this;
      return __tmp -= __n;
    }
  
    reference operator[](difference_type __n) const { return *(*this + __n); }
  
    /** @if maint
     *  Prepares to traverse new_node.  Sets everything except _M_cur, which
     *  should therefore be set by the caller immediately afterwards, based on
     *  _M_first and _M_last.
     *  @endif
    */
    void
    _M_set_node(_Map_pointer __new_node)
    {
      _M_node = __new_node;
      _M_first = *__new_node;
      _M_last = _M_first + difference_type(_S_buffer_size());
    }
  };
  
  // Note: we also provide overloads whose operands are of the same type in
  // order to avoid ambiguous overload resolution when std::rel_ops operators
  // are in scope (for additional details, see libstdc++/3628)
  template <typename _Tp, typename _Ref, typename _Ptr>
  inline bool
  operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
           const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
  {
    return __x._M_cur == __y._M_cur;
  }
  
  template <typename _Tp, typename _RefL, typename _PtrL,
                          typename _RefR, typename _PtrR>
  inline bool
  operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
           const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
  {
    return __x._M_cur == __y._M_cur;
  }
  
  template <typename _Tp, typename _Ref, typename _Ptr>
  inline bool
  operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
           const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
  {
    return !(__x == __y);
  }
  
  template <typename _Tp, typename _RefL, typename _PtrL,
                          typename _RefR, typename _PtrR>
  inline bool
  operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
           const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
  {
    return !(__x == __y);
  }
  
  template <typename _Tp, typename _Ref, typename _Ptr>
  inline bool
  operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
           const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
  {
    return (__x._M_node == __y._M_node) ? 
      (__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node);
  }
  
  template <typename _Tp, typename _RefL, typename _PtrL,
                          typename _RefR, typename _PtrR>
  inline bool
  operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
           const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
  {
    return (__x._M_node == __y._M_node) ? 
      (__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node);
  }
  
  template <typename _Tp, typename _Ref, typename _Ptr>
  inline bool
  operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
           const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
  {
    return __y < __x;
  }
  
  template <typename _Tp, typename _RefL, typename _PtrL,
                          typename _RefR, typename _PtrR>
  inline bool
  operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
           const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
  {
    return __y < __x;
  }
  
  template <typename _Tp, typename _Ref, typename _Ptr>
  inline bool
  operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
           const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
  {
    return !(__y < __x);
  }
  
  template <typename _Tp, typename _RefL, typename _PtrL,
                          typename _RefR, typename _PtrR>
  inline bool
  operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
           const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
  {
    return !(__y < __x);
  }
  
  template <typename _Tp, typename _Ref, typename _Ptr>
  inline bool
  operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
           const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
  {
    return !(__x < __y);
  }
  
  template <typename _Tp, typename _RefL, typename _PtrL,
                          typename _RefR, typename _PtrR>
  inline bool
  operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
           const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
  {
    return !(__x < __y);
  }
  
  // _GLIBCPP_RESOLVE_LIB_DEFECTS
  // According to the resolution of DR179 not only the various comparison
  // operators but also operator- must accept mixed iterator/const_iterator
  // parameters.
  template <typename _Tp, typename _RefL, typename _PtrL,
                          typename _RefR, typename _PtrR>
  inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
  operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
          const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
  {
    return _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
      (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size()) *
      (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) +
      (__y._M_last - __y._M_cur);
  }
  
  template <typename _Tp, typename _Ref, typename _Ptr>
  inline _Deque_iterator<_Tp, _Ref, _Ptr>
  operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
  {
    return __x + __n;
  }
  
  
  /// @if maint Primary default version.  @endif
  /**
   *  @if maint
   *  Deque base class.  It has two purposes.  First, its constructor
   *  and destructor allocate (but don't initialize) storage.  This makes
   *  %exception safety easier.  Second, the base class encapsulates all of
   *  the differences between SGI-style allocators and standard-conforming
   *  allocators.  (See stl_alloc.h for more on this topic.)  There are two
   *  versions:  this ordinary one, and the space-saving specialization for
   *  instanceless allocators.
   *  @endif
  */
  template <typename _Tp, typename _Alloc, bool __is_static>
    class _Deque_alloc_base
  {
  public:
    typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
    allocator_type get_allocator() const { return _M_node_allocator; }
  
    _Deque_alloc_base(const allocator_type& __a)
      : _M_node_allocator(__a), _M_map_allocator(__a),
        _M_map(0), _M_map_size(0)
    {}
    
  protected:
    typedef typename _Alloc_traits<_Tp*, _Alloc>::allocator_type
            _Map_allocator_type;
  
    _Tp*
    _M_allocate_node()
    {
      return _M_node_allocator.allocate(__deque_buf_size(sizeof(_Tp)));
    }
  
    void
    _M_deallocate_node(_Tp* __p)
    {
      _M_node_allocator.deallocate(__p, __deque_buf_size(sizeof(_Tp)));
    }
  
    _Tp**
    _M_allocate_map(size_t __n) 
      { return _M_map_allocator.allocate(__n); }
  
    void
    _M_deallocate_map(_Tp** __p, size_t __n) 
      { _M_map_allocator.deallocate(__p, __n); }
  
    allocator_type       _M_node_allocator;
    _Map_allocator_type  _M_map_allocator;
    _Tp**                _M_map;
    size_t               _M_map_size;
  };
  
  /// @if maint Specialization for instanceless allocators.  @endif
  template <typename _Tp, typename _Alloc>
    class _Deque_alloc_base<_Tp, _Alloc, true>
  {
  public:
    typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
    allocator_type get_allocator() const { return allocator_type(); }
  
    _Deque_alloc_base(const allocator_type&)
      : _M_map(0), _M_map_size(0)
    {}
    
  protected:
    typedef typename _Alloc_traits<_Tp,_Alloc>::_Alloc_type  _Node_alloc_type;
    typedef typename _Alloc_traits<_Tp*,_Alloc>::_Alloc_type _Map_alloc_type;
  
    _Tp*
    _M_allocate_node()
    {
      return _Node_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
    }
  
    void
    _M_deallocate_node(_Tp* __p)
    {
      _Node_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
    }
  
    _Tp**
    _M_allocate_map(size_t __n) 
      { return _Map_alloc_type::allocate(__n); }
  
    void
    _M_deallocate_map(_Tp** __p, size_t __n) 
      { _Map_alloc_type::deallocate(__p, __n); }
  
    _Tp**   _M_map;
    size_t  _M_map_size;
  };
  
  
  /**
   *  @if maint
   *  Deque base class.  Using _Alloc_traits in the instantiation of the parent
   *  class provides the compile-time dispatching mentioned in the parent's
   *  docs.  This class provides the unified face for %deque's allocation.
   *
   *  Nothing in this class ever constructs or destroys an actual Tp element.
   *  (Deque handles that itself.)  Only/All memory management is performed
   *  here.
   *  @endif
  */
  template <typename _Tp, typename _Alloc>
    class _Deque_base
    : public _Deque_alloc_base<_Tp,_Alloc,
                                _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
  {
  public:
    typedef _Deque_alloc_base<_Tp,_Alloc,
                               _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
            _Base;
    typedef typename _Base::allocator_type             allocator_type;
    typedef _Deque_iterator<_Tp,_Tp&,_Tp*>             iterator;
    typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
  
    _Deque_base(const allocator_type& __a, size_t __num_elements)
      : _Base(__a), _M_start(), _M_finish()
      { _M_initialize_map(__num_elements); }
    _Deque_base(const allocator_type& __a) 
      : _Base(__a), _M_start(), _M_finish() {}
    ~_Deque_base();    
  
  protected:
    void _M_initialize_map(size_t);
    void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
    void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
    enum { _S_initial_map_size = 8 };
  
    iterator _M_start;
    iterator _M_finish;
  };
  
  
  template <typename _Tp, typename _Alloc>
  _Deque_base<_Tp,_Alloc>::~_Deque_base()
  {
    if (this->_M_map)
    {
      _M_destroy_nodes(_M_start._M_node, _M_finish._M_node + 1);
      _M_deallocate_map(this->_M_map, this->_M_map_size);
    }
  }
  
  /**
   *  @if maint
   *  @brief Layout storage.
   *  @param  num_elements  The count of T's for which to allocate space
   *                        at first.
   *  @return   Nothing.
   *
   *  The initial underlying memory layout is a bit complicated...
   *  @endif
  */
  template <typename _Tp, typename _Alloc>
  void
  _Deque_base<_Tp,_Alloc>::_M_initialize_map(size_t __num_elements)
  {
    size_t __num_nodes = 
      __num_elements / __deque_buf_size(sizeof(_Tp)) + 1;
  
    this->_M_map_size = max((size_t) _S_initial_map_size, __num_nodes + 2);
    this->_M_map = _M_allocate_map(this->_M_map_size);
  
    // For "small" maps (needing less than _M_map_size nodes), allocation
    // starts in the middle elements and grows outwards.  So nstart may be the
    // beginning of _M_map, but for small maps it may be as far in as _M_map+3.
  
    _Tp** __nstart = this->_M_map + (this->_M_map_size - __num_nodes) / 2;
    _Tp** __nfinish = __nstart + __num_nodes;
      
    try 
      { _M_create_nodes(__nstart, __nfinish); }
    catch(...)
      {
        _M_deallocate_map(this->_M_map, this->_M_map_size);
        this->_M_map = 0;
        this->_M_map_size = 0;
        __throw_exception_again;
      }
    
    _M_start._M_set_node(__nstart);
    _M_finish._M_set_node(__nfinish - 1);
    _M_start._M_cur = _M_start._M_first;
    _M_finish._M_cur = _M_finish._M_first +
                       __num_elements % __deque_buf_size(sizeof(_Tp));
  }
  
  template <typename _Tp, typename _Alloc>
  void _Deque_base<_Tp,_Alloc>::_M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
  {
    _Tp** __cur;
    try
      {
        for (__cur = __nstart; __cur < __nfinish; ++__cur)
          *__cur = this->_M_allocate_node();
      }
    catch(...)
      { 
        _M_destroy_nodes(__nstart, __cur);
        __throw_exception_again; 
      }
  }
  
  template <typename _Tp, typename _Alloc>
  void
  _Deque_base<_Tp,_Alloc>::_M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
  {
    for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
      _M_deallocate_node(*__n);
  }
  
  
  /**
   *  @brief  A standard container using fixed-size memory allocation and
   *  constant-time manipulation of elements at either end.
   *
   *  @ingroup Containers
   *  @ingroup Sequences
   *
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
   *  <a href="tables.html#66">reversible container</a>, and a
   *  <a href="tables.html#67">sequence</a>, including the
   *  <a href="tables.html#68">optional sequence requirements</a>.
   *
   *  In previous HP/SGI versions of deque, there was an extra template
   *  parameter so users could control the node size.  This extension turned
   *  out to violate the C++ standard (it can be detected using template
   *  template parameters), and it was removed.
   *
   *  @if maint
   *  Here's how a deque<Tp> manages memory.  Each deque has 4 members:
   *  
   *  - Tp**        _M_map
   *  - size_t      _M_map_size
   *  - iterator    _M_start, _M_finish
   *  
   *  map_size is at least 8.  %map is an array of map_size pointers-to-"nodes".
   *  (The name %map has nothing to do with the std::map class, and "nodes"
   *  should not be confused with std::list's usage of "node".)
   *  
   *  A "node" has no specific type name as such, but it is referred to as
   *  "node" in this file.  It is a simple array-of-Tp.  If Tp is very large,
   *  there will be one Tp element per node (i.e., an "array" of one).
   *  For non-huge Tp's, node size is inversely related to Tp size:  the
   *  larger the Tp, the fewer Tp's will fit in a node.  The goal here is to
   *  keep the total size of a node relatively small and constant over different
   *  Tp's, to improve allocator efficiency.
   *  
   *  **** As I write this, the nodes are /not/ allocated using the high-speed
   *  memory pool.  There are 20 hours left in the year; perhaps I can fix
   *  this before 2002.
   *  
   *  Not every pointer in the %map array will point to a node.  If the initial
   *  number of elements in the deque is small, the /middle/ %map pointers will
   *  be valid, and the ones at the edges will be unused.  This same situation
   *  will arise as the %map grows:  available %map pointers, if any, will be on
   *  the ends.  As new nodes are created, only a subset of the %map's pointers
   *  need to be copied "outward".
   *
   *  Class invariants:
   * - For any nonsingular iterator i:
   *    - i.node points to a member of the %map array.  (Yes, you read that
   *      correctly:  i.node does not actually point to a node.)  The member of
   *      the %map array is what actually points to the node.
   *    - i.first == *(i.node)    (This points to the node (first Tp element).)
   *    - i.last  == i.first + node_size
   *    - i.cur is a pointer in the range [i.first, i.last).  NOTE:
   *      the implication of this is that i.cur is always a dereferenceable
   *      pointer, even if i is a past-the-end iterator.
   * - Start and Finish are always nonsingular iterators.  NOTE: this means that
   *   an empty deque must have one node, a deque with <N elements (where N is
   *   the node buffer size) must have one node, a deque with N through (2N-1)
   *   elements must have two nodes, etc.
   * - For every node other than start.node and finish.node, every element in
   *   the node is an initialized object.  If start.node == finish.node, then
   *   [start.cur, finish.cur) are initialized objects, and the elements outside
   *   that range are uninitialized storage.  Otherwise, [start.cur, start.last)
   *   and [finish.first, finish.cur) are initialized objects, and [start.first,
   *   start.cur) and [finish.cur, finish.last) are uninitialized storage.
   * - [%map, %map + map_size) is a valid, non-empty range.  
   * - [start.node, finish.node] is a valid range contained within 
   *   [%map, %map + map_size).  
   * - A pointer in the range [%map, %map + map_size) points to an allocated
   *   node if and only if the pointer is in the range
   *   [start.node, finish.node].
   *
   *  Here's the magic:  nothing in deque is "aware" of the discontiguous
   *  storage!
   *
   *  The memory setup and layout occurs in the parent, _Base, and the iterator
   *  class is entirely responsible for "leaping" from one node to the next.
   *  All the implementation routines for deque itself work only through the
   *  start and finish iterators.  This keeps the routines simple and sane,
   *  and we can use other standard algorithms as well.
   *  @endif
  */
  template <typename _Tp, typename _Alloc = allocator<_Tp> >
    class deque : protected _Deque_base<_Tp, _Alloc>
  {
    // concept requirements
    __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
  
    typedef _Deque_base<_Tp, _Alloc>           _Base;
  
  public:
    typedef _Tp                                value_type;
    typedef value_type*                        pointer;
    typedef const value_type*                  const_pointer;
    typedef typename _Base::iterator           iterator;
    typedef typename _Base::const_iterator     const_iterator;
    typedef std::reverse_iterator<const_iterator>   const_reverse_iterator;
    typedef std::reverse_iterator<iterator>         reverse_iterator;
    typedef value_type&                        reference;
    typedef const value_type&                  const_reference;
    typedef size_t                             size_type;
    typedef ptrdiff_t                          difference_type;
    typedef typename _Base::allocator_type     allocator_type;
  
  protected:
    typedef pointer*                           _Map_pointer;
    static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }
  
    // Functions controlling memory layout, and nothing else.
    using _Base::_M_initialize_map;
    using _Base::_M_create_nodes;
    using _Base::_M_destroy_nodes;
    using _Base::_M_allocate_node;
    using _Base::_M_deallocate_node;
    using _Base::_M_allocate_map;
    using _Base::_M_deallocate_map;
  
    /** @if maint
     *  A total of four data members accumulated down the heirarchy.  If the
     *  _Alloc type requires separate instances, then two of them will also be
     *  included in each deque.
     *  @endif
    */
    using _Base::_M_map;
    using _Base::_M_map_size;
    using _Base::_M_start;
    using _Base::_M_finish;
  
  public:
    // [23.2.1.1] construct/copy/destroy
    // (assign() and get_allocator() are also listed in this section)
    /**
     *  @brief  Default constructor creates no elements.
    */
    explicit
    deque(const allocator_type& __a = allocator_type()) 
      : _Base(__a, 0) {}
  
    /**
     *  @brief  Create a %deque with copies of an exemplar element.
     *  @param  n  The number of elements to initially create.
     *  @param  value  An element to copy.
     * 
     *  This constructor fills the %deque with @a n copies of @a value.
    */
    deque(size_type __n, const value_type& __value,
          const allocator_type& __a = allocator_type())
      : _Base(__a, __n)
      { _M_fill_initialize(__value); }
  
    /**
     *  @brief  Create a %deque with default elements.
     *  @param  n  The number of elements to initially create.
     * 
     *  This constructor fills the %deque with @a n copies of a
     *  default-constructed element.
    */
    explicit
    deque(size_type __n)
      : _Base(allocator_type(), __n)
      { _M_fill_initialize(value_type()); }
  
    /**
     *  @brief  %Deque copy constructor.
     *  @param  x  A %deque of identical element and allocator types.
     * 
     *  The newly-created %deque uses a copy of the allocation object used
     *  by @a x.
    */
    deque(const deque& __x)
      : _Base(__x.get_allocator(), __x.size()) 
      { uninitialized_copy(__x.begin(), __x.end(), _M_start); }
  
    /**
     *  @brief  Builds a %deque from a range.
     *  @param  first  An input iterator.
     *  @param  last  An input iterator.
     * 
     *  Create a %deque consisting of copies of the elements from [first,last).
     *
     *  If the iterators are forward, bidirectional, or random-access, then
     *  this will call the elements' copy constructor N times (where N is
     *  distance(first,last)) and do no memory reallocation.  But if only
     *  input iterators are used, then this will do at most 2N calls to the
     *  copy constructor, and logN memory reallocations.
    */
    template<typename _InputIterator>
      deque(_InputIterator __first, _InputIterator __last,
            const allocator_type& __a = allocator_type())
        : _Base(__a)
      {
        // Check whether it's an integral type.  If so, it's not an iterator.
        typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
        _M_initialize_dispatch(__first, __last, _Integral());
      }
  
    /**
     *  The dtor only erases the elements, and note that if the elements
     *  themselves are pointers, the pointed-to memory is not touched in any
     *  way.  Managing the pointer is the user's responsibilty.
    */
    ~deque() { _Destroy(_M_start, _M_finish); }
  
    /**
     *  @brief  %Deque assignment operator.
     *  @param  x  A %deque of identical element and allocator types.
     * 
     *  All the elements of @a x are copied, but unlike the copy constructor,
     *  the allocator object is not copied.
    */
    deque&
    operator=(const deque& __x);
  
    /**
     *  @brief  Assigns a given value to a %deque.
     *  @param  n  Number of elements to be assigned.
     *  @param  val  Value to be assigned.
     *
     *  This function fills a %deque with @a n copies of the given value.
     *  Note that the assignment completely changes the %deque and that the
     *  resulting %deque's size is the same as the number of elements assigned.
     *  Old data may be lost.
    */
    void
    assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); }
  
    /**
     *  @brief  Assigns a range to a %deque.
     *  @param  first  An input iterator.
     *  @param  last   An input iterator.
     *
     *  This function fills a %deque with copies of the elements in the
     *  range [first,last).
     *
     *  Note that the assignment completely changes the %deque and that the
     *  resulting %deque's size is the same as the number of elements assigned.
     *  Old data may be lost.
    */
    template<typename _InputIterator>
      void
      assign(_InputIterator __first, _InputIterator __last)
      {
        typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
        _M_assign_dispatch(__first, __last, _Integral());
      }
  
    /// Get a copy of the memory allocation object.
    allocator_type
    get_allocator() const { return _Base::get_allocator(); }
  
    // iterators
    /**
     *  Returns a read/write iterator that points to the first element in the
     *  %deque.  Iteration is done in ordinary element order.
    */
    iterator
    begin() { return _M_start; }
  
    /**
     *  Returns a read-only (constant) iterator that points to the first element
     *  in the %deque.  Iteration is done in ordinary element order.
    */
    const_iterator
    begin() const { return _M_start; }
  
    /**
     *  Returns a read/write iterator that points one past the last element in
     *  the %deque.  Iteration is done in ordinary element order.
    */
    iterator
    end() { return _M_finish; }
  
    /**
     *  Returns a read-only (constant) iterator that points one past the last
     *  element in the %deque.  Iteration is done in ordinary element order.
    */
    const_iterator
    end() const { return _M_finish; }
  
    /**
     *  Returns a read/write reverse iterator that points to the last element in
     *  the %deque.  Iteration is done in reverse element order.
    */
    reverse_iterator
    rbegin() { return reverse_iterator(_M_finish); }
  
    /**
     *  Returns a read-only (constant) reverse iterator that points to the last
     *  element in the %deque.  Iteration is done in reverse element order.
    */
    const_reverse_iterator
    rbegin() const { return const_reverse_iterator(_M_finish); }
  
    /**
     *  Returns a read/write reverse iterator that points to one before the
     *  first element in the %deque.  Iteration is done in reverse element
     *  order.
    */
    reverse_iterator
    rend() { return reverse_iterator(_M_start); }
  
    /**
     *  Returns a read-only (constant) reverse iterator that points to one
     *  before the first element in the %deque.  Iteration is done in reverse
     *  element order.
    */
    const_reverse_iterator
    rend() const { return const_reverse_iterator(_M_start); }
  
    // [23.2.1.2] capacity
    /**  Returns the number of elements in the %deque.  */
    size_type
    size() const { return _M_finish - _M_start; }
  
    /**  Returns the size() of the largest possible %deque.  */
    size_type
    max_size() const { return size_type(-1); }
  
    /**
     *  @brief  Resizes the %deque to the specified number of elements.
     *  @param  new_size  Number of elements the %deque should contain.
     *  @param  x  Data with which new elements should be populated.
     *
     *  This function will %resize the %deque to the specified number of
     *  elements.  If the number is smaller than the %deque's current size the
     *  %deque is truncated, otherwise the %deque is extended and new elements
     *  are populated with given data.
    */
    void
    resize(size_type __new_size, const value_type& __x)
    {
      const size_type __len = size();
      if (__new_size < __len) 
        erase(_M_start + __new_size, _M_finish);
      else
        insert(_M_finish, __new_size - __len, __x);
    }
  
    /**
     *  @brief  Resizes the %deque to the specified number of elements.
     *  @param  new_size  Number of elements the %deque should contain.
     *
     *  This function will resize the %deque to the specified number of
     *  elements.  If the number is smaller than the %deque's current size the
     *  %deque is truncated, otherwise the %deque is extended and new elements
     *  are default-constructed.
    */
    void
    resize(size_type new_size) { resize(new_size, value_type()); }
  
    /**
     *  Returns true if the %deque is empty.  (Thus begin() would equal end().)
    */
    bool empty() const { return _M_finish == _M_start; }
  
    // element access
    /**
     *  @brief  Subscript access to the data contained in the %deque.
     *  @param  n  The index of the element for which data should be accessed.
     *  @return  Read/write reference to data.
     *
     *  This operator allows for easy, array-style, data access.
     *  Note that data access with this operator is unchecked and out_of_range
     *  lookups are not defined. (For checked lookups see at().)
    */
    reference
    operator[](size_type __n) { return _M_start[difference_type(__n)]; }
  
    /**
     *  @brief  Subscript access to the data contained in the %deque.
     *  @param  n  The index of the element for which data should be accessed.
     *  @return  Read-only (constant) reference to data.
     *
     *  This operator allows for easy, array-style, data access.
     *  Note that data access with this operator is unchecked and out_of_range
     *  lookups are not defined. (For checked lookups see at().)
    */
    const_reference
    operator[](size_type __n) const { return _M_start[difference_type(__n)]; }
  
  protected:
    /// @if maint Safety check used only from at().  @endif
    void
    _M_range_check(size_type __n) const
    {
      if (__n >= this->size())
        __throw_out_of_range("deque [] access out of range");
    }
  
  public:
    /**
     *  @brief  Provides access to the data contained in the %deque.
     *  @param  n  The index of the element for which data should be accessed.
     *  @return  Read/write reference to data.
     *  @throw  std::out_of_range  If @a n is an invalid index.
     *
     *  This function provides for safer data access.  The parameter is first
     *  checked that it is in the range of the deque.  The function throws
     *  out_of_range if the check fails.
    */
    reference
    at(size_type __n) { _M_range_check(__n); return (*this)[__n]; }
  
    /**
     *  @brief  Provides access to the data contained in the %deque.
     *  @param  n  The index of the element for which data should be accessed.
     *  @return  Read-only (constant) reference to data.
     *  @throw  std::out_of_range  If @a n is an invalid index.
     *
     *  This function provides for safer data access.  The parameter is first
     *  checked that it is in the range of the deque.  The function throws
     *  out_of_range if the check fails.
    */
    const_reference
    at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; }
  
    /**
     *  Returns a read/write reference to the data at the first element of the
     *  %deque.
    */
    reference
    front() { return *_M_start; }
  
    /**
     *  Returns a read-only (constant) reference to the data at the first
     *  element of the %deque.
    */
    const_reference
    front() const { return *_M_start; }
  
    /**
     *  Returns a read/write reference to the data at the last element of the
     *  %deque.
    */
    reference
    back()
    {
      iterator __tmp = _M_finish;
      --__tmp;
      return *__tmp;
    }
  
    /**
     *  Returns a read-only (constant) reference to the data at the last
     *  element of the %deque.
    */
    const_reference
    back() const
    {
      const_iterator __tmp = _M_finish;
      --__tmp;
      return *__tmp;
    }
  
    // [23.2.1.2] modifiers
    /**
     *  @brief  Add data to the front of the %deque.
     *  @param  x  Data to be added.
     *
     *  This is a typical stack operation.  The function creates an element at
     *  the front of the %deque and assigns the given data to it.  Due to the
     *  nature of a %deque this operation can be done in constant time.
    */
    void
    push_front(const value_type& __x) 
    {
      if (_M_start._M_cur != _M_start._M_first) {
        _Construct(_M_start._M_cur - 1, __x);
        --_M_start._M_cur;
      }
      else
        _M_push_front_aux(__x);
    }
  
  #ifdef _GLIBCPP_DEPRECATED
    /**
     *  @brief  Add data to the front of the %deque.
     *
     *  This is a typical stack operation.  The function creates a
     *  default-constructed element at the front of the %deque.  Due to the
     *  nature of a %deque this operation can be done in constant time.  You
     *  should consider using push_front(value_type()) instead.
     *
     *  @note This was deprecated in 3.2 and will be removed in 3.4.  You must
     *        define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
     *        c++config.h.
    */
    void
    push_front()
    {
      if (_M_start._M_cur != _M_start._M_first) {
        _Construct(_M_start._M_cur - 1);
        --_M_start._M_cur;
      }
      else
        _M_push_front_aux();
    }
  #endif
  
    /**
     *  @brief  Add data to the end of the %deque.
     *  @param  x  Data to be added.
     *
     *  This is a typical stack operation.  The function creates an element at
     *  the end of the %deque and assigns the given data to it.  Due to the
     *  nature of a %deque this operation can be done in constant time.
    */
    void
    push_back(const value_type& __x)
    {
      if (_M_finish._M_cur != _M_finish._M_last - 1) {
        _Construct(_M_finish._M_cur, __x);
        ++_M_finish._M_cur;
      }
      else
        _M_push_back_aux(__x);
    }
  
  #ifdef _GLIBCPP_DEPRECATED
    /**
     *  @brief  Add data to the end of the %deque.
     *
     *  This is a typical stack operation.  The function creates a
     *  default-constructed element at the end of the %deque.  Due to the nature
     *  of a %deque this operation can be done in constant time.  You should
     *  consider using push_back(value_type()) instead.
     *
     *  @note This was deprecated in 3.2 and will be removed in 3.4.  You must
     *        define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
     *        c++config.h.
    */
    void
    push_back()
    {
      if (_M_finish._M_cur != _M_finish._M_last - 1) {
        _Construct(_M_finish._M_cur);
        ++_M_finish._M_cur;
      }
      else
        _M_push_back_aux();
    }
  #endif
  
    /**
     *  @brief  Removes first element.
     *
     *  This is a typical stack operation.  It shrinks the %deque by one.
     *
     *  Note that no data is returned, and if the first element's data is
     *  needed, it should be retrieved before pop_front() is called.
    */
    void
    pop_front()
    {
      if (_M_start._M_cur != _M_start._M_last - 1) {
        _Destroy(_M_start._M_cur);
        ++_M_start._M_cur;
      }
      else 
        _M_pop_front_aux();
    }
  
    /**
     *  @brief  Removes last element.
     *
     *  This is a typical stack operation.  It shrinks the %deque by one.
     *
     *  Note that no data is returned, and if the last element's data is
     *  needed, it should be retrieved before pop_back() is called.
    */
    void
    pop_back()
    {
      if (_M_finish._M_cur != _M_finish._M_first) {
        --_M_finish._M_cur;
        _Destroy(_M_finish._M_cur);
      }
      else
        _M_pop_back_aux();
    }
  
    /**
     *  @brief  Inserts given value into %deque before specified iterator.
     *  @param  position  An iterator into the %deque.
     *  @param  x  Data to be inserted.
     *  @return  An iterator that points to the inserted data.
     *
     *  This function will insert a copy of the given value before the specified
     *  location.
    */
    iterator
    insert(iterator position, const value_type& __x);
  
  #ifdef _GLIBCPP_DEPRECATED
    /**
     *  @brief  Inserts an element into the %deque.
     *  @param  position  An iterator into the %deque.
     *  @return  An iterator that points to the inserted element.
     *
     *  This function will insert a default-constructed element before the
     *  specified location.  You should consider using
     *  insert(position,value_type()) instead.
     *
     *  @note This was deprecated in 3.2 and will be removed in 3.4.  You must
     *        define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
     *        c++config.h.
    */
    iterator
    insert(iterator __position)
    { return insert(__position, value_type()); }
  #endif
  
    /**
     *  @brief  Inserts a number of copies of given data into the %deque.
     *  @param  position  An iterator into the %deque.
     *  @param  n  Number of elements to be inserted.
     *  @param  x  Data to be inserted.
     *
     *  This function will insert a specified number of copies of the given data
     *  before the location specified by @a position.
    */
    void
    insert(iterator __position, size_type __n, const value_type& __x)
    { _M_fill_insert(__position, __n, __x); }
  
    /**
     *  @brief  Inserts a range into the %deque.
     *  @param  pos  An iterator into the %deque.
     *  @param  first  An input iterator.
     *  @param  last   An input iterator.
     *
     *  This function will insert copies of the data in the range [first,last)
     *  into the %deque before the location specified by @a pos.  This is
     *  known as "range insert."
    */
    template<typename _InputIterator>
      void
      insert(iterator __pos, _InputIterator __first, _InputIterator __last)
      {
        // Check whether it's an integral type.  If so, it's not an iterator.
        typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
        _M_insert_dispatch(__pos, __first, __last, _Integral());
      }
  
    /**
     *  @brief  Remove element at given position.
     *  @param  position  Iterator pointing to element to be erased.
     *  @return  An iterator pointing to the next element (or end()).
     *
     *  This function will erase the element at the given position and thus
     *  shorten the %deque by one.
     *
     *  The user is cautioned that
     *  this function only erases the element, and that if the element is itself
     *  a pointer, the pointed-to memory is not touched in any way.  Managing
     *  the pointer is the user's responsibilty.
    */
    iterator
    erase(iterator __position);
  
    /**
     *  @brief  Remove a range of elements.
     *  @param  first  Iterator pointing to the first element to be erased.
     *  @param  last  Iterator pointing to one past the last element to be
     *                erased.
     *  @return  An iterator pointing to the element pointed to by @a last
     *           prior to erasing (or end()).
     *
     *  This function will erase the elements in the range [first,last) and
     *  shorten the %deque accordingly.
     *
     *  The user is cautioned that
     *  this function only erases the elements, and that if the elements
     *  themselves are pointers, the pointed-to memory is not touched in any
     *  way.  Managing the pointer is the user's responsibilty.
    */
    iterator
    erase(iterator __first, iterator __last);
  
    /**
     *  @brief  Swaps data with another %deque.
     *  @param  x  A %deque of the same element and allocator types.
     *
     *  This exchanges the elements between two deques in constant time.
     *  (Four pointers, so it should be quite fast.)
     *  Note that the global std::swap() function is specialized such that
     *  std::swap(d1,d2) will feed to this function.
    */
    void
    swap(deque& __x)
    {
      std::swap(_M_start, __x._M_start);
      std::swap(_M_finish, __x._M_finish);
      std::swap(_M_map, __x._M_map);
      std::swap(_M_map_size, __x._M_map_size);
    }
  
    /**
     *  Erases all the elements.  Note that this function only erases the
     *  elements, and that if the elements themselves are pointers, the
     *  pointed-to memory is not touched in any way.  Managing the pointer is
     *  the user's responsibilty.
    */
    void clear(); 
  
  protected:
    // Internal constructor functions follow.
  
    // called by the range constructor to implement [23.1.1]/9
    template<typename _Integer>
      void
      _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
      {
        _M_initialize_map(__n);
        _M_fill_initialize(__x);
      }
  
    // called by the range constructor to implement [23.1.1]/9
    template<typename _InputIter>
      void
      _M_initialize_dispatch(_InputIter __first, _InputIter __last,
                             __false_type)
      {
        typedef typename iterator_traits<_InputIter>::iterator_category
                         _IterCategory;
        _M_range_initialize(__first, __last, _IterCategory());
      }
  
    // called by the second initialize_dispatch above
    //@{
    /**
     *  @if maint
     *  @brief Fills the deque with whatever is in [first,last).
     *  @param  first  An input iterator.
     *  @param  last  An input iterator.
     *  @return   Nothing.
     *
     *  If the iterators are actually forward iterators (or better), then the
     *  memory layout can be done all at once.  Else we move forward using
     *  push_back on each value from the iterator.
     *  @endif
    */
    template <typename _InputIterator>
      void
      _M_range_initialize(_InputIterator __first, _InputIterator __last,
                          input_iterator_tag);
  
    // called by the second initialize_dispatch above
    template <typename _ForwardIterator>
      void
      _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
                          forward_iterator_tag);
    //@}
  
    /**
     *  @if maint
     *  @brief Fills the %deque with copies of value.
     *  @param  value  Initial value.
     *  @return   Nothing.
     *  @pre _M_start and _M_finish have already been initialized, but none of
     *       the %deque's elements have yet been constructed.
     *
     *  This function is called only when the user provides an explicit size
     *  (with or without an explicit exemplar value).
     *  @endif
    */
    void
    _M_fill_initialize(const value_type& __value);
  
  
    // Internal assign functions follow.  The *_aux functions do the actual
    // assignment work for the range versions.
  
    // called by the range assign to implement [23.1.1]/9
    template<typename _Integer>
      void
      _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
      {
        _M_fill_assign(static_cast<size_type>(__n),
                       static_cast<value_type>(__val));
      }
  
    // called by the range assign to implement [23.1.1]/9
    template<typename _InputIter>
      void
      _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
      {
        typedef typename iterator_traits<_InputIter>::iterator_category
                         _IterCategory;
        _M_assign_aux(__first, __last, _IterCategory());
      }
  
    // called by the second assign_dispatch above
    template <typename _InputIterator>
      void
      _M_assign_aux(_InputIterator __first, _InputIterator __last,
                    input_iterator_tag);
  
    // called by the second assign_dispatch above
    template <typename _ForwardIterator>
      void
      _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
                    forward_iterator_tag)
      {
        size_type __len = distance(__first, __last);
        if (__len > size()) {
          _ForwardIterator __mid = __first;
          advance(__mid, size());
          copy(__first, __mid, begin());
          insert(end(), __mid, __last);
        }
        else
          erase(copy(__first, __last, begin()), end());
      }
  
    // Called by assign(n,t), and the range assign when it turns out to be the
    // same thing.
    void
    _M_fill_assign(size_type __n, const value_type& __val)
    {
      if (__n > size())
      {
        fill(begin(), end(), __val);
        insert(end(), __n - size(), __val);
      }
      else
      {
        erase(begin() + __n, end());
        fill(begin(), end(), __val);
      }
    }
  
  
    //@{
    /**
     *  @if maint
     *  @brief Helper functions for push_* and pop_*.
     *  @endif
    */
    void _M_push_back_aux(const value_type&);
    void _M_push_front_aux(const value_type&);
  #ifdef _GLIBCPP_DEPRECATED
    void _M_push_back_aux();
    void _M_push_front_aux();
  #endif
    void _M_pop_back_aux();
    void _M_pop_front_aux();
    //@}
  
  
    // Internal insert functions follow.  The *_aux functions do the actual
    // insertion work when all shortcuts fail.
  
    // called by the range insert to implement [23.1.1]/9
    template<typename _Integer>
      void
      _M_insert_dispatch(iterator __pos,
                         _Integer __n, _Integer __x, __true_type)
      {
        _M_fill_insert(__pos, static_cast<size_type>(__n),
                       static_cast<value_type>(__x));
      }
  
    // called by the range insert to implement [23.1.1]/9
    template<typename _InputIterator>
      void
      _M_insert_dispatch(iterator __pos,
                         _InputIterator __first, _InputIterator __last,
                         __false_type)
      {
        typedef typename iterator_traits<_InputIterator>::iterator_category
                         _IterCategory;
        _M_range_insert_aux(__pos, __first, __last, _IterCategory());
      }
  
    // called by the second insert_dispatch above
    template <typename _InputIterator>
      void
      _M_range_insert_aux(iterator __pos, _InputIterator __first,
                          _InputIterator __last, input_iterator_tag);
  
    // called by the second insert_dispatch above
    template <typename _ForwardIterator>
      void
      _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
                          _ForwardIterator __last, forward_iterator_tag);
  
    // Called by insert(p,n,x), and the range insert when it turns out to be
    // the same thing.  Can use fill functions in optimal situations, otherwise
    // passes off to insert_aux(p,n,x).
    void
    _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); 
  
    // called by insert(p,x)
    iterator
    _M_insert_aux(iterator __pos, const value_type& __x);
  
    // called by insert(p,n,x) via fill_insert
    void
    _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
  
    // called by range_insert_aux for forward iterators
    template <typename _ForwardIterator>
      void
      _M_insert_aux(iterator __pos, 
                    _ForwardIterator __first, _ForwardIterator __last,
                    size_type __n);
  
  #ifdef _GLIBCPP_DEPRECATED
    // unused, see comment in implementation
    iterator _M_insert_aux(iterator __pos);
  #endif
  
    //@{
    /**
     *  @if maint
     *  @brief Memory-handling helpers for the previous internal insert
     *         functions.
     *  @endif
    */
    iterator
    _M_reserve_elements_at_front(size_type __n)
    {
      size_type __vacancies = _M_start._M_cur - _M_start._M_first;
      if (__n > __vacancies) 
        _M_new_elements_at_front(__n - __vacancies);
      return _M_start - difference_type(__n);
    }
  
    iterator
    _M_reserve_elements_at_back(size_type __n)
    {
      size_type __vacancies = (_M_finish._M_last - _M_finish._M_cur) - 1;
      if (__n > __vacancies)
        _M_new_elements_at_back(__n - __vacancies);
      return _M_finish + difference_type(__n);
    }
  
    void
    _M_new_elements_at_front(size_type __new_elements);
  
    void
    _M_new_elements_at_back(size_type __new_elements);
    //@}
  
  
    //@{
    /**
     *  @if maint
     *  @brief Memory-handling helpers for the major %map.
     *
     *  Makes sure the _M_map has space for new nodes.  Does not actually add
     *  the nodes.  Can invalidate _M_map pointers.  (And consequently, %deque
     *  iterators.)
     *  @endif
    */
    void
    _M_reserve_map_at_back (size_type __nodes_to_add = 1)
    {
      if (__nodes_to_add + 1 > _M_map_size - (_M_finish._M_node - _M_map))
        _M_reallocate_map(__nodes_to_add, false);
    }
  
    void
    _M_reserve_map_at_front (size_type __nodes_to_add = 1)
    {
      if (__nodes_to_add > size_type(_M_start._M_node - _M_map))
        _M_reallocate_map(__nodes_to_add, true);
    }
  
    void
    _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
    //@}
  };
  
  
  /**
   *  @brief  Deque equality comparison.
   *  @param  x  A %deque.
   *  @param  y  A %deque of the same type as @a x.
   *  @return  True iff the size and elements of the deques are equal.
   *
   *  This is an equivalence relation.  It is linear in the size of the
   *  deques.  Deques are considered equivalent if their sizes are equal,
   *  and if corresponding elements compare equal.
  */
  template <typename _Tp, typename _Alloc>
  inline bool operator==(const deque<_Tp, _Alloc>& __x,
                         const deque<_Tp, _Alloc>& __y)
  {
    return __x.size() == __y.size() &&
           equal(__x.begin(), __x.end(), __y.begin());
  }
  
  /**
   *  @brief  Deque ordering relation.
   *  @param  x  A %deque.
   *  @param  y  A %deque of the same type as @a x.
   *  @return  True iff @a x is lexographically less than @a y.
   *
   *  This is a total ordering relation.  It is linear in the size of the
   *  deques.  The elements must be comparable with @c <.
   *
   *  See std::lexographical_compare() for how the determination is made.
  */
  template <typename _Tp, typename _Alloc>
  inline bool operator<(const deque<_Tp, _Alloc>& __x,
                        const deque<_Tp, _Alloc>& __y)
  {
    return lexicographical_compare(__x.begin(), __x.end(), 
                                   __y.begin(), __y.end());
  }
  
  /// Based on operator==
  template <typename _Tp, typename _Alloc>
  inline bool operator!=(const deque<_Tp, _Alloc>& __x,
                         const deque<_Tp, _Alloc>& __y) {
    return !(__x == __y);
  }
  
  /// Based on operator<
  template <typename _Tp, typename _Alloc>
  inline bool operator>(const deque<_Tp, _Alloc>& __x,
                        const deque<_Tp, _Alloc>& __y) {
    return __y < __x;
  }
  
  /// Based on operator<
  template <typename _Tp, typename _Alloc>
  inline bool operator<=(const deque<_Tp, _Alloc>& __x,
                         const deque<_Tp, _Alloc>& __y) {
    return !(__y < __x);
  }
  
  /// Based on operator<
  template <typename _Tp, typename _Alloc>
  inline bool operator>=(const deque<_Tp, _Alloc>& __x,
                         const deque<_Tp, _Alloc>& __y) {
    return !(__x < __y);
  }
  
  /// See std::deque::swap().
  template <typename _Tp, typename _Alloc>
  inline void swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
  {
    __x.swap(__y);
  }
} // namespace std 
  
#endif /* __GLIBCPP_INTERNAL_DEQUE_H */