This file is indexed.

/usr/share/gccxml-0.9/GCC/3.2/bits/stl_vector.h is in gccxml 0.9.0+git20130511-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
// Vector implementation -*- C++ -*-

// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this  software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file stl_vector.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef __GLIBCPP_INTERNAL_VECTOR_H
#define __GLIBCPP_INTERNAL_VECTOR_H

#include <bits/stl_iterator_base_funcs.h>
#include <bits/functexcept.h>
#include <bits/concept_check.h>

namespace std
{

// The vector base class serves two purposes.  First, its constructor
// and destructor allocate (but don't initialize) storage.  This makes
// exception safety easier.  Second, the base class encapsulates all of
// the differences between SGI-style allocators and standard-conforming
// allocators.

// Base class for ordinary allocators.
template <class _Tp, class _Allocator, bool _IsStatic>
class _Vector_alloc_base {
public:
  typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
          allocator_type;
  allocator_type get_allocator() const { return _M_data_allocator; }

  _Vector_alloc_base(const allocator_type& __a)
    : _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
  {}

protected:
  allocator_type _M_data_allocator;
  _Tp* _M_start;
  _Tp* _M_finish;
  _Tp* _M_end_of_storage;

  _Tp* _M_allocate(size_t __n)
    { return _M_data_allocator.allocate(__n); }
  void _M_deallocate(_Tp* __p, size_t __n)
    { if (__p) _M_data_allocator.deallocate(__p, __n); }
};

// Specialization for allocators that have the property that we don't
// actually have to store an allocator object.
template <class _Tp, class _Allocator>
class _Vector_alloc_base<_Tp, _Allocator, true> {
public:
  typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
          allocator_type;
  allocator_type get_allocator() const { return allocator_type(); }

  _Vector_alloc_base(const allocator_type&)
    : _M_start(0), _M_finish(0), _M_end_of_storage(0)
  {}

protected:
  _Tp* _M_start;
  _Tp* _M_finish;
  _Tp* _M_end_of_storage;

  typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type;
  _Tp* _M_allocate(size_t __n)
    { return _Alloc_type::allocate(__n); }
  void _M_deallocate(_Tp* __p, size_t __n)
    { _Alloc_type::deallocate(__p, __n);}
};

template <class _Tp, class _Alloc>
struct _Vector_base
  : public _Vector_alloc_base<_Tp, _Alloc,
                              _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
  typedef _Vector_alloc_base<_Tp, _Alloc,
                             _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
          _Base;
  typedef typename _Base::allocator_type allocator_type;

  _Vector_base(const allocator_type& __a) : _Base(__a) {}
  _Vector_base(size_t __n, const allocator_type& __a) : _Base(__a) {
    this->_M_start = this->_M_allocate(__n);
    this->_M_finish = this->_M_start;
    this->_M_end_of_storage = this->_M_start + __n;
  }

  ~_Vector_base() { this->_M_deallocate(this->_M_start, this->_M_end_of_storage - this->_M_start); }
};


/**
 *  @brief  A standard container which offers fixed time access to individual
 *  elements in any order.
 *
 *  @ingroup Containers
 *  @ingroup Sequences
 *
 *  Meets the requirements of a <a href="tables.html#65">container</a>, a
 *  <a href="tables.html#66">reversible container</a>, and a
 *  <a href="tables.html#67">sequence</a>, including the
 *  <a href="tables.html#68">optional sequence requirements</a> with the
 *  %exception of @c push_front and @c pop_front.
 *
 *  In some terminology a vector can be described as a dynamic C-style array,
 *  it offers fast and efficient access to individual elements in any order
 *  and saves the user from worrying about memory and size allocation.
 *  Subscripting ( [] ) access is also provided as with C-style arrays.
*/
template <class _Tp, class _Alloc = allocator<_Tp> >
class vector : protected _Vector_base<_Tp, _Alloc>
{
  // concept requirements
  __glibcpp_class_requires(_Tp, _SGIAssignableConcept)

private:
  typedef _Vector_base<_Tp, _Alloc> _Base;
  typedef vector<_Tp, _Alloc> vector_type;
public:
  typedef _Tp                                           value_type;
  typedef value_type*                                   pointer;
  typedef const value_type*                             const_pointer;
  typedef __gnu_cxx::__normal_iterator<pointer, vector_type>    iterator;
  typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
                                                        const_iterator;
  typedef value_type&                                   reference;
  typedef const value_type&                             const_reference;
  typedef size_t                                        size_type;
  typedef ptrdiff_t                                     difference_type;

  typedef typename _Base::allocator_type allocator_type;
  allocator_type get_allocator() const { return _Base::get_allocator(); }

  typedef reverse_iterator<const_iterator> const_reverse_iterator;
  typedef reverse_iterator<iterator> reverse_iterator;

protected:
  using _Base::_M_allocate;
  using _Base::_M_deallocate;
  using _Base::_M_start;
  using _Base::_M_finish;
  using _Base::_M_end_of_storage;

protected:
  void _M_insert_aux(iterator __position, const _Tp& __x);
  void _M_insert_aux(iterator __position);

public:
  /**
   *  Returns a read/write iterator that points to the first element in the
   *  vector.  Iteration is done in ordinary element order.
  */
  iterator begin() { return iterator (_M_start); }

  /**
   *  Returns a read-only (constant) iterator that points to the first element
   *  in the vector.  Iteration is done in ordinary element order.
  */
  const_iterator begin() const
    { return const_iterator (_M_start); }

  /**
   *  Returns a read/write iterator that points one past the last element in
   *  the vector.  Iteration is done in ordinary element order.
  */
  iterator end() { return iterator (_M_finish); }

  /**
   *  Returns a read-only (constant) iterator that points one past the last
   *  element in the vector.  Iteration is done in ordinary element order.
  */
  const_iterator end() const { return const_iterator (_M_finish); }

  /**
   *  Returns a read/write reverse iterator that points to the last element in
   *  the vector.  Iteration is done in reverse element order.
  */
  reverse_iterator rbegin()
    { return reverse_iterator(end()); }

  /**
   *  Returns a read-only (constant) reverse iterator that points to the last
   *  element in the vector.  Iteration is done in reverse element order.
  */
  const_reverse_iterator rbegin() const
    { return const_reverse_iterator(end()); }

  /**
   *  Returns a read/write reverse iterator that points to one before the
   *  first element in the vector.  Iteration is done in reverse element
   *  order.
  */
  reverse_iterator rend()
    { return reverse_iterator(begin()); }

  /**
   *  Returns a read-only (constant) reverse iterator that points to one
   *  before the first element in the vector.  Iteration is done in reverse
   *  element order.
  */
  const_reverse_iterator rend() const
    { return const_reverse_iterator(begin()); }

  /**  Returns the number of elements in the vector.  */
  size_type size() const
    { return size_type(end() - begin()); }

  /**  Returns the size of the largest possible vector.  */
  size_type max_size() const
    { return size_type(-1) / sizeof(_Tp); }

  /**
   *  Returns the amount of memory that has been alocated for the current
   *  elements (?).
  */
  size_type capacity() const
    { return size_type(const_iterator(_M_end_of_storage) - begin()); }

  /**
   *  Returns true if the vector is empty.  (Thus begin() would equal end().)
  */
  bool empty() const
    { return begin() == end(); }

  /**
   *  @brief  Subscript access to the data contained in the vector.
   *  @param  n  The element for which data should be accessed.
   *  @return  Read/write reference to data.
   *
   *  This operator allows for easy, array-style, data access.
   *  Note that data access with this operator is unchecked and out_of_range
   *  lookups are not defined. (For checked lookups see at().)
  */
  reference operator[](size_type __n) { return *(begin() + __n); }

  /**
   *  @brief  Subscript access to the data contained in the vector.
   *  @param  n  The element for which data should be accessed.
   *  @return  Read-only (constant) reference to data.
   *
   *  This operator allows for easy, array-style, data access.
   *  Note that data access with this operator is unchecked and out_of_range
   *  lookups are not defined. (For checked lookups see at().)
  */
  const_reference operator[](size_type __n) const { return *(begin() + __n); }

  void _M_range_check(size_type __n) const {
    if (__n >= this->size())
      __throw_out_of_range("vector");
  }

  /**
   *  @brief  Provides access to the data contained in the vector.
   *  @param  n  The element for which data should be accessed.
   *  @return  Read/write reference to data.
   *
   *  This function provides for safer data access.  The parameter is first
   *  checked that it is in the range of the vector.  The function throws
   *  out_of_range if the check fails.
  */
  reference at(size_type __n)
    { _M_range_check(__n); return (*this)[__n]; }

  /**
   *  @brief  Provides access to the data contained in the vector.
   *  @param  n  The element for which data should be accessed.
   *  @return  Read-only (constant) reference to data.
   *
   *  This function provides for safer data access.  The parameter is first
   *  checked that it is in the range of the vector.  The function throws
   *  out_of_range if the check fails.
  */
  const_reference at(size_type __n) const
    { _M_range_check(__n); return (*this)[__n]; }


  explicit vector(const allocator_type& __a = allocator_type())
    : _Base(__a) {}

  vector(size_type __n, const _Tp& __value,
         const allocator_type& __a = allocator_type())
    : _Base(__n, __a)
    { _M_finish = uninitialized_fill_n(_M_start, __n, __value); }

  explicit vector(size_type __n)
    : _Base(__n, allocator_type())
    { _M_finish = uninitialized_fill_n(_M_start, __n, _Tp()); }

  vector(const vector<_Tp, _Alloc>& __x)
    : _Base(__x.size(), __x.get_allocator())
    { _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }

  // Check whether it's an integral type.  If so, it's not an iterator.
  template <class _InputIterator>
    vector(_InputIterator __first, _InputIterator __last,
           const allocator_type& __a = allocator_type())
        : _Base(__a)
        {
      typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
      _M_initialize_aux(__first, __last, _Integral());
    }

  template <class _Integer>
    void _M_initialize_aux(_Integer __n, _Integer __value, __true_type)
        {
      _M_start = _M_allocate(__n);
      _M_end_of_storage = _M_start + __n;
      _M_finish = uninitialized_fill_n(_M_start, __n, __value);
    }

  template<class _InputIterator>
    void
        _M_initialize_aux(_InputIterator __first, _InputIterator __last, __false_type)
        {
          typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
          _M_range_initialize(__first, __last, _IterCategory());
        }

  ~vector()
  { _Destroy(_M_start, _M_finish); }

  vector<_Tp, _Alloc>& operator=(const vector<_Tp, _Alloc>& __x);

  /**
   *  @brief  Attempt to preallocate enough memory for specified number of
   *          elements.
   *  @param  n  Number of elements required
   *
   *  This function attempts to reserve enough memory for the vector to hold
   *  the specified number of elements.  If the number requested is more than
   *  max_size() length_error is thrown.
   *
   *  The advantage of this function is that if optimal code is a necessity
   *  and the user can determine the number of elements that will be required
   *  the user can reserve the memory and thus prevent a possible
   *  reallocation of memory and copy of vector data.
  */
  void reserve(size_type __n) {
    if (__n > this->max_size())
      __throw_length_error("vector::reserve");
    if (this->capacity() < __n) {
      const size_type __old_size = size();
      pointer __tmp = _M_allocate_and_copy(__n, _M_start, _M_finish);
      _Destroy(_M_start, _M_finish);
      _M_deallocate(_M_start, _M_end_of_storage - _M_start);
      _M_start = __tmp;
      _M_finish = __tmp + __old_size;
      _M_end_of_storage = _M_start + __n;
    }
  }

  // assign(), a generalized assignment member function.  Two
  // versions: one that takes a count, and one that takes a range.
  // The range version is a member template, so we dispatch on whether
  // or not the type is an integer.

  /**
   *  @brief  Assigns a given value or range to a vector.
   *  @param  n  Number of elements to be assigned.
   *  @param  val  Value to be assigned.
   *
   *  This function can be used to assign a range to a vector or fill it
   *  with a specified number of copies of the given value.
   *  Note that the assignment completely changes the vector and that the
   *  resulting vector's size is the same as the number of elements assigned.
   *  Old data may be lost.
  */
  void assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); }
  void _M_fill_assign(size_type __n, const _Tp& __val);

  template<class _InputIterator>
    void
    assign(_InputIterator __first, _InputIterator __last)
    {
      typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
      _M_assign_dispatch(__first, __last, _Integral());
    }

  template<class _Integer>
    void
     _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
     { _M_fill_assign((size_type) __n, (_Tp) __val); }

  template<class _InputIter>
    void
    _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
    {
      typedef typename iterator_traits<_InputIter>::iterator_category _IterCategory;
      _M_assign_aux(__first, __last, _IterCategory());
    }

  template <class _InputIterator>
    void 
    _M_assign_aux(_InputIterator __first, _InputIterator __last,
                  input_iterator_tag);

  template <class _ForwardIterator>
    void 
    _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
                  forward_iterator_tag);

  /**
   *  Returns a read/write reference to the data at the first element of the
   *  vector.
  */
  reference front() { return *begin(); }

  /**
   *  Returns a read-only (constant) reference to the data at the first
   *  element of the vector.
  */
  const_reference front() const { return *begin(); }

  /**
   *  Returns a read/write reference to the data at the last element of the
   *  vector.
  */
  reference back() { return *(end() - 1); }

  /**
   *  Returns a read-only (constant) reference to the data at the first
   *  element of the vector.
  */
  const_reference back() const { return *(end() - 1); }

  /**
   *  @brief  Add data to the end of the vector.
   *  @param  x  Data to be added.
   *
   *  This is a typical stack operation.  The function creates an element at
   *  the end of the vector and assigns the given data to it.
   *  Due to the nature of a vector this operation can be done in constant
   *  time if the vector has preallocated space available.
  */
  void
  push_back(const _Tp& __x)
  {
    if (_M_finish != _M_end_of_storage) {
      _Construct(_M_finish, __x);
      ++_M_finish;
    }
    else
      _M_insert_aux(end(), __x);
  }

#ifdef _GLIBCPP_DEPRECATED
  /**
   *  Add an element to the end of the vector.  The element is
   *  default-constructed.
   *
   *  @note You must define _GLIBCPP_DEPRECATED to make this visible; see
   *        c++config.h.
  */
  void
  push_back()
  {
    if (_M_finish != _M_end_of_storage) {
      _Construct(_M_finish);
      ++_M_finish;
    }
    else
      _M_insert_aux(end());
  }
#endif

  void
  swap(vector<_Tp, _Alloc>& __x)
  {
    std::swap(_M_start, __x._M_start);
    std::swap(_M_finish, __x._M_finish);
    std::swap(_M_end_of_storage, __x._M_end_of_storage);
  }

  /**
   *  @brief  Inserts given value into vector at specified element.
   *  @param  position  An iterator that points to the element where data
   *                    should be inserted.
   *  @param  x  Data to be inserted.
   *  @return  An iterator that points to the inserted data.
   *
   *  This function will insert the given value into the specified location.
   *  Note that this kind of operation could be expensive for a vector and if
   *  it is frequently used the user should consider using std::list.
  */
  iterator
  insert(iterator __position, const _Tp& __x)
  {
    size_type __n = __position - begin();
    if (_M_finish != _M_end_of_storage && __position == end()) {
      _Construct(_M_finish, __x);
      ++_M_finish;
    }
    else
      _M_insert_aux(iterator(__position), __x);
    return begin() + __n;
  }

  /**
   *  @brief  Inserts an empty element into the vector.
   *  @param  position  An iterator that points to the element where empty
   *                    element should be inserted.
   *  @param  x  Data to be inserted.
   *  @return  An iterator that points to the inserted element.
   *
   *  This function will insert an empty element into the specified location.
   *  Note that this kind of operation could be expensive for a vector and if
   *  it is frequently used the user should consider using std::list.
  */
  iterator
  insert(iterator __position)
  {
    size_type __n = __position - begin();
    if (_M_finish != _M_end_of_storage && __position == end()) {
      _Construct(_M_finish);
      ++_M_finish;
    }
    else
      _M_insert_aux(iterator(__position));
    return begin() + __n;
  }

  // Check whether it's an integral type.  If so, it's not an iterator.
  template<class _InputIterator>
    void
        insert(iterator __pos, _InputIterator __first, _InputIterator __last)
        {
      typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
      _M_insert_dispatch(__pos, __first, __last, _Integral());
    }

  template <class _Integer>
    void
        _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, __true_type)
    { _M_fill_insert(__pos, static_cast<size_type>(__n), static_cast<_Tp>(__val)); }

  template<class _InputIterator>
    void
        _M_insert_dispatch(iterator __pos,
                       _InputIterator __first, _InputIterator __last,
                       __false_type)
        {
          typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
      _M_range_insert(__pos, __first, __last, _IterCategory());
    }

  /**
   *  @brief  Inserts a number of copies of given data into the vector.
   *  @param  position  An iterator that points to the element where data
   *                    should be inserted.
   *  @param  n  Amount of elements to be inserted.
   *  @param  x  Data to be inserted.
   *
   *  This function will insert a specified number of copies of the given data
   *  into the specified location.
   *
   *  Note that this kind of operation could be expensive for a vector and if
   *  it is frequently used the user should consider using std::list.
  */
  void insert (iterator __pos, size_type __n, const _Tp& __x)
    { _M_fill_insert(__pos, __n, __x); }

  void _M_fill_insert (iterator __pos, size_type __n, const _Tp& __x);

  /**
   *  @brief  Removes last element from vector.
   *
   *  This is a typical stack operation. It allows us to shrink the vector by
   *  one.
   *
   *  Note that no data is returned and if last element's data is needed it
   *  should be retrieved before pop_back() is called.
  */
  void pop_back() {
    --_M_finish;
    _Destroy(_M_finish);
  }

  /**
   *  @brief  Remove element at given position
   *  @param  position  Iterator pointing to element to be erased.
   *  @return  Doc Me! (Iterator pointing to new element at old location?)
   *
   *  This function will erase the element at the given position and thus
   *  shorten the vector by one.
   *
   *  Note This operation could be expensive and if it is frequently used the
   *  user should consider using std::list.  The user is also cautioned that
   *  this function only erases the element, and that if the element is itself
   *  a pointer, the pointed-to memory is not touched in any way.  Managing
   *  the pointer is the user's responsibilty.
  */
  iterator erase(iterator __position) {
    if (__position + 1 != end())
      copy(__position + 1, end(), __position);
    --_M_finish;
    _Destroy(_M_finish);
    return __position;
  }

  /**
   *  @brief  Remove a range of elements from a vector.
   *  @param  first  Iterator pointing to the first element to be erased.
   *  @param  last  Iterator pointing to the last element to be erased.
   *  @return  Doc Me! (Iterator pointing to new element at old location?)
   *
   *  This function will erase the elements in the given range and shorten the
   *  vector accordingly.
   *
   *  Note This operation could be expensive and if it is frequently used the
   *  user should consider using std::list.  The user is also cautioned that
   *  this function only erases the elements, and that if the elements
   *  themselves are pointers, the pointed-to memory is not touched in any
   *  way.  Managing the pointer is the user's responsibilty.
  */
  iterator erase(iterator __first, iterator __last) {
    iterator __i(copy(__last, end(), __first));
    _Destroy(__i, end());
    _M_finish = _M_finish - (__last - __first);
    return __first;
  }

  /**
   *  @brief  Resizes the vector to the specified number of elements.
   *  @param  new_size  Number of elements the vector should contain.
   *  @param  x  Data with which new elements should be populated.
   *
   *  This function will resize the vector to the specified number of
   *  elements.  If the number is smaller than the vector's current size the
   *  vector is truncated, otherwise the vector is extended and new elements
   *  are populated with given data.
  */
  void resize(size_type __new_size, const _Tp& __x) {
    if (__new_size < size())
      erase(begin() + __new_size, end());
    else
      insert(end(), __new_size - size(), __x);
  }

  /**
   *  @brief  Resizes the vector to the specified number of elements.
   *  @param  new_size  Number of elements the vector should contain.
   *
   *  This function will resize the vector to the specified number of
   *  elements.  If the number is smaller than the vector's current size the
   *  vector is truncated, otherwise the vector is extended and new elements
   *  are left uninitialized.
  */
  void resize(size_type __new_size) { resize(__new_size, _Tp()); }

  /**
   *  Erases all elements in vector.  Note that this function only erases the
   *  elements, and that if the elements themselves are pointers, the
   *  pointed-to memory is not touched in any way.  Managing the pointer is
   *  the user's responsibilty.
  */
  void clear() { erase(begin(), end()); }

protected:

  template <class _ForwardIterator>
  pointer _M_allocate_and_copy(size_type __n, _ForwardIterator __first,
                                               _ForwardIterator __last)
  {
    pointer __result = _M_allocate(__n);
    try {
      uninitialized_copy(__first, __last, __result);
      return __result;
    }
    catch(...)
      {
        _M_deallocate(__result, __n);
        __throw_exception_again;
      }
  }

  template <class _InputIterator>
  void _M_range_initialize(_InputIterator __first,
                           _InputIterator __last, input_iterator_tag)
  {
    for ( ; __first != __last; ++__first)
      push_back(*__first);
  }

  // This function is only called by the constructor.
  template <class _ForwardIterator>
  void _M_range_initialize(_ForwardIterator __first,
                           _ForwardIterator __last, forward_iterator_tag)
  {
    size_type __n = distance(__first, __last);
    _M_start = _M_allocate(__n);
    _M_end_of_storage = _M_start + __n;
    _M_finish = uninitialized_copy(__first, __last, _M_start);
  }

  template <class _InputIterator>
  void _M_range_insert(iterator __pos,
                       _InputIterator __first, _InputIterator __last,
                       input_iterator_tag);

  template <class _ForwardIterator>
  void _M_range_insert(iterator __pos,
                       _ForwardIterator __first, _ForwardIterator __last,
                       forward_iterator_tag);
};

template <class _Tp, class _Alloc>
inline bool
operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{
  return __x.size() == __y.size() &&
         equal(__x.begin(), __x.end(), __y.begin());
}

template <class _Tp, class _Alloc>
inline bool
operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{
  return lexicographical_compare(__x.begin(), __x.end(),
                                 __y.begin(), __y.end());
}

template <class _Tp, class _Alloc>
inline void swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
{
  __x.swap(__y);
}

template <class _Tp, class _Alloc>
inline bool
operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
  return !(__x == __y);
}

template <class _Tp, class _Alloc>
inline bool
operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
  return __y < __x;
}

template <class _Tp, class _Alloc>
inline bool
operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
  return !(__y < __x);
}

template <class _Tp, class _Alloc>
inline bool
operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
  return !(__x < __y);
}

template <class _Tp, class _Alloc>
vector<_Tp,_Alloc>&
vector<_Tp,_Alloc>::operator=(const vector<_Tp, _Alloc>& __x)
{
  if (&__x != this) {
    const size_type __xlen = __x.size();
    if (__xlen > capacity()) {
      pointer __tmp = _M_allocate_and_copy(__xlen, __x.begin(), __x.end());
      _Destroy(_M_start, _M_finish);
      _M_deallocate(_M_start, _M_end_of_storage - _M_start);
      _M_start = __tmp;
      _M_end_of_storage = _M_start + __xlen;
    }
    else if (size() >= __xlen) {
      iterator __i(copy(__x.begin(), __x.end(), begin()));
      _Destroy(__i, end());
    }
    else {
      copy(__x.begin(), __x.begin() + size(), _M_start);
      uninitialized_copy(__x.begin() + size(), __x.end(), _M_finish);
    }
    _M_finish = _M_start + __xlen;
  }
  return *this;
}

template <class _Tp, class _Alloc>
void vector<_Tp, _Alloc>::_M_fill_assign(size_t __n, const value_type& __val)
{
  if (__n > capacity()) {
    vector<_Tp, _Alloc> __tmp(__n, __val, get_allocator());
    __tmp.swap(*this);
  }
  else if (__n > size()) {
    fill(begin(), end(), __val);
    _M_finish = uninitialized_fill_n(_M_finish, __n - size(), __val);
  }
  else
    erase(fill_n(begin(), __n, __val), end());
}

template <class _Tp, class _Alloc> template <class _InputIter>
void vector<_Tp, _Alloc>::_M_assign_aux(_InputIter __first, _InputIter __last,
                                        input_iterator_tag) {
  iterator __cur(begin());
  for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
    *__cur = *__first;
  if (__first == __last)
    erase(__cur, end());
  else
    insert(end(), __first, __last);
}

template <class _Tp, class _Alloc> template <class _ForwardIter>
void
vector<_Tp, _Alloc>::_M_assign_aux(_ForwardIter __first, _ForwardIter __last,
                                   forward_iterator_tag) {
  size_type __len = distance(__first, __last);

  if (__len > capacity()) {
    pointer __tmp(_M_allocate_and_copy(__len, __first, __last));
    _Destroy(_M_start, _M_finish);
    _M_deallocate(_M_start, _M_end_of_storage - _M_start);
    _M_start = __tmp;
    _M_end_of_storage = _M_finish = _M_start + __len;
  }
  else if (size() >= __len) {
    iterator __new_finish(copy(__first, __last, _M_start));
    _Destroy(__new_finish, end());
    _M_finish = __new_finish.base();
  }
  else {
    _ForwardIter __mid = __first;
    advance(__mid, size());
    copy(__first, __mid, _M_start);
    _M_finish = uninitialized_copy(__mid, __last, _M_finish);
  }
}

template <class _Tp, class _Alloc>
void
vector<_Tp, _Alloc>::_M_insert_aux(iterator __position, const _Tp& __x)
{
  if (_M_finish != _M_end_of_storage) {
    _Construct(_M_finish, *(_M_finish - 1));
    ++_M_finish;
    _Tp __x_copy = __x;
    copy_backward(__position, iterator(_M_finish - 2), iterator(_M_finish- 1));
    *__position = __x_copy;
  }
  else {
    const size_type __old_size = size();
    const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
    iterator __new_start(_M_allocate(__len));
    iterator __new_finish(__new_start);
    try {
      __new_finish = uninitialized_copy(iterator(_M_start), __position,
                                        __new_start);
      _Construct(__new_finish.base(), __x);
      ++__new_finish;
      __new_finish = uninitialized_copy(__position, iterator(_M_finish),
                                        __new_finish);
    }
    catch(...)
      {
        _Destroy(__new_start,__new_finish);
        _M_deallocate(__new_start.base(),__len);
        __throw_exception_again;
      }
    _Destroy(begin(), end());
    _M_deallocate(_M_start, _M_end_of_storage - _M_start);
    _M_start = __new_start.base();
    _M_finish = __new_finish.base();
    _M_end_of_storage = __new_start.base() + __len;
  }
}

template <class _Tp, class _Alloc>
void
vector<_Tp, _Alloc>::_M_insert_aux(iterator __position)
{
  if (_M_finish != _M_end_of_storage) {
    _Construct(_M_finish, *(_M_finish - 1));
    ++_M_finish;
    copy_backward(__position, iterator(_M_finish - 2),
                  iterator(_M_finish - 1));
    *__position = _Tp();
  }
  else {
    const size_type __old_size = size();
    const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
    pointer __new_start = _M_allocate(__len);
    pointer __new_finish = __new_start;
    try {
      __new_finish = uninitialized_copy(iterator(_M_start), __position,
                                        __new_start);
      _Construct(__new_finish);
      ++__new_finish;
      __new_finish = uninitialized_copy(__position, iterator(_M_finish),
                                        __new_finish);
    }
    catch(...)
      {
        _Destroy(__new_start,__new_finish);
        _M_deallocate(__new_start,__len);
        __throw_exception_again;
      }
    _Destroy(begin(), end());
    _M_deallocate(_M_start, _M_end_of_storage - _M_start);
    _M_start = __new_start;
    _M_finish = __new_finish;
    _M_end_of_storage = __new_start + __len;
  }
}

template <class _Tp, class _Alloc>
void vector<_Tp, _Alloc>::_M_fill_insert(iterator __position, size_type __n,
                                         const _Tp& __x)
{
  if (__n != 0) {
    if (size_type(_M_end_of_storage - _M_finish) >= __n) {
      _Tp __x_copy = __x;
      const size_type __elems_after = end() - __position;
      iterator __old_finish(_M_finish);
      if (__elems_after > __n) {
        uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
        _M_finish += __n;
        copy_backward(__position, __old_finish - __n, __old_finish);
        fill(__position, __position + __n, __x_copy);
      }
      else {
        uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy);
        _M_finish += __n - __elems_after;
        uninitialized_copy(__position, __old_finish, _M_finish);
        _M_finish += __elems_after;
        fill(__position, __old_finish, __x_copy);
      }
    }
    else {
      const size_type __old_size = size();
      const size_type __len = __old_size + max(__old_size, __n);
      iterator __new_start(_M_allocate(__len));
      iterator __new_finish(__new_start);
      try {
        __new_finish = uninitialized_copy(begin(), __position, __new_start);
        __new_finish = uninitialized_fill_n(__new_finish, __n, __x);
        __new_finish
          = uninitialized_copy(__position, end(), __new_finish);
      }
      catch(...)
        {
          _Destroy(__new_start,__new_finish);
          _M_deallocate(__new_start.base(),__len);
          __throw_exception_again;
        }
      _Destroy(_M_start, _M_finish);
      _M_deallocate(_M_start, _M_end_of_storage - _M_start);
      _M_start = __new_start.base();
      _M_finish = __new_finish.base();
      _M_end_of_storage = __new_start.base() + __len;
    }
  }
}

template <class _Tp, class _Alloc> template <class _InputIterator>
void
vector<_Tp, _Alloc>::_M_range_insert(iterator __pos,
                                     _InputIterator __first,
                                     _InputIterator __last,
                                     input_iterator_tag)
{
  for ( ; __first != __last; ++__first) {
    __pos = insert(__pos, *__first);
    ++__pos;
  }
}

template <class _Tp, class _Alloc> template <class _ForwardIterator>
void
vector<_Tp, _Alloc>::_M_range_insert(iterator __position,
                                     _ForwardIterator __first,
                                     _ForwardIterator __last,
                                     forward_iterator_tag)
{
  if (__first != __last) {
    size_type __n = distance(__first, __last);
    if (size_type(_M_end_of_storage - _M_finish) >= __n) {
      const size_type __elems_after = end() - __position;
      iterator __old_finish(_M_finish);
      if (__elems_after > __n) {
        uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
        _M_finish += __n;
        copy_backward(__position, __old_finish - __n, __old_finish);
        copy(__first, __last, __position);
      }
      else {
        _ForwardIterator __mid = __first;
        advance(__mid, __elems_after);
        uninitialized_copy(__mid, __last, _M_finish);
        _M_finish += __n - __elems_after;
        uninitialized_copy(__position, __old_finish, _M_finish);
        _M_finish += __elems_after;
        copy(__first, __mid, __position);
      }
    }
    else {
      const size_type __old_size = size();
      const size_type __len = __old_size + max(__old_size, __n);
      iterator __new_start(_M_allocate(__len));
      iterator __new_finish(__new_start);
      try {
        __new_finish = uninitialized_copy(iterator(_M_start),
                                          __position, __new_start);
        __new_finish = uninitialized_copy(__first, __last, __new_finish);
        __new_finish
          = uninitialized_copy(__position, iterator(_M_finish), __new_finish);
      }
      catch(...)
        {
          _Destroy(__new_start,__new_finish);
          _M_deallocate(__new_start.base(), __len);
          __throw_exception_again;
        }
      _Destroy(_M_start, _M_finish);
      _M_deallocate(_M_start, _M_end_of_storage - _M_start);
      _M_start = __new_start.base();
      _M_finish = __new_finish.base();
      _M_end_of_storage = __new_start.base() + __len;
    }
  }
}

} // namespace std

#endif /* __GLIBCPP_INTERNAL_VECTOR_H */

// Local Variables:
// mode:C++
// End: