/usr/include/falcon/string.h is in falconpl-dev 0.9.6.9-git20120606-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 | /*
FALCON - The Falcon Programming Language.
FILE: string.h
Core falcon string representation.
-------------------------------------------------------------------
Author: Giancarlo Niccolai
Begin: ven nov 19 2004
-------------------------------------------------------------------
(C) Copyright 2004: the FALCON developers (see list in AUTHORS file)
See LICENSE file for licensing details.
*/
/** \file
Core falcon string representation
*/
#ifndef flc_string_H
#define flc_string_H
#include <falcon/types.h>
#include <falcon/garbageable.h>
#include <falcon/gcalloc.h>
#include <falcon/deepitem.h>
#include <stdlib.h>
#define FALCON_STRING_ALLOCATION_BLOCK 32
namespace Falcon {
class Stream;
class VMachine;
class LiveModule;
/** Core falcon string representation.
This is a string as seen by the VM and its fellows (module loader, module and so on).
As times goes by, it will substitute ever c_string and Hstring ( stl++ string + falcon
allocator), so it must be small and efficient, and support different allocation schemes
seamlessly.
Strings are polymorphic; that is, they always occupy the same amount of space,
independently of the kind (being the string deep data pointed by a pointer in
the class), so that the type of a string may be changed without the need to
reallocate it. So, if/when more than one item are pointing to the core string object,
and the core string changes, the new status is immediately reflected to all the pointing
items. This wastes a little bit of allocation space on every string, but speeds up the
engine notably.
*/
class String;
/** Core string utility namespace.
Core strings cannot be virtual classes. This is because core strings
may be polimorphic; some operations may change the very nature of
core strings. In example, read-only static strings will be turned to
memory buffers in case of write operations. Chunked strings may be
turned into sequential buffers, and the other way around.
Re-creating them with a new() operator would not provide a viable solution
as all the other data must stay the same.
For this reason, a manager class hyerarcy is provided. Every core string
has a manager, (which is actually a pointer to a pure-virtual class with
no data), and every operation on a string is an inline call to the manager
class. So, the string virtuality is externalized in the manager.
With a "standard" compiler optimization this is 100% equivalent to have a
pointer to a table of function, but actually faster as the offset of the
virtual table is calculated at compile time in every situation.
*/
namespace csh {
/** Type of core string.
As the type of the core string is extracted by the manager,
this is actually stored in the manager.
*/
typedef enum
{
cs_static,
cs_buffer,
cs_static16,
cs_buffer16,
cs_static32,
cs_buffer32
} t_type;
/** Invalid position for core strings. */
const uint32 npos = 0xFFFFFFFF;
/** Base corestring manager class.
This is actually an interface that must be implemented by all the core string managers.
*/
class FALCON_DYN_CLASS Base
{
public:
virtual ~Base() {}
virtual t_type type() const =0;
virtual uint32 charSize() const = 0;
virtual uint32 length( const String *str ) const =0;
virtual uint32 getCharAt( const String *str, uint32 pos ) const =0;
virtual void setCharAt( String *str, uint32 pos, uint32 chr ) const =0;
virtual void subString( const String *str, int32 start, int32 end, String *target ) const =0;
/** Finds a substring in a string, and eventually returns npos if not found. */
virtual uint32 find( const String *str, const String *element, uint32 start =0, uint32 end = npos) const = 0;
virtual uint32 rfind( const String *str, const String *element, uint32 start =0, uint32 end = npos) const = 0;
virtual void insert( String *str, uint32 pos, uint32 len, const String *source ) const =0;
virtual bool change( String *str, uint32 start, uint32 end, const String *source ) const =0;
virtual void remove( String *str, uint32 pos, uint32 len ) const =0;
virtual String *clone( const String *str ) const =0;
virtual void destroy( String *str ) const =0;
virtual void bufferize( String *str ) const =0;
virtual void bufferize( String *str, const String *strOrig ) const =0;
virtual void reserve( String *str, uint32 size, bool relative = false, bool block = false ) const = 0;
virtual void shrink( String *str ) const = 0;
virtual const Base *bufferedManipulator() const =0;
};
/** Byte orientet base class.
This is still an abstract class, but it provides minimal behavior for byte oriented
strings (ascii or system specific).
*/
class FALCON_DYN_CLASS Byte: public Base
{
public:
virtual ~ Byte() {}
virtual uint32 length( const String *str ) const;
virtual uint32 getCharAt( const String *str, uint32 pos ) const;
virtual void subString( const String *str, int32 start, int32 end, String *target ) const;
virtual bool change( String *str, uint32 pos, uint32 end, const String *source ) const;
virtual String *clone( const String *str ) const;
virtual uint32 find( const String *str, const String *element, uint32 start =0, uint32 end = 0) const;
virtual uint32 rfind( const String *str, const String *element, uint32 start =0, uint32 end = 0) const;
virtual void remove( String *str, uint32 pos, uint32 len ) const;
virtual void bufferize( String *str ) const;
virtual void bufferize( String *str, const String *strOrig ) const;
virtual void reserve( String *str, uint32 size, bool relative = false, bool block = false ) const;
virtual const Base *bufferedManipulator() const { return this; }
};
/** Static byte oriented string manager.
Useful to instantiante and manage strings whose content is byte oriented and whose size is
known in advance; for example, symbol names in the Falcon module are easily managed with this class.
Every write operation on strings managed by this class will cause its manager to be changed
into the Buffer class.
*/
class FALCON_DYN_CLASS Static: public Byte
{
public:
virtual ~Static() {}
virtual t_type type() const { return cs_static; }
virtual uint32 charSize() const { return 1; }
virtual void setCharAt( String *str, uint32 pos, uint32 chr ) const;
virtual void insert( String *str, uint32 pos, uint32 len, const String *source ) const;
virtual void remove( String *str, uint32 pos, uint32 len ) const;
virtual void destroy( String *str ) const;
virtual void reserve( String *str, uint32 size, bool relative = false, bool block = false ) const;
virtual void shrink( String *str ) const;
virtual const Base *bufferedManipulator() const;
};
/** Variable size byte oriented string.
This class manages a variable size strings that are stored in one region of memory.
Strings may or may not be zero terminated (in case of need, the zero after the length of
the string is checked, and if not present, added). This is actually a useful class to
store C strings created on the fly from memory buffer; the requirement is that the
memory stored in the managed class is created with the Falcon::memAlloc() function
(as it will be freed with Falcon::memFree() and reallocated with Falcon::memRealloc() ).
*/
class FALCON_DYN_CLASS Buffer: public Byte
{
public:
virtual ~Buffer() {}
virtual t_type type() const { return cs_buffer; }
virtual uint32 charSize() const { return 1; }
virtual void setCharAt( String *str, uint32 pos, uint32 chr ) const;
virtual void insert( String *str, uint32 pos, uint32 len, const String *source ) const;
virtual void destroy( String *str ) const;
virtual void reserve( String *str, uint32 size, bool relative = false, bool block = false ) const;
virtual void shrink( String *str ) const;
};
class FALCON_DYN_CLASS Static16: public Static
{
public:
virtual ~Static16() {}
virtual uint32 charSize() const { return 2; }
virtual uint32 length( const String *str ) const;
virtual uint32 getCharAt( const String *str, uint32 pos ) const;
virtual void setCharAt( String *str, uint32 pos, uint32 chr ) const;
virtual void remove( String *str, uint32 pos, uint32 len ) const;
virtual void reserve( String *str, uint32 size, bool relative = false, bool block = false ) const;
virtual const Base *bufferedManipulator() const;
};
class FALCON_DYN_CLASS Static32: public Static16
{
public:
virtual ~Static32() {}
virtual uint32 charSize() const { return 4; }
virtual uint32 length( const String *str ) const;
virtual uint32 getCharAt( const String *str, uint32 pos ) const;
virtual void setCharAt( String *str, uint32 pos, uint32 chr ) const;
virtual void remove( String *str, uint32 pos, uint32 len ) const;
virtual void reserve( String *str, uint32 size, bool relative = false, bool block = false ) const;
virtual const Base *bufferedManipulator() const;
};
class FALCON_DYN_CLASS Buffer16: public Buffer
{
public:
virtual uint32 charSize() const { return 2; }
virtual uint32 length( const String *str ) const;
virtual uint32 getCharAt( const String *str, uint32 pos ) const;
virtual void setCharAt( String *str, uint32 pos, uint32 chr ) const;
};
class FALCON_DYN_CLASS Buffer32: public Buffer16
{
public:
virtual ~Buffer32() {}
virtual uint32 charSize() const { return 4; }
virtual uint32 length( const String *str ) const;
virtual uint32 getCharAt( const String *str, uint32 pos ) const;
virtual void setCharAt( String *str, uint32 pos, uint32 chr ) const;
};
extern FALCON_DYN_SYM Static handler_static;
extern FALCON_DYN_SYM Buffer handler_buffer;
extern FALCON_DYN_SYM Static16 handler_static16;
extern FALCON_DYN_SYM Buffer16 handler_buffer16;
extern FALCON_DYN_SYM Static32 handler_static32;
extern FALCON_DYN_SYM Buffer32 handler_buffer32;
} // namespace csh
/** Core string
This class is called "Core String" because it represents the strings as the internal VM and engine
sees them. This class is highly configurable and may manage any string that Falcon will ever need
to mangle with.
A set of fields is used to store the informations about the memory buffer where the string is
actually held. The "kind" of string is determined by its manager. The manager is a special friend
class that is in charge to effect all the needed operations on a particular kind of string. In
example, there's a manager for static C strings, one for memAlloc() allocated strings, and in
future also for chunked (multi buffer) stings and a parallel set of managers for international
strings.
The kind of the string can be changed by just changing its manager; this is often done automatically
by an appropriate constructor or when some operation occour (i.e. a static string may be turned into
a chunked one at write operations, and a chunked may get transformed into a buffered one if a linear
access on the whole string is needed.
String have a set of specialized subclasses which actually does nothing if not construct the
base String with the appropriate string manager. Every corestring class is BOUND having not
any private data member, because the derived String may be turned in something else at every moment
without changing its memory position or layout. There's no RTTI information about this changes; all
the polimorphism needed is applied by changing the string manager.
However, String sublcass may define some new function members to handle initialization steps
before "unmasking" the String structure and handle it back to the rest of the system. Also,
as the String subclass may be determined by looking at the manager, a subclass with special
operations (new member function) may be casted later on safely. The only requisite is that there's a 1:1
mapping between corestring subclasses and the manager they use.
*/
class FALCON_DYN_CLASS String: public GCAlloc
{
friend class csh::Base;
friend class csh::Byte;
friend class csh::Static;
friend class csh::Buffer;
friend class csh::Static16;
friend class csh::Buffer16;
friend class csh::Static32;
friend class csh::Buffer32;
protected:
const csh::Base *m_class;
uint32 m_allocated;
uint32 m_size;
byte *m_storage;
/**
* True if this string is exportable - importable in GC context.
*/
bool m_bExported;
// Reserved for future usage.
byte m_bFlags;
bool m_bCore;
/**sym
* Creates the core string.
*
* This method is protected. It can be accessed only by subclasses.
*/
explicit String( csh::Base *cl ) :
m_class( cl )
{}
void internal_escape( String &strout, bool full ) const;
public:
enum constants {
npos = csh::npos
};
/**
* Creates an empty string.
*
* The string is created non-zero terminated with length 0. It has also
* no valid internal storage at creation time.
*/
String():
m_class( &csh::handler_static ),
m_allocated( 0 ),
m_size( 0 ),
m_storage( 0 ),
m_bExported( false ),
m_bCore( false )
{
}
/** Adopt a static buffer as the internal buffer.
This version of the string adopts the given buffer and becomes a "static string".
A static string is just meant to carry around a pre-existing unchangeable (read-only)
static buffer. The passed buffer must stay vaild for the whole duration of this
string (i.e. it may be allocated as static string in some module).
The string is automatically "bufferized" when some write operations are performed,
so the original static data stays untouched even if this string is modified.
This constructor allows for automatic fast char-to-string conversion in temporary
operations.
\note No assumption is made of the encoding of the source string. The data is
just accepted as a mere sequence of bytes.
\note The method bufferize() may be used later to force copy of the contents of this
string. In that case, the underlying data must just stay valid until bufferize()
is called.
\see adopt
\param data the source data to be copied
*/
String( const char *data );
/** Adopt a static buffer as the internal buffer.
This is the wide char version.
This version of the string adopts the given buffer and becomes a "static string".
A static string is just meant to carry around a pre-existing unchangeable (read-only)
static buffer. The passed buffer must stay vaild for the whole duration of this
string (i.e. it may be allocated as static string in some module).
The string is automatically "bufferized" when some write operations are performed,
so the original static data stays untouched even if this string is modified.
This constructor allows for automatic fast char-to-string conversion in temporary
operations.
\note No assumption is made of the encoding of the source string. The data is
just accepted as a mere sequence of wide characters.
\note The method bufferize() may be used later to force copy of the contents of this
string. In that case, the underlying data must just stay valid until bufferize()
is called.
\see adopt
\param data the source data to be copied
*/
String( const wchar_t *data );
/** Allows on-the-fly core string creation from static data.
The resulting string is a bufferized copy of the static data; the source
may be destroyed or become invalid, while this string will be still useable.
\note To adopt an undestroyable buffer, use String( const char* ) version.
\note No assumption is made of the encoding of the source string. The data is
just accepted as a mere sequence of bytes.
\param data the source data to be copied
\param len the length of the string in buffer (in bytes). Pass -1 to make the constructor to determine the
buffer length by scanning it in search for '\\0'
*/
String( const char *data, int32 len );
/** Allows on-the-fly core string creation from static data.
This is the wide string version.
The resulting string is a bufferized copy of the static data; the source
may be destroyed or become invalid, while this string will be still useable.
\note To adopt an undestroyable buffer, use String( const wchar_t* ) version.
\note No assumption is made of the encoding of the source string. The data is
just accepted as a mere sequence of wide characters.
\param data the source data to be copied
\param len the length of the buffer (in wide characters). Pass -1 to make the constructor to determine the
buffer length by scanning it in search for '\\0'
*/
String( const wchar_t *data, int32 len );
/** Creates a bufferized string with preallocated space.
*/
explicit String( uint32 prealloc );
/** Copies a string.
If the copied string is a bufferized string, a new bufferzied string is
created, else a static string pointing to the same location of the original
one is created.
\note Static strings are constructed by simpling pointing the other string
start position. Remember: static strings are meant to "carry" underlying
memory and interpret it as a string, so the underlying memory must stay
valid.
Use bufferize() on this string to ensure that it is deep-copied.
*/
String( const String &other ):
m_allocated( 0 ),
m_bExported( false ),
m_bCore( false )
{
copy( other );
}
/** Substring constructor.
This constructor is used to extract a substring from the original one,
and is used in the subString() metod to return a string & as an inline call.
Being an inline call, the optimized version optimizes the involved copy away.
However, a string copy will still be present in debug.
\note Static strings are constructed by simpling pointing the other string
start position. Remember: static strings are meant to "carry" underlying
memory and interpret it as a string, so the underlying memory must stay
valid.
Use bufferize() on this string to ensure that it is copied.
*/
String( const String &other, uint32 begin, uint32 end = csh::npos );
/** Destroys the String.
As the method is not virtual (neither the class is), different kind of strings
are destroyed by calling the destroy() method of their manipulators.
*/
~String()
{
m_class->destroy( this );
}
/** Copies the original string as-is.
If the original string is of a static type, the buffer is just
referenced, else a deep copy is performed.
\param other the string to be copied.
\return itself
*/
void copy( const String &other );
/** Creates a String forcing bufferization of the original one.
This function copies the foreign string in a buffer responding to the
toCstring requirements (zero terminate 8-bit strings, i.e. char* or UTF8).
As clone and copy (and copy constructor) try to preserve remote string static
allocation, this function is required when a bufferized copy is explicitly
needed.
\param other the string to be copied.
\return itself
*/
String &bufferize( const String &other );
/** Forces this string to get buffer space to store even static strings.
\return itself
*/
String &bufferize();
/** Adopt a pre-allocated dynamic buffer.
This function takes the content of the given buffer and sets it as the
internal storage of the string. The buffer is considered dynamically
allocated with memAlloc(), and will be destroyed with memFree().
This string is internally transformed in a raw buffer string; any
previous content is destroyed.
String is considered a single byte char width string.
\param buffer the buffer to be adopted
\param size the size of the string contained in the buffer (in bytes)
\param allocated the size of the buffer as it was allocated (in bytes)
\return itself
*/
String &adopt( char *buffer, uint32 size, uint32 allocated );
/** Adopt a pre-allocated dynamic buffer (wide char version).
This function takes the content of the given buffer and sets it as the
internal storage of the string. The buffer is considered dynamically
allocated with memAlloc(), and will be destroyed with memFree().
This string is internally transformed in a raw buffer string; any
previous content is destroyed.
String is considered a wide char width string.
\param buffer the buffer to be adopted
\param size the size of the string contained in the buffer (in character count)
\param allocated the size of the buffer as it was allocated (in bytes)
\return itself
*/
String &adopt( wchar_t *buffer, uint32 size, uint32 allocated );
/** Return the manipulator of the class.
The manipulator is the function vector (under the form of a pure-virtual without-data class)
that is used to handle the string. The manipulator identifies also the type of string,
and so the subclass of the String that this strings currently belongs to.
*/
const csh::Base *manipulator() const { return m_class; }
/** Set the manipulator.
Changing the manipulator also changes the meaning of the class deep data, and finally the
correct subclass of String to which this item can be safely casted.
Actually this method should be called only by internal functions, or only if you are
really knowing what you are doing.
*/
void manipulator( csh::Base *m ) { m_class = m; }
/** Return the type of the string.
The type is determined by the manipulator. Warning: this method calls a function virtually,
so is quite slow. Better use it rarely. An acid test could be performed by matching the
manipulator pointer with the standard manipulators.
*/
csh::t_type type() const { return m_class->type(); }
/** Returns the amount of allocated memory in the deep buffer.
Used in buffers strings or in general in contiguous memory strings. Other kind of strings
may ignore this (and so let it undefined) or use it for special purposes (i.e. amount of
free memory on the last chunk in chunked strings.)
*/
uint32 allocated() const { return m_allocated; }
/** Changes the amount of allocated memory.
Used in buffers strings or in general in contiguous memory strings. Other kind of strings
may ignore this (and so let it undefined) or use it for special purposes (i.e. amount of
free memory on the last chunk in chunked strings.)
*/
void allocated( uint32 s ) { m_allocated = s; }
/** Returns the amount of bytes the string occupies.
This is the byte-size of the string, and may or may not be the same as the string length.
*/
uint32 size() const { return m_size; }
/** Changes the amount of bytes the string is considered to occupy.
This is the byte-size of the string, and may or may not be the same as the string length.
*/
void size( uint32 s ) { m_size = s; }
/** Return the raw storage for this string.
The raw storage is where the strings byte are stored. For more naive string (i.e. chunked), it
may return the pointer to a structure helding more informations about the string data.
*/
byte *getRawStorage() const { return m_storage; }
/** Changes the raw storage in this string.
This makes the string to point to a new memory position for its character data.
*/
void setRawStorage( byte *b ) { m_storage = b; }
/** Changes the raw storage in this string.
This makes the string to point to a new memory position for its character data.
*/
void setRawStorage( byte *b, int size ) {
m_storage = b;
m_size = size;
m_allocated = size;
}
/** Return the length of the string in characters.
The string length may vary depending on the string manipulator. This function calls
a method in the manipuplator that selects the right way to calculate the string
character count.
Being not a pure accessor, is actually better to cache this value somewhere if repeteadly
needed.
*/
uint32 length() const { return m_class->length( this ); }
/** Tranforms the string into a zero-terminated string.
This function fills a buffer that can be fed in libc and STL function requiring a zero
terminated string. The string manager will ensure that the data returned has one zero
at the end of the string.
8-bit strings are left unchanged.
International strings are turned into UTF-8 strings (so that they can be fed
into internationalized STL and libc functions).
The operation is relatively slow. Use when no other option is avalaible, and cache
the result.
Provide a reasonable space. Safe space is size() * 4 + 1.
\param target the buffer where to place the C string.
\param bufsize the size of the target buffer in bytes.
\return npos if the buffer is not long enough, else returns the used size.
*/
uint32 toCString( char *target, uint32 bufsize ) const;
/** Tranforms the string into a zero-terminated wide string.
This function returns fills a buffer that can be fed in functions accpeting
wchar_t strings. Returned strings are encoded in fixed lenght UTF-16, with
endianity equivalent to native platform endianity.
Character from extended planes are rendered as a single <?> 0x003f.
The operation is relatively slow. Use when no other option is avalaible, and cache
the result.
Required space is constant, and exactly (lenght() + 1) * sizeof(wchar_t) bytes
(last "+1" is for final wchar_t "0" marker).
\param target the buffer where to place the wchar_t string.
\param bufsize the size of the target buffer in bytes.
\return npos if the buffer size is not large enough, else returns the string length in wchar_t count
*/
uint32 toWideString( wchar_t *target, uint32 bufsize ) const;
/** Reduces the size of allocated memory to fit the string size.
Use this method to shrink the allocated buffer storing the string
to the minimal size needed to hold the string.
This is useful when i.e. a buffered string was allocated to
provide extra space for more efficient iterative appending,
and the iterative appending is over.
This has no effect on static string.
\note use wisely as the shrink operation may require a string copy.
*/
void shrink() { m_class->shrink( this ); }
uint32 getCharAt( uint32 pos ) const { return m_class->getCharAt( this, pos ); }
void setCharAt( uint32 pos, uint32 chr ) { m_class->setCharAt( this, pos, chr ); }
String subString( int32 start, int32 end ) const { return String( *this, start, end ); }
String subString( int32 start ) const { return String( *this, start, length() ); }
bool change( int32 start, const String &other ) {
return m_class->change( this, start, csh::npos, &other );
}
bool change( int32 start, int32 end, const String &other ) {
return m_class->change( this, start, end, &other );
}
void insert( uint32 pos, uint32 len, const String &source ) { m_class->insert( this, pos, len, &source ); }
void remove( uint32 pos, uint32 len ) { m_class->remove( this, pos, len ); }
void append( const String &source );
void append( uint32 chr );
void prepend( uint32 chr );
void prepend( const String &source ) { m_class->insert( this, 0, 0, &source ); }
uint32 find( const String &element, uint32 start=0, uint32 end=csh::npos) const
{
return m_class->find( this, &element, start, end );
}
uint32 rfind( const String &element, uint32 start=0, uint32 end=csh::npos) const
{
return m_class->rfind( this, &element, start, end );
}
/** Compares a string to another.
Optimized to match against C strings.
\see compare( const String &other )
\param other the other string to be compared
\return -1 if this is less than the other, 0 if it's the same, 1 if it's greater.
*/
int compare( const char *other ) const;
/** Compares a string to another.
Optimized to match against wide characters C strings.
\see compare( const String &other )
\param other the other string to be compared
\return -1 if this is less than the other, 0 if it's the same, 1 if it's greater.
*/
int compare( const wchar_t *other ) const ;
/** Compares a string to another ignoring the case.
This metod returns -1 if this string is less than the other,
0 if it's the same and 1 if it's greater.
\param other the other string to be compared
\return -1 if this is less than the other, 0 if it's the same, 1 if it's greater.
*/
int compare( const String &other ) const;
/** Compares a string to another ignoring the case.
This metod returns -1 if this string is less than the other,
0 if it's the same and 1 if it's greater.
Before checking them, uppercase characters are converted in
the equivalent lowercase version; in this way "aBc" and "AbC"
are considered the same.
TODO - more caseization of accentuated letters
\param other the other string to be compared
\return -1 if this is less than the other, 0 if it's the same, 1 if it's greater.
*/
int compareIgnoreCase( const String &other ) const;
/** Compares a string to another ignoring the case.
Optimized to match against C strings.
\see compareIgnoreCase( const String &other )
\param other the other string to be compared
\return -1 if this is less than the other, 0 if it's the same, 1 if it's greater.
*/
int compareIgnoreCase( const char *other ) const;
/** Compares a string to another ignoring the case.
Optimized to match against C strings.
\see compareIgnoreCase( const String &other )
\param other the other string to be compared
\return -1 if this is less than the other, 0 if it's the same, 1 if it's greater.
*/
int compareIgnoreCase( const wchar_t *other ) const;
/** Returns true if this string is empty. */
bool operator !() { return m_size == 0; }
String & operator+=( const String &other ) { append( other ); return *this; }
String & operator+=( uint32 other ) { append( other ); return *this; }
String & operator+=( char other ) { append( (uint32) other ); return *this; }
String & operator+=( const char *other ) { append( String( other ) ); return *this; }
String & operator+=( wchar_t other ) { append( (uint32) other ); return *this; }
String & operator+=( const wchar_t *other ) { append( String( other ) ); return *this; }
String & operator=( const String &other ) {
copy( other );
return *this;
}
String & operator=( uint32 chr ) {
m_size = 0;
append( chr );
return *this;
}
/** Assign from a const char string.
If this string is not empty, its content are destroyed; then
this object is changed into a static zero terminated C string and
the phisical location of the const char assigned to this string
is taken as undestroyable reference. This operation is meant for
C string phisically stored somewhere in the program and that stay
valid for the whole program duration, or at least for the whole
lifespan of this Falcon::String object.
*/
String & operator=( const char *other ) {
if ( m_storage != 0 )
m_class->destroy( this );
copy( String( other ) );
return *this;
}
/** Order predicate.
This predicate is used to sort Falcon::String objects and is provided
mainly as an interface for the stl container classes.
\param other the other string to check for
\return true if this string is considered less (smaller in collation order)
than the other one.
*/
bool less( const String &other ) const { return compare( other ) < 0; }
/** Save the string to a stream.
The function never fails, but on failure something weird will happen
on the stream. This may raise an exception, if the exceptions on the
stream are turned on.
\param out the stream on which to save the string.
*/
void serialize( Stream *out ) const;
/** Load the string from a stream.
The string is deserialized from the stream and allocated in memory.
This means that if the original was a static string, the deserialized
one will be a string buffer of compatible type.
If the string cannot be de-serialized the function returns false and
the value is left as it were before calling the function. If the de
serialization is succesful, the bufferized string is initializated
and the function returns true.
A failure usually means a stream corruption or an incompatible format.
\param in the input stream where the string must be read from
\param bStatic true to create a self-destroryable static string
\return true on success, false on failure.
*/
bool deserialize( Stream *in, bool bStatic=false );
/** Escapes a string for external representation.
Convert special control characters to "\" prefixed characters,
so that the resulting string can be used in a source code to
regenerate the same string in parsing.
Characters below 0x0008 (backspace) are turned into hexadecimal
representation, while international characters (from 0x0080 up)
are left unchanged. This means that the resulting string must still
be sent through an encoder to be safely saved on a stream.
\param target the target string
*/
void escape( String &target ) const;
/** Escapes a string for external representation - full version.
Convert special control characters to "\" prefixed characters,
so tha the resulting string can be used in a source code to
regenerate the same string in parsing.
Characters below 0x0008 (backspace) and international characters
(from 0x0080 up) are turned into hexadecimal
representation. This means that the resulting string can be
safely written on an output file without concerns for final
encoding.
\param target the target string
*/
void escapeFull( String &target ) const;
/** Unescape this string.
Unescaping string is always an operation that leaves the string
unchanged or shortened, so it can be done in place. Static
strings are converted into buffered strings only if some
actual unescape takes place.
String unescaping understands special codes \\", \\\\, \\\\r, \\\\n, \\\\t and \\\\b,
octal numbers \\0nnnn and hexadecimal numbers as \\xnnnnn, up to 32 bit
precision.
*/
void unescape();
/** Unescape this string placing the result in another one.
\see unescape()
*/
void unescape( String &other ) const
{
other = *this;
other.unescape();
}
/** Minimal numerical conversion.
If this string represents a valid integer, the integer is returned.
The string is considered a valid integer also if it is followed by non-numerical data.
\param target place where to store the number
\param pos initial position in the string from which to start the conversion
\return true if succesful, false if parse failed
*/
bool parseInt( int64 &target, uint32 pos = 0 ) const;
/** Minimal numerical conversion.
If this string represents a valid integer in octal format, the integer is returned.
Pos must start after the octal marker \\0 or \\c.
\param target place where to store the number
\param pos initial position in the string from which to start the conversion
\return true if succesful, false if parse failed
*/
bool parseOctal( uint64 &target, uint32 pos = 0 ) const;
/** Minimal numerical conversion.
If this string represents a valid integer in octal format, the integer is returned.
Pos must start after the octal marker \\b.
\param target place where to store the number
\param pos initial position in the string from which to start the conversion
\return true if succesful, false if parse failed
*/
bool parseBin( uint64 &target, uint32 pos = 0 ) const;
/** Minimal numerical conversion.
If this string represents a valid integer in hexadecimal format, the integer is returned.
Pos must start after the octal marker \\x.
\param target place where to store the number
\param pos initial position in the string from which to start the conversion
\return true if succesful, false if parse failed
*/
bool parseHex( uint64 &target, uint32 pos = 0 ) const;
/** Minimal numerical conversion.
If this string represents a valid floating point number, the number is returned.
The string is considered a valid number also if it is followed by non-numerical data.
Floating point number may be in scientific notation.
\param target place where to store the number
\param pos initial position in the string from which to start the conversion
\return true if succesful, false if parse failed
*/
bool parseDouble( double &target, uint32 pos = 0 ) const;
/** Converts a number to a string and appends it to this string.
\param number the number to be converted.
*/
void writeNumber( int64 number );
/** Converts a number to a string and appends it to this string.
This version writes the number in hex format.
\param number the number to be converted.
\param uppercase true to use ABCDEF letters instead of abdef
*/
void writeNumberHex( uint64 number, bool uppercase = true, int count = 0 );
/** Converts a number to a string and appends it to this string.
This version writes the number in octal format.
\param number the number to be converted.
*/
void writeNumberOctal( uint64 number );
/** Converts a number to a string and appends it to this string.
Number is formatted with prinf format "%e"; to specify a different
format, use the other version of this method.
\param number the number to be converted.
*/
void writeNumber( double number )
{
writeNumber( number, "%e" );
}
/** Converts a number to a string and appends it to this string.
This version allows to specify a format to be passed to sprintf
in the conversion of the number.
Regardless of the fact that sprintf writes a string int 8-bit
char space, both the format string and this string where the
result is to be appended may be in any char width.
The function does not check for validity of the format.
\param number the number to be converted.
\param format the format to be passed to printf for conversion.
*/
void writeNumber( double number, const String &format );
void writeNumber( int64 number, const String &format );
/** Cumulative version of writeNumber.
*
* This method can be used to concatenate strings and number such as for
* String s = String( "You got ").N( msg_count ).A( " messages " );
*/
inline String& N( int64 number )
{
writeNumber( number );
return *this;
}
/** Cumulative version of writeNumber.
*
* This method can be used to concatenate strings and number such as for
* String s = String( "You got ").N( msg_count ).A( " messages " );
*/
inline String& N( int32 number )
{
writeNumber( (int64) number );
return *this;
}
/** Cumulative version of writeNumber.
*
* This method can be used to concatenate strings and number such as for
* String s = String( "You got ").N( msg_count ).A( " messages " );
*/
inline String& N( int64 number, const String& format )
{
writeNumber( (int64) number, format );
return *this;
}
/** Cumulative version of writeNumber.
*
* This method can be used to concatenate strings and number such as for
* String s = String( "You got ").N( msg_count ).A( " messages " );
*/
inline String& N( double number )
{
writeNumber( number );
return *this;
}
/** Cumulative version of writeNumber.
*
* This method can be used to concatenate strings and number such as for
* String s = String( "You got ").N( msg_count ).A( " messages " );
*/
inline String& N( double number, const String& format )
{
writeNumber( number, format );
return *this;
}
/** Cumulative version of writeHex */
inline String& H( uint64 number, bool ucase, int ciphers = 0 )
{
writeNumberHex( number, ucase, ciphers );
return *this;
}
/** Cumulative version of append.
*
* This method can be used to concatenate strings and number such as for
* String s = String( "You got ").N( msg_count ).A( " messages " );
*/
inline String& A( const String& str ) { append(str); return *this; }
/** Cumulative version of append.
*
* This method can be used to concatenate strings and number such as for
* String s = String( "You got ").N( msg_count ).A( " messages " );
*/
inline String& A( int chr ) { append((uint32)chr); return *this; }
/** Cumulative version of append.
*
* This method can be used to concatenate strings and number such as for
* String s = String( "You got ").N( msg_count ).A( " messages " );
*/
inline String& A( uint32 chr ) { append(chr); return *this; }
/** Checks the position to be in the string, and eventually changes it if it's negative.
This is just a nice inline shortuct so that the string constructor for substrings
can be called safely.
\param pos the position to be checked and eventually turned into a positive value.
\return false if pos is outside thte string
*/
bool checkPosBound( int32 &pos )
{
register int s = length();
if ( pos < 0 )
pos = s + pos;
if ( pos < 0 || pos >= s )
return false;
return true;
}
/** Checks the range to be in the string, and eventually changes it if it's negative.
This is just a nice inline shortuct so that the string constructor for substrings
can be called safely.
\param begin the start to be checked and eventually turned into a positive value.
\param end the end to be checked and eventually turned into a positive value.
\return false if the range cannot be mapped in string.
*/
bool checkRangeBound( int32 &begin, int32 &end )
{
register int s = length();
if ( begin < 0 )
begin = s + begin;
if ( begin < 0 || begin >= s )
return false;
if ( end < 0 )
end = s + end;
// end can be the same as lenght
if ( end < 0 || end > s )
return false;
return true;
}
/** Reserve buffer space in the target string.
This ensures that the space allocated in the string is bufferzed and at least
wide enough to store the requested bytes.
\note the width is in bytes.
\param size minimal space that must be allocated as writeable heap buffer (in bytes).
*/
void reserve( uint32 size )
{
m_class->reserve( this, size );
}
/** Remove efficiently whitespaces at beginning and end of the string.
If whitespaces are only at the end of the string, the lenght of the string
is simply reduced; this means that static strings may stay static after
this process.
In case of whitespaces at beginning, the string will be resized, and eventually
allocated, moving the characters back to the beginning position.
\param mode 0 = all, 1 = front, 2 = back
*/
void trim( int mode );
void trim() { trim( 0 ); }
/**
* Remove efficiently 'what' at the beginning of the string.
*
* If what is empty, whitespaces are removed.
*/
void frontTrim() { trim( 1 ); }
void backTrim() { trim( 2 ); }
/**
* Convert the string to all lower case.
*/
void lower();
/**
* Convert the string to all upper case.
*/
void upper();
bool isStatic() const {
return manipulator()->type() == csh::cs_static ||
manipulator()->type() == csh::cs_static16 ||
manipulator()->type() == csh::cs_static32;
}
/** Bufferize an UTF-8 string.
This is an efficient shortcut for the very common case of UTF8 strings
being turned into falcon string.
There isn't a drect constructor that understands that the input char *
is an UTF8 string, but the proxy generators UTF8String and UTF8String
serve to this purpose.
After the call, the previous content of this string is destroyed.
In case of an invalid UTF8 sequence, up to what is possible to decode is
read, and the function return false.
\param utf8 the utf8 string to be loaded
\param len Expected length (-1 to scan for '\0' in the input string).
\return true on success, false if the sequence is invalid.
*/
bool fromUTF8( const char *utf8, int32 len );
bool fromUTF8( const char *utf8 );
/** Access to a single character.
Please, notice that Falcon strings are polymorphic in assignment,
so they cannot support the following syntax:
\code
s[n] = c; // can't work with Falcon strings.
\endcode
This operator is provided as a candy grammar for getCharAt().
*/
const uint32 operator []( uint32 pos ) const { return getCharAt( pos ); }
/** Return wether this exact string instance should be internationalized.
\note exported() attribute is not copied across string copies.
*/
bool exported() const { return m_bExported; }
/** Sets wether this string should be exported in international context or not.
*/
void exported( bool e ) { m_bExported = e; }
/** Adds an extra '\0' terminator past the end of the string.
This makes the string data (available through getRawStorage()) suitable
to be sent to C functions compatible with the character size of this
string.
Eventually, it should be preceded by a call to setCharSize().
*/
void c_ize();
/** Compares a string with the beginning of this string.
If \b str is empty, returns true, if it's larger than
this string returns false.
\param str The string to be compared against the beginning of this string.
\param icase true to perform a case neutral compare
\return true on success.
*/
bool startsWith( const String &str, bool icase=false ) const;
/** Compares a string with the end of this string.
If \b str is empty, returns true, if it's larger than
this string returns false.
\param str The string to be compared against the end of this string.
\param icase true to perform a case neutral compare
\return true on success.
*/
bool endsWith( const String &str, bool icase=false ) const;
/** Matches this string against a dos-like wildcard.
\param wildcard A dos-like wildcard.
\param bICase true if this function should ignore the character case of the two strings.
\return true if the wildcard matches this string.
*/
bool wildcardMatch( const String& wildcard, bool bICase = false ) const;
/** Makes all the quotes and double quotes in this string to be preceeded by a '\' slash */
void escapeQuotes();
/** Removes all the slashes before quotes. */
void unescapeQuotes();
/** Alters the character size of this string.
Changes the number of bytes used to represent a single
character in this string. The number of byte used can be
1, 2 or 4.
If the new character size of this string is smaller than
the original one, characters that cannot be represented
are substituted with a \b subst value (by default, the
maximum value allowed for the given character size).
If the original character size was different, the
string is bufferized into a new memory area, otherwise
the string is unchanged.
\note subst param is not currently implemented.
@param nsize The new character size for the string.
@param subst The substitute character to be used when reducing size.
@return True if the nsize value is valid, false otherwise.
*/
bool setCharSize( uint32 nsize, uint32 subst=0xFFFFFFFF );
void writeIndex( const Item &index, const Item &target );
void readIndex( const Item &index, Item &target );
void readProperty( const String &prop, Item &item );
bool isCore() const { return m_bCore; }
static bool isWhiteSpace( uint32 chr )
{
return chr == ' ' || chr == '\t' || chr == '\r' || chr == '\n';
}
};
/** Equality operator */
inline bool operator == ( const String &str1, const String &str2 ) { return str1.compare( str2 ) == 0; }
inline bool operator == ( const String &str1, const char *str2 ) { return str1.compare( str2 ) == 0; }
inline bool operator == ( const String &str1, const wchar_t *str2 ) { return str1.compare( str2 ) == 0; }
inline bool operator != ( const String &str1, const String &str2 ) { return str1.compare( str2 ) != 0; }
inline bool operator != ( const String &str1, const char *str2 ) { return str1.compare( str2 ) != 0; }
inline bool operator != ( const String &str1, const wchar_t *str2 ) { return str1.compare( str2 ) != 0; }
inline bool operator > ( const String &str1, const String &str2 ) { return str1.compare( str2 ) > 0; }
inline bool operator > ( const String &str1, const wchar_t *str2 ) { return str1.compare( str2 ) > 0; }
inline bool operator > ( const String &str1, const char *str2 ) { return str1.compare( str2 ) > 0; }
inline bool operator < ( const String &str1, const String &str2 ) { return str1.compare( str2 ) < 0; }
inline bool operator < ( const String &str1, const char *str2 ) { return str1.compare( str2 ) < 0; }
inline bool operator < ( const String &str1, const wchar_t *str2 ) { return str1.compare( str2 ) < 0; }
inline bool operator >= ( const String &str1, const String &str2 ) { return str1.compare( str2 ) >= 0; }
inline bool operator >= ( const String &str1, const char *str2 ) { return str1.compare( str2 ) >= 0; }
inline bool operator >= ( const String &str1, const wchar_t *str2 ) { return str1.compare( str2 ) >= 0; }
inline bool operator <= ( const String &str1, const String &str2 ) { return str1.compare( str2 ) <= 0; }
inline bool operator <= ( const String &str1, const char *str2 ) { return str1.compare( str2 ) <= 0; }
inline bool operator <= ( const String &str1, const wchar_t *str2 ) { return str1.compare( str2 ) <= 0; }
inline String operator +( const String &str1, const String &str2 )
{ String str3; str3.append( str1 ); str3.append( str2); return str3; }
inline String operator +( const char *str1, const String &str2 )
{ String str3; str3.append( str1 ); str3.append( str2); return str3; }
inline String operator +( const wchar_t *str1, const String &str2 )
{ String str3; str3.append( str1 ); str3.append( str2); return str3; }
inline String operator +( const String &str1, const char *str2 )
{ String str3; str3.append( str1 ); str3.append( str2); return str3; }
inline String operator +( const String &str1, const wchar_t *str2 )
{ String str3; str3.append( str1 ); str3.append( str2); return str3; }
/** Core string comparer class */
class StringPtrCmp
{
public:
bool operator() ( const String *s1, const String *s2 ) const
{ return s1->compare( *s2 ) < 0; }
};
//=================================
// Helpful list of string deletor
//
void string_deletor( void *data );
class CoreString;
class FALCON_DYN_CLASS StringGarbage: public Garbageable
{
CoreString *m_str;
public:
StringGarbage( CoreString *owner ):
Garbageable(),
m_str( owner )
{}
virtual ~StringGarbage();
virtual bool finalize();
};
/** Garbage storage string.
This is the String used in VM operations (i.e. in all the VM items).
It is allocated inside the garbage collector, and cannot be directly
deleted.
*/
class FALCON_DYN_CLASS CoreString: public String
{
StringGarbage m_gcptr;
public:
CoreString():
String(),
m_gcptr( this )
{
m_bCore = true;
}
CoreString( const String &str ):
String( str ),
m_gcptr( this )
{
m_bCore = true;
}
CoreString( const CoreString &str ):
String( str ),
m_gcptr( this )
{
m_bCore = true;
}
CoreString( const char *data ):
String( data ),
m_gcptr( this )
{
m_bCore = true;
}
CoreString( const wchar_t *data ):
String( data ),
m_gcptr( this )
{
m_bCore = true;
}
CoreString( const char *data, int32 len ):
String( data, len ),
m_gcptr( this )
{
m_bCore = true;
}
CoreString( const wchar_t *data, int32 len ):
String( data, len ),
m_gcptr( this )
{
m_bCore = true;
}
/** Creates a bufferized string with preallocated space.
*/
explicit CoreString( uint32 prealloc ):
String( prealloc ),
m_gcptr( this )
{
m_bCore = true;
}
CoreString( const String &other, uint32 begin, uint32 end = csh::npos ):
String( other, begin, end ),
m_gcptr( this )
{
m_bCore = true;
}
const StringGarbage &garbage() const { return m_gcptr; }
StringGarbage &garbage() { return m_gcptr; }
void mark( uint32 m ) { m_gcptr.mark( m ); }
CoreString & operator+=( const CoreString &other ) { append( other ); return *this; }
CoreString & operator+=( const String &other ) { append( other ); return *this; }
CoreString & operator+=( uint32 other ) { append( other ); return *this; }
CoreString & operator+=( char other ) { append( (uint32) other ); return *this; }
CoreString & operator+=( const char *other ) { append( String( other ) ); return *this; }
CoreString & operator+=( wchar_t other ) { append( (uint32) other ); return *this; }
CoreString & operator+=( const wchar_t *other ) { append( String( other ) ); return *this; }
CoreString & operator=( const CoreString &other ) {
copy( other );
return *this;
}
CoreString & operator=( const String &other ) {
copy( other );
return *this;
}
CoreString & operator=( uint32 chr ) {
m_size = 0;
append( chr );
return *this;
}
CoreString & operator=( const char *other ) {
if ( m_storage != 0 )
m_class->destroy( this );
copy( String( other ) );
return *this;
}
};
//=================================
// inline proxy constructors
//
/** Creates a String from an utf8 sequence on the fly.
This is a proxy constructor for String. The string data is
bufferized, so the sequence needs not to be valid after this call.
\note this function returns a valid string also if the \b utf8 paramter is
not a valid utf8 sequence. If there is the need for error detection,
use String::fromUTF8 instead.
\see String::fromUTF8
\param utf8 the sequence
\return a string containing the decoded sequence
*/
inline CoreString *UTF8String( const char *utf8 )
{
CoreString *str = new CoreString;
str->fromUTF8( utf8 );
return str;
}
}
#endif
/* end of string.h */
|