/usr/include/falcon/mt_posix.h is in falconpl-dev 0.9.6.9-git20120606-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | /*
FALCON - The Falcon Programming Language.
FILE: mt_posix.h
Multithreaded extensions - POSIX specific header.
-------------------------------------------------------------------
Author: Giancarlo Niccolai
Begin: Sat, 13 Dec 2008 13:08:38 +0100
-------------------------------------------------------------------
(C) Copyright 2008: the FALCON developers (see list in AUTHORS file)
See LICENSE file for licensing details.
*/
#ifndef FALCON_MT_POSIX_H
#define FALCON_MT_POSIX_H
#include <pthread.h>
#include <errno.h>
#include <falcon/setup.h>
#include <falcon/types.h>
#include <falcon/fassert.h>
namespace Falcon
{
inline void mutex_lock( pthread_mutex_t& mtx )
{
#ifdef NDEBUG
pthread_mutex_lock(&mtx);
#else
int res = pthread_mutex_lock(&mtx);
fassert( res != EINVAL );
fassert( res != EDEADLK );
fassert( res == 0 );
#endif
}
inline void mutex_unlock( pthread_mutex_t& mtx )
{
#ifdef NDEBUG
pthread_mutex_unlock(&mtx);
#else
int res = pthread_mutex_unlock(&mtx);
fassert( res == 0 );
#endif
}
inline void cv_wait( pthread_cond_t& cv, pthread_mutex_t& mtx )
{
#ifdef NDEBUG
pthread_cond_wait(&cv, &mtx);
#else
int res = pthread_cond_wait(&cv, &mtx);
fassert( res == 0 );
#endif
}
inline void cv_broadcast( pthread_cond_t& cv )
{
#ifdef NDEBUG
pthread_cond_broadcast(&cv);
#else
int res = pthread_cond_broadcast(&cv);
fassert( res == 0 );
#endif
}
/**
Generic mutex class.
Directly mapping to the underlying type via inline functions.
The mutex must be considered as non-reentrant.
*/
class Mutex
{
pthread_mutex_t m_mtx;
public:
/** Creates the mutex.
Will assert on failure.
*/
inline Mutex()
{
#ifdef NDEBUG
pthread_mutex_init( &m_mtx, 0 );
#else
int result = pthread_mutex_init( &m_mtx, 0 );
fassert( result == 0 );
#endif
}
/**
Destroys the mutex.
Will assert on failure.
*/
inline ~Mutex() {
#ifdef NDEBUG
pthread_mutex_destroy( &m_mtx );
#else
int result = pthread_mutex_destroy( &m_mtx );
fassert( result == 0 );
#endif
}
/**
Locks the mutex.
Will assert on failure -- but only in debug
*/
inline void lock()
{
#ifdef NDEBUG
pthread_mutex_lock( &m_mtx );
#else
int result = pthread_mutex_lock( &m_mtx );
fassert( result != EINVAL );
fassert( result != EDEADLK );
#endif
}
/**
Unlocks the mutex.
Will assert on failure -- but only in debug
*/
inline void unlock()
{
#ifdef NDEBUG
pthread_mutex_unlock( &m_mtx );
#else
int result = pthread_mutex_unlock( &m_mtx );
fassert( result == 0 );
#endif
}
/**
Tries to lock the mutex.
Will assert on failure.
*/
inline bool trylock()
{
int result = pthread_mutex_trylock( &m_mtx );
if ( result == EBUSY )
return false;
#ifndef NDEBUG
fassert( result == 0 );
#endif
return true;
}
};
/**
Generic event class.
Directly mapping to the underlying type via inline functions.
Well, events are definitely not the best way to handle MT things,
the mutex / POSIX cv / predicate is definitely better (faster, more
flexible, safer etc), but we're using a set of definite MT patterns
in which using MS-WIN style events doesn't make a great difference.
For low level business (i.e. implementing the script-level Waitable
system) we're still using the system specific features (multiple
wait on MS-WIN, condvars on POSIX). This is class is used as
a middle-level equalizer in simple MT tasks as i.e. signaling
non-empty queues or generic work-to-be-done flags.
*/
class Event
{
pthread_mutex_t m_mtx;
pthread_cond_t m_cv;
bool m_bIsSet;
bool m_bAutoReset;
public:
/** Creates the mutex.
Will assert on failure.
*/
inline Event( bool bAutoReset = true, bool initState = false ):
m_bIsSet( initState ),
m_bAutoReset( bAutoReset )
{
#ifdef NDEBUG
pthread_mutex_init( &m_mtx, 0 );
pthread_cond_init( &m_cv, 0 );
#else
int result = pthread_mutex_init( &m_mtx, 0 );
fassert( result == 0 );
result = pthread_cond_init( &m_cv, 0 );
fassert( result == 0 );
#endif
}
/**
Destroys the event.
Will assert on failure.
*/
inline ~Event() {
#ifdef NDEBUG
pthread_mutex_destroy( &m_mtx );
pthread_cond_destroy( &m_cv );
#else
int result = pthread_mutex_destroy( &m_mtx );
fassert( result == 0 );
result = pthread_cond_destroy( &m_cv );
fassert( result == 0 );
#endif
}
/**
Signals the event.
Will assert on failure -- but only in debug
*/
void set();
/**
Resets the event.
Useful only if the event is not auto-reset.
*/
inline void reset()
{
#ifdef NDEBUG
pthread_mutex_lock( &m_mtx );
m_bIsSet = false;
pthread_mutex_unlock( &m_mtx );
#else
int result = pthread_mutex_lock( &m_mtx );
fassert( result == 0 );
m_bIsSet = false;
result = pthread_mutex_unlock( &m_mtx );
fassert( result == 0 );
#endif
}
/**
Waits on the given event.
The wait is not interruptible. If a thread is blocked on this wait, the event must
be signaled somewhere else to allow it to proceed and check for closure request.
Falcon script level have better semantics, but this object is meant for fairly basic
and low-level system related activites.
If the event is auto-reset, only one waiting thread is woken up, and after the
wakeup the event is automatically reset.
\param to The timeout; set to < 0 for infinite timeout, 0 to check without blocking and
> 0 for a number of MSecs wait.
\return True if the event was signaled, false otherwise.
*/
bool wait( int32 to = -1 );
};
/**
Thread Specific data.
Directly mapping to the underlying type via inline functions.
*/
class ThreadSpecific
{
private:
pthread_key_t m_key;
public:
ThreadSpecific()
{
pthread_key_create( &m_key, NULL );
}
ThreadSpecific( void (*destructor)(void*) );
virtual ~ThreadSpecific()
{
#ifndef NDEBUG
int value = pthread_key_delete( m_key );
fassert( value == 0 );
#else
pthread_key_delete( m_key );
#endif
}
void set( void *value )
{
#ifndef NDEBUG
int res = pthread_setspecific( m_key, value );
fassert( res == 0 );
#else
pthread_setspecific( m_key, value );
#endif
}
void* get() const
{
return pthread_getspecific( m_key );
}
};
struct SYSTH_DATA {
pthread_t pth;
/** Mutex controlling detachment and termination. */
pthread_mutex_t m_mtxT;
/** True when the thread is done and this data is disposeable. */
bool m_bDone;
/** Controls joinability and destruction on run exit */
bool m_bDetached;
int m_lastError;
};
/** Performs an atomic thread safe increment. */
int32 atomicInc( volatile int32 &data );
/** Performs an atomic thread safe decrement. */
int32 atomicDec( volatile int32 &data );
}
#endif
/* end of mt_posix.h */
|