/usr/include/falcon/item.h is in falconpl-dev 0.9.6.9-git20120606-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 | /*
FALCON - The Falcon Programming Language.
FILE: flc_item.h
Basic Item Api.
-------------------------------------------------------------------
Author: Giancarlo Niccolai
Begin: lun ott 4 2004
-------------------------------------------------------------------
(C) Copyright 2004: the FALCON developers (see list in AUTHORS file)
See LICENSE file for licensing details.
*/
/** \file
Basic Item Api
*/
#ifndef flc_flc_item_H
#define flc_flc_item_H
#include <stdlib.h>
#include <falcon/types.h>
#include <falcon/itemid.h>
#include <falcon/garbageable.h>
#include <falcon/basealloc.h>
#include <falcon/string.h>
#include <falcon/corerange.h>
#define OVERRIDE_OP_ADD "__add"
#define OVERRIDE_OP_SUB "__sub"
#define OVERRIDE_OP_MUL "__mul"
#define OVERRIDE_OP_DIV "__div"
#define OVERRIDE_OP_MOD "__mod"
#define OVERRIDE_OP_POW "__pow"
#define OVERRIDE_OP_NEG "__neg"
#define OVERRIDE_OP_INC "__inc"
#define OVERRIDE_OP_DEC "__dec"
#define OVERRIDE_OP_INCPOST "__incpost"
#define OVERRIDE_OP_DECPOST "__decpost"
#define OVERRIDE_OP_CALL "__call"
#define OVERRIDE_OP_GETINDEX "__getIndex"
#define OVERRIDE_OP_SETINDEX "__setIndex"
namespace Falcon {
class Symbol;
class CoreString;
class CoreObject;
class CoreDict;
class CoreArray;
class CoreClass;
class CallPoint;
class CoreFunc;
class GarbageItem;
class VMachine;
class Stream;
class LiveModule;
class MemBuf;
class GarbagePointer;
class FalconData;
class CodeError;
class DeepItem;
typedef void** CommOpsTable;
extern FALCON_DYN_SYM CommOpsTable CommOpsDict[];
/** Basic item abstraction.*/
class FALCON_DYN_CLASS Item: public BaseAlloc
{
public:
/** Common operations that can be performed on items.
Each item type has a function pointer table taking care of this
operations.
Deep items operations is that of searching for overloadings
via the deep item common DeepItem::getProperty() method,
and then eventually calling the operator implementation.
The operator implementation is called on the VM instance of the
deep item.
*/
typedef enum {
co_add,
co_sub,
co_mul,
co_div,
co_mod,
co_pow,
co_neg,
co_inc,
co_dec,
co_incpost,
co_decpost,
co_compare,
co_getIndex,
co_setIndex,
co_getProperty,
co_setProperty,
co_call
} e_commops;
/** Serialization / deserialization error code.
This value is returned by serialization and deserialization
functions to communicate what went wrong.
*/
typedef enum {
/** All was fine. */
sc_ok,
/** File error in serialization/deserialization */
sc_ferror,
/** Invalid format in deserialization */
sc_invformat,
/** Missing class in deserialization (object cannot be instantiated).*/
sc_missclass,
/** Missing symbol in deserialization (requested function not present in VM).*/
sc_misssym,
/** VM Error in serialization or de-serialization.
This is called if VM raised an error during the call of serialization() object
methods in case serialization is called, or if the VM raises an error during
init() or deserialization() of deserialized objects.
*/
sc_vmerror,
/** Needed VM but missing.
This serialization or deserialization operation required a VM to be provided,
but it wasn't.
*/
sc_missvm,
/** Hit EOF while de-serializing */
sc_eof
}
e_sercode;
protected:
union {
struct {
union {
int32 val32;
int64 val64;
numeric number;
Garbageable *content;
struct {
void *voidp;
void *extra;
} ptr;
} data;
CallPoint *method;
union {
struct {
byte type;
byte flags;
byte oldType;
byte reserved;
} bits;
uint16 half;
uint32 whole;
} base;
} ctx;
struct {
uint64 low;
uint64 high;
} parts;
} all;
bool serialize_object( Stream *file, CoreObject *obj, bool bLive ) const;
bool serialize_symbol( Stream *file, const Symbol *sym ) const;
bool serialize_function( Stream *file, const CoreFunc *func, bool bLive ) const;
bool serialize_class( Stream *file, const CoreClass *cls ) const;
e_sercode deserialize_symbol( Stream *file, VMachine *vm, Symbol **tg_sym, LiveModule **modId );
e_sercode deserialize_function( Stream *file, VMachine *vm );
e_sercode deserialize_class( Stream *file, VMachine *vm );
#ifdef _MSC_VER
#if _MSC_VER < 1299
#define flagIsMethodic 0x02
#define flagIsOob 0x04
#define flagLiteral 0x08
#else
static const byte flagIsMethodic = 0x02;
static const byte flagIsOob = 0x04;
static const byte flagLiteral = 0x08;
#endif
#else
static const byte flagIsMethodic = 0x02;
static const byte flagIsOob = 0x04;
static const byte flagLiteral = 0x08;
#endif
public:
Item( byte t=FLC_ITEM_NIL )
{
type( t );
}
Item( byte t, Garbageable *dt );
Item( CoreFunc* cf )
{
setFunction( cf );
}
void setNil() { type( FLC_ITEM_NIL ); }
void setUnbound() { type( FLC_ITEM_UNB ); }
Item( const Item &other ) {
copy( other );
}
/** Creates a boolean item. */
/** Sets this item as boolean */
void setBoolean( bool tof )
{
type( FLC_ITEM_BOOL );
all.ctx.data.val32 = tof? 1: 0;
}
/** Creates an garbage pointer item */
Item( GarbagePointer* val )
{
setGCPointer( val );
}
/** Creates an integer item */
Item( int16 val )
{
setInteger( (int64) val );
}
/** Creates an integer item */
Item( uint16 val )
{
setInteger( (int64) val );
}
/** Creates an integer item */
Item( int32 val )
{
setInteger( (int64) val );
}
/** Creates an integer item */
Item( uint32 val )
{
setInteger( (int64) val );
}
/** Creates an integer item */
Item( int64 val )
{
setInteger( val );
}
/** Creates an integer item */
Item( uint64 val )
{
setInteger( (int64)val );
}
void setInteger( int64 val ) {
type(FLC_ITEM_INT);
all.ctx.data.val64 = val;
}
/** Creates a numeric item */
Item( numeric val )
{
setNumeric( val );
}
void setNumeric( numeric val ) {
type( FLC_ITEM_NUM );
all.ctx.data.number = val;
}
/** Creates a range item */
Item( CoreRange *r )
{
setRange( r );
}
void setRange( CoreRange *r );
/** Creates a corestring.
The given string is copied and stored in the Garbage system.
It is also bufferized, as the most common usage of this constructor
is in patterns like Item( "a static string" );
*/
Item( const String &str );
/** Creates a CoreString item */
Item( String *str )
{
setString( str );
}
/* Creates a String item dependent from a module */
/*Item( String *str, LiveModule* lm )
{
setString( str, lm );
}*/
void setString( String *str );
//void setString( String *str, LiveModule* lm );
/** Creates an array item */
Item( CoreArray *array )
{
setArray( array );
}
void setArray( CoreArray *array );
/** Creates an object item */
Item( CoreObject *obj )
{
setObject( obj );
}
void setObject( CoreObject *obj );
/** Creates a dictionary item */
Item( CoreDict *obj )
{
setDict( obj );
}
void setDict( CoreDict *dict );
/** Creates a memory buffer. */
Item( MemBuf *buf )
{
setMemBuf( buf );
}
void setMemBuf( MemBuf *b );
Item( GarbageItem *ref )
{
setReference( ref );
}
/** Creates a reference to another item. */
void setReference( GarbageItem *ref );
GarbageItem *asReference() const { return (GarbageItem *) all.ctx.data.ptr.voidp; }
/** Creates a function item */
void setFunction( CoreFunc* cf );
/** Creates a late binding item.
The late binding is just a CoreString in a live module which is
resolved into a value by referencing a item in the current
context (symbol tables) having the given name at runtime.
Thus, the CoreString representing the late binding symbol name
lives in the live module that generated this LBind. If
the module is unloaded, the LBind is invalidated.
\param lbind The name of the late binding symbol.
\param val If provided, a future value (future binding).
*/
void setLBind( String *lbind, GarbageItem *val=0 );
/** Returns true if this item is a valid LBind.
*/
bool isLBind() const { return type() == FLC_ITEM_LBIND; }
bool isFutureBind() const { return isLBind() && all.ctx.data.ptr.extra != 0; }
/** Return the binding name associate with this LBind item.
*/
String *asLBind() const { return (String *) all.ctx.data.ptr.voidp; }
GarbageItem *asFBind() const { return (GarbageItem *) all.ctx.data.ptr.extra; }
bool isLitLBind() const { return isLBind() && asLBind()->getCharAt(0) == '.'; }
const Item &asFutureBind() const;
Item &asFutureBind();
/** Creates a method.
The method is able to remember if it was called with
a Function pointer or using an external function.
*/
Item( const Item &data, CallPoint* func )
{
setMethod( data, func );
}
Item( CoreObject *obj, CoreClass *cls )
{
setClassMethod( obj, cls );
}
/** Creates a method.
The method is able to remember if it was called with
a Function pointer or using an external function.
*/
void setMethod( const Item &data, CallPoint *func );
void setClassMethod( CoreObject *obj, CoreClass *cls );
/** Creates a class item */
Item( CoreClass *cls )
{
setClass( cls );
}
void setClass( CoreClass *cls );
/** Defines this item as a out of band data.
Out of band data allow out-of-order sequencing in functional programming.
If an item is out of band, it's type it's still the original one, and
its value is preserved across function calls and returns; however, the
out of band data may innescate a meta-level processing of the data
travelling through the functions.
In example, returning an out of band NIL value from an xmap mapping
function will cause xmap to discard the data.
*/
void setOob() { all.ctx.base.bits.flags |= flagIsOob; }
/** Clear out of band status of this item.
\see setOob()
*/
void resetOob() { all.ctx.base.bits.flags &= ~flagIsOob; }
/** Sets or clears the out of band status status of this item.
\param oob true to make this item out of band.
\see setOob()
*/
void setOob( bool oob ) {
if ( oob )
all.ctx.base.bits.flags |= flagIsOob;
else
all.ctx.base.bits.flags &= ~flagIsOob;
}
/** Set this item as a user-defined Garbage pointers.
VM provides GC-control over them.
*/
void setGCPointer( FalconData *ptr );
void setGCPointer( GarbagePointer *shell );
FalconData *asGCPointer() const;
GarbagePointer *asGCPointerShell() const;
bool isGCPointer() const { return type() == FLC_ITEM_GCPTR; }
/** Tells wether this item is out of band.
\return true if out of band.
\see oob()
*/
bool isOob() const { return (all.ctx.base.bits.flags & flagIsOob )== flagIsOob; }
/** Returns true if this item is an instance of some sort.
\return true if this is an object, blessed dictionary or bound array.
*/
bool isComposed() const { return isObject() || isArray() || isDict(); }
/** Returns the item type*/
byte type() const { return all.ctx.base.bits.type; }
/** Returns the item type as string*/
void typeName( String &target ) const;
/** Changes the item type.
Flags are also reset. For example, if this item was OOB before,
the OOB flag is cleared.
*/
void type( byte nt ) { all.ctx.base.bits.flags = 0; all.ctx.base.bits.type = nt; }
/** Returns the content of the item */
Garbageable *content() const { return all.ctx.data.content; }
void content( Garbageable *dt ) {
all.ctx.data.content = dt;
}
void copy( const Item &other )
{
#ifdef _SPARC32_ITEM_HACK
register int32 *pthis, *pother;
pthis = (int32*) this;
pother = (int32*) &other;
pthis[0]= pother[0];
pthis[1]= pother[1];
pthis[2]= pother[2];
pthis[3]= pother[3];
#else
all = other.all;
#endif
}
/** Tells if this item is callable.
This function will turn this object into a nil
if the item referenced a dead module. As this is a pathological
situation, a const cast is forced.
*/
bool isCallable() const;
/** Return true if this is a callable item that is turned into a method when found as property.*/
bool canBeMethod() const;
bool isOrdinal() const {
return type() == FLC_ITEM_INT || type() == FLC_ITEM_NUM;
}
bool asBoolean() const
{
return all.ctx.data.val32 != 0;
}
int64 asInteger() const { return all.ctx.data.val64; }
numeric asNumeric() const { return all.ctx.data.number; }
int64 asRangeStart() const { return static_cast<CoreRange*>(all.ctx.data.content)->start(); }
int64 asRangeEnd() const { return static_cast<CoreRange*>(all.ctx.data.content)->end(); }
int64 asRangeStep() const { return static_cast<CoreRange*>(all.ctx.data.content)->step(); }
bool asRangeIsOpen() const { return static_cast<CoreRange*>(all.ctx.data.content)->isOpen(); }
CoreRange* asRange() const { return static_cast<CoreRange*>(all.ctx.data.content); }
String *asString() const { return (String *) all.ctx.data.ptr.voidp; }
LiveModule *asStringModule() const { return (LiveModule *) all.ctx.data.ptr.extra; }
CoreString *asCoreString() const { return (CoreString *) all.ctx.data.ptr.voidp; }
DeepItem *asDeepItem() const { return (DeepItem *) all.ctx.data.ptr.voidp; }
/** Provides a basic CoreString representation of the item.
Use Falcon::Format for a finer control of item representation.
\param target a CoreString where the item CoreString representation will be placed.
*/
void toString( String &target ) const;
CoreArray *asArray() const { return (CoreArray *) all.ctx.data.ptr.voidp; }
CoreObject *asObject() const;
CoreObject *asObjectSafe() const { return (CoreObject *) all.ctx.data.ptr.voidp; }
CoreDict *asDict() const { return ( CoreDict *) all.ctx.data.ptr.voidp; }
MemBuf *asMemBuf() const { return ( MemBuf *) all.ctx.data.ptr.voidp; }
CoreClass* asClass() const { return (CoreClass *) all.ctx.data.ptr.extra; }
CoreFunc* asFunction() const { return (CoreFunc*) all.ctx.data.ptr.extra; }
CallPoint* asMethodFunc() const { return (CallPoint*) all.ctx.method; }
/** Gets the "self" in an item (return the item version). */
Item asMethodItem() const {
Item temp = *this;
temp.type( all.ctx.base.bits.oldType );
temp = *temp.dereference();
temp.flagsOn( flagIsMethodic );
return temp;
}
/** Gets the "self" in an item (pass byref version). */
void getMethodItem( Item &itm ) const {
itm = *this;
itm.type( all.ctx.base.bits.oldType );
itm = *itm.dereference();
itm.flagsOn( flagIsMethodic );
}
/** Turns a method item into its original "self". */
void deMethod() { type( all.ctx.base.bits.oldType ); }
CoreClass *asMethodClass() const { return (CoreClass*) all.ctx.data.ptr.extra; }
CoreObject *asMethodClassOwner() const { return (CoreObject*) all.ctx.data.ptr.voidp; }
//LiveModule *asModule() const { return all.ctx.data.ptr.m_liveMod; }
/** Convert current object into an integer.
This operations is usually done on integers, numeric and CoreStrings.
It will do nothing meaningfull on other types.
*/
int64 forceInteger() const ;
/** Convert current object into an integer.
This operations is usually done on integers, numeric and CoreStrings.
It will do nothing meaningfull on other types.
\note this version will throw a code error if the item is not an ordinal.
*/
int64 forceIntegerEx() const ;
/** Convert current object into a numeric.
This operations is usually done on integers, numeric and CoreStrings.
It will do nothing meaningfull on other types.
*/
numeric forceNumeric() const ;
/** Calculates the hash function for this item.
*/
uint32 hash() const;
bool isNil() const { return type() == FLC_ITEM_NIL; }
bool isBoolean() const { return type() == FLC_ITEM_BOOL; }
bool isInteger() const { return type() == FLC_ITEM_INT; }
bool isNumeric() const { return type() == FLC_ITEM_NUM; }
bool isScalar() const { return type() == FLC_ITEM_INT || type() == FLC_ITEM_NUM; }
bool isRange() const { return type() == FLC_ITEM_RANGE; }
bool isString() const { return type() == FLC_ITEM_STRING; }
bool isArray() const { return type() == FLC_ITEM_ARRAY; }
bool isDict() const { return type() == FLC_ITEM_DICT; }
bool isMemBuf() const { return type() == FLC_ITEM_MEMBUF; }
bool isObject() const { return type() == FLC_ITEM_OBJECT; }
bool isReference() const { return type() == FLC_ITEM_REFERENCE; }
bool isFunction() const { return type() == FLC_ITEM_FUNC; }
bool isMethod() const { return type() == FLC_ITEM_METHOD; }
bool isClassMethod() const { return type() == FLC_ITEM_CLSMETHOD; }
bool isClass() const { return type() == FLC_ITEM_CLASS; }
bool isUnbound() const { return type() == FLC_ITEM_UNB; }
bool isOfClass( const String &className ) const;
bool isMethodic() const { return (flags() & flagIsMethodic) != 0; }
bool isTrue() const;
Item &operator=( const Item &other ) { copy( other ); return *this; }
bool operator==( const Item &other ) const { return compare(other) == 0; }
bool operator!=( const Item &other ) const { return compare(other) != 0; }
bool operator<(const Item &other) const { return compare( other ) < 0; }
bool operator<=(const Item &other) const { return compare( other ) <= 0; }
bool operator>(const Item &other) const { return compare( other ) > 0; }
bool operator>=(const Item &other) const { return compare( other ) >= 0; }
bool exactlyEqual( const Item &other ) const;
inline Item *dereference();
inline const Item *dereference() const;
/** Turns this item in a method of the given object.
This is meant to be used by external functions when accessing object properties.
VM always creates a method when accessor is used; in example, myObject.someFunc()
will create a method myObject.someFunc if there is some callable inside the given
property, and then will call it. In this way, a function may be assigned to that
property, and the VM will take care to create an item that will turn the function
in a method.
But when a non-vm program accesses an object "method", the calling program may
have assigned something different to it in the meanwhile, and what its returned
in CoreObject::getProperty() won't be a callable method, but just the assigned
object.
Methodize will turn such an item in a callable method of the object given as
parameter, if this is possible, else it will return false.
\note External methods (that is, methods calling external functions) won't be
methodized, as they often rely in external values carried inside their CoreObject
owners. However, the function will return true, as the object can be called, and
very probably it will do what expected by the user (as the external method would
have never used anything other than the VM generated self anyhow).
\note CoreObject::getMethod() is a shortcut to this function.
\param self the object that will be set as "self" for the method
\return true if the item can be called properly, false if it's not a callable.
*/
bool methodize( const Item& self );
bool methodize( const CoreObject *co )
{
return methodize( Item(const_cast<CoreObject *>(co)) );
}
/** Serialize this item.
This method stores an item on a stream for later retrival.
The function can return true if the serialization succeded. It will return false if
the serialization failed; in that case, if there is an error on the stream, it can
be retreived form the stream variable. If the stream reports no error, then the
serialization failed because a VM was not provided while a serialized method should
have been called on the target object, or in any referenced object, or because the
VM received an error during the method call.
\param out the output stream
\param bLive true
\return an error code in case of error (\see e_sercode).
*/
e_sercode serialize( Stream *out, bool bLive = false ) const;
/** Loads a serialized item from a stream.
This method restores an item previously stored on a stream for later retrival.
Providing a virtual
machine that is optional; if not provided, items requiring the VM for deserialization
won't be correctly restored. Objects deserialization requires a VM readied with
the class the object derives from.
\see serialize()
\param in the input stream
\param vm the virtual machine that can be used for object deserialization
\return an error code in case of error (\see e_sercode).
*/
e_sercode deserialize( Stream *in, VMachine *vm = 0 );
/** Flags, used for internal vm needs. */
byte flags() const { return all.ctx.base.bits.flags; }
void flags( byte b ) { all.ctx.base.bits.flags = b; }
void flagsOn( byte b ) { all.ctx.base.bits.flags |= b; }
void flagsOff( byte b ) { all.ctx.base.bits.flags &= ~b; }
/** Clone the item (with the help of a VM).
If the item is not cloneable, the method returns false. Is up to the caller to
raise an appropriate error if that's the case.
The VM parameter may be zero; in that case, returned items will not be stored in
any garbage collector.
Reference items are de-referenced; if cloning a reference, the caller will obtain
a clone of the target item, not a clone of the reference.
Also, in that case, the returned item will be free of reference.
\param vm the virtual machine used for cloning.
\param target the item where to stored the cloned instance of this item.
\return true if the clone operation is possible
*/
bool clone( Item &target ) const;
/** Return true if the item deep.
Deep items are the ones that are subject to garbage collecting.
\return true if the item is deep.
*/
bool isDeep() const { return type() >= FLC_ITEM_FIRST_DEEP; }
//====================================================================//
void add( const Item &operand, Item &result ) const {
void (*addfunc)( const Item &first, const Item& second, Item &third) =
(void (*)( const Item &first, const Item& second, Item &third))
CommOpsDict[type()][co_add];
addfunc( *this, operand, result );
}
void sub( const Item &operand, Item &result ) const {
void (*func)( const Item &first, const Item& second, Item &third) =
(void (*)( const Item &first, const Item& second, Item &third))
CommOpsDict[type()][co_sub];
func( *this, operand, result );
}
void mul( const Item &operand, Item &result ) const {
void (*func)( const Item &first, const Item& second, Item &third) =
(void (*)( const Item &first, const Item& second, Item &third))
CommOpsDict[type()][co_mul];
func( *this, operand, result );
}
void div( const Item &operand, Item &result ) const {
void (*func)( const Item &first, const Item& second, Item &third) =
(void (*)( const Item &first, const Item& second, Item &third))
CommOpsDict[type()][co_div];
func( *this, operand, result );
}
void mod( const Item &operand, Item &result ) const {
void (*func)( const Item &first, const Item& second, Item &third) =
(void (*)( const Item &first, const Item& second, Item &third))
CommOpsDict[type()][co_mod];
func( *this, operand, result );
}
void pow( const Item &operand, Item &result ) const {
void (*func)( const Item &first, const Item& second, Item &third) =
(void (*)( const Item &first, const Item& second, Item &third))
CommOpsDict[type()][co_pow];
func( *this, operand, result );
}
void neg( Item& target ) const {
void (*func)( const Item &first, Item &tg ) =
(void (*)( const Item &first, Item &tg ))
CommOpsDict[type()][co_neg];
func( *this, target );
}
void inc( Item& target ) {
void (*func)( Item &first, Item &second ) =
(void (*)( Item &first, Item &second ))
CommOpsDict[type()][co_inc];
func( *this, target );
}
void dec( Item& target ) {
void (*func)( Item &first, Item &second ) =
(void (*)( Item &first, Item &second ))
CommOpsDict[type()][co_dec];
func( *this, target );
}
void incpost( Item& target ) {
void (*func)( Item &first, Item &tg ) =
(void (*)( Item &first, Item &tg ))
CommOpsDict[type()][co_incpost];
func( *this, target );
}
void decpost( Item& target ) {
void (*func)( Item &first, Item &tg ) =
(void (*)( Item &first, Item &tg ))
CommOpsDict[type()][co_decpost];
func( *this, target );
}
int compare( const Item &operand ) const {
int (*func)( const Item &first, const Item& second ) =
(int (*)( const Item &first, const Item& second ))
CommOpsDict[type()][co_compare];
return func( *this, operand );
}
void getIndex( const Item &idx, Item &result ) const {
void (*func)( const Item &first, const Item &idx, Item &third) =
(void (*)( const Item &first, const Item &idx, Item &third))
CommOpsDict[type()][co_getIndex];
func( *this, idx, result );
}
void setIndex( const Item &idx, const Item &result ) {
void (*func)( Item &first, const Item &name, const Item &third) =
(void (*)( Item &first, const Item &name, const Item &third))
CommOpsDict[type()][co_setIndex];
func( *this, idx, result );
}
void getProperty( const String &property, Item &result ) const {
void (*func)( const Item &first, const String &property, Item &third) =
(void (*)( const Item &first, const String &property, Item &third))
CommOpsDict[type()][co_getProperty];
func( *this, property, result );
}
void setProperty( const String &prop, const Item &result ) {
void (*func)( Item &first, const String &prop, const Item &third) =
(void (*)( Item &first, const String &prop, const Item &third))
CommOpsDict[type()][co_setProperty];
func( *this, prop, result );
}
/** Prepares a call frame that will be called at next VM loop.
\note You can use vm->execFrame() to execute the prepared frame
immediately instead of waiting for the loop to complete.
*/
void readyFrame( VMachine *vm, uint32 paramCount ) const
{
void (*func)( const Item &first, VMachine *vm, int paramCount ) =
(void (*)( const Item &first, VMachine *vm, int paramCount ))
CommOpsDict[type()][co_call];
func( *this, vm, paramCount );
}
};
/** Creates a garbageable version of an item.
This class repeats the structure of an item holding an instance
of it, but it derives from Garbageable. This makes it a vessel
for item references.
It must be created by a MemPool with the MemPool::referenceItem()
method.
*/
class FALCON_DYN_CLASS GarbageItem: public Garbageable
{
Item m_item;
public:
GarbageItem( const Item &origin ):
Garbageable(),
m_item( origin )
{}
virtual ~GarbageItem() {};
/** Returns the item part stored in this garbage item.
\return the held item.
*/
const Item &origin() const { return m_item; }
/** Returns the item part stored in this garbage item.
\return the held item.
*/
Item &origin() { return m_item; }
};
inline Item *Item::dereference()
{
if ( type() != FLC_ITEM_REFERENCE )
return this;
return &asReference()->origin();
};
inline const Item *Item::dereference() const
{
if ( type() != FLC_ITEM_REFERENCE )
return this;
return &asReference()->origin();
};
class FALCON_DYN_CLASS SafeItem: public Item
{
public:
SafeItem( const SafeItem &other ) {
copy( other );
}
SafeItem( const Item &other ) {
copy( other );
}
/** Creates a boolean SafeItem. */
/** Sets this SafeItem as boolean */
void setBoolean( bool tof )
{
type( FLC_ITEM_BOOL );
all.ctx.data.val32 = tof? 1: 0;
}
/** Creates an integer SafeItem */
SafeItem( int16 val )
{
setInteger( (int64) val );
}
/** Creates an integer SafeItem */
SafeItem( uint16 val )
{
setInteger( (int64) val );
}
/** Creates an integer SafeItem */
SafeItem( int32 val )
{
setInteger( (int64) val );
}
/** Creates an integer SafeItem */
SafeItem( uint32 val )
{
setInteger( (int64) val );
}
/** Creates an integer SafeItem */
SafeItem( int64 val )
{
setInteger( val );
}
/** Creates an integer SafeItem */
SafeItem( uint64 val )
{
setInteger( (int64)val );
}
void setInteger( int64 val ) {
type(FLC_ITEM_INT);
all.ctx.data.val64 = val;
}
/** Creates a numeric SafeItem */
SafeItem( numeric val )
{
setNumeric( val );
}
void setNumeric( numeric val ) {
type( FLC_ITEM_NUM );
all.ctx.data.number = val;
}
SafeItem( byte t, Garbageable *dt );
SafeItem( CoreRange *r ) { setRange( r ); }
SafeItem( String *str ) { setString( str ); }
SafeItem( CoreArray *array ) { setArray( array ); }
SafeItem( CoreObject *obj ) { setObject( obj ); }
SafeItem( CoreDict *dict ) { setDict( dict ); }
SafeItem( MemBuf *b ) { setMemBuf( b ); }
SafeItem( GarbageItem *r ) { setReference( r ); }
SafeItem( CoreFunc* cf ) { setFunction( cf ); }
SafeItem( String *lbind, GarbageItem *val ) { setLBind( lbind, val ); }
SafeItem( const Item &data, CallPoint *func ) { setMethod( data, func ); }
SafeItem( CoreObject *obj, CoreClass *cls ) { setClassMethod( obj, cls ); }
SafeItem( CoreClass *cls ) { setClass( cls ); }
SafeItem( FalconData *ptr ) { setGCPointer( ptr ); }
SafeItem( GarbagePointer *shell ) { setGCPointer( shell ); }
void setRange( CoreRange *r );
void setString( String *str );
void setArray( CoreArray *array );
void setObject( CoreObject *obj );
void setDict( CoreDict *dict );
void setMemBuf( MemBuf *b );
void setReference( GarbageItem *r );
void setFunction( CoreFunc* cf );
void setLBind( String *lbind, GarbageItem *val );
void setMethod( const Item &data, CallPoint *func );
void setClassMethod( CoreObject *obj, CoreClass *cls );
void setClass( CoreClass *cls );
void setGCPointer( FalconData *ptr );
void setGCPointer( GarbagePointer *shell );
};
}
#endif
/* end of flc_item.h */
|