This file is indexed.

/usr/share/euler/progs/statist.e is in euler 1.61.0-10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
comment
Statistical Functions
endcomment

function meandev (x,v=0)
## Return the mean value and the standard deviation of x1,...,xn.
## E.g. {m,d}=mean([1,2,3,3,4,2,5]).
## An additional parameter v may contain the multiplicities of x.
## E.g. {m,d}=mean([1,2,3,4,5],[1,2,2,1,1]) (same example).
## m=mean(x) will assign the mean value only!
	if (argn()==2)
		n=sum(v);
		m=sum(x*v)/n;
		d=sqrt((sum(x*x*v)-n*m*m)/(n-1));
	else
		n=cols(x);
		m=sum(x)/n;
		d=sqrt((sum(x*x)-n*m*m)/(n-1));
	endif;
	return {m,d};
endfunction

function mean (x)
## Returns the mean value of x.
## An additional parameter may contain multiplicities.
## See: meandev.
	{m,d}=meandev(x,args()); return m;
endfunction

function dev (x)
## Returns the standard deviation of x.
## An additional parameter may contain multiplicities.
## See: meandev.
	{m,d}=meandev(x,args()); return d;
endfunction

function qnormal (x,m,d)
## Returns the normal density with mean m and deviation d.
	return 1/(d*sqrt(2*pi))*exp(-(x-m)^2/2/d^2);
endfunction

function xplotrange (r,v)
## Plots a barplot of the multiplicities v[i] in the ranges
## r[i],r[i+1]. r must be one longer than v.
## You can set the plot area with setplot beforehand.
	s=scaling(1); 
	if s;	
		setplot(min(r),max(r),0,max(v));
	endif;
	scaling(s);
	n=cols(v);
	xplotbar(r[1:n],0,r[2:n+1]-r[1:n],v);
	return plot();
endfunction

function chitest (x,y)
## Perform a xhi^2 test, if x obeys the distribution y.
## Return the error, if you reject this.
	return 1-chidis(sum((x-y)^2/y),cols(x)-1);
endfunction

function testnormal (r,n,v,m,d)
## Test the data v[i] in the ranges r[i],r[i+1] against
## the normal deviation with mean m and deviation d,
## using the xhi^2 method.
## n is the total number of data (including those
## less than r[1] and larger than r[n]).
## Return the error you have, if you reject normal distribution.
	t=normaldis((r-m)/d);
	k=cols(v); p=(t[2:k+1]-t[1:k])*n;
	return chitest(v,p);
endfunction

function ttest (m,d,n,mu)
## Test, if the measured mean m with deviation d of n data
## can come from a distribution with mean value mu.
## Returns the error you have, if you reject this.
	return 1-tdis(abs(m-mu)/d*sqrt(n),n-1);
endfunction

function tcompare (m1,d1,n1,m2,d2,n2)
## Test, if two measured data with means mi, deviation di
## of ni data (i=1,2), aggree in mean.
## The data must be normally distributed.
## Returns the error you have, if you reject this.
	h1=d1^2/n1; h2=d2^2/n2;
	return 1-tdis(abs(m1-m2)/sqrt(h1+h2), ..
		(h1+h2)^2/(h1^2/(n1+1)+h2^2/(n2+1))-2);
endfunction

function tcomparedata (x,y)
## Compare x and y on same mean, where x and y are
## normally distributed with different deviation.
## Return the error you have, if you reject this.
	return tcompare(mean(x),dev(x),cols(x),mean(y),dev(y),cols(y));
endfunction

function tabletest (A)
## Test the results a[i,j] for independence of the rows
## from the columns. (chi^2 test)
## This should only be used for large table entries.
## Return the error you have, if you reject independence.
	c=sum(A); r=sum(A')';
	E=c*r/sum(r);
	return 1-chidis(totalsum((A-E)^2/E),(cols(A)-1)*(rows(A)-1));
endfunction

function varanalysis
## Test the normally distributed data x1,x2,x3,... for same
## mean value.
## varanalysis(x1,x2,x3,...), where each xi is a row vector.
## Returns the error you have, if you reject same mean.
	md=[mean(arg1),cols(arg1)];
	s=sum((arg1-md[1])^2);
	loop 2 to argn();
		x=args(#); mx=mean(x);
		md=md_[mx,cols(x)];
		s=s+sum((x-mx)^2);
	end;
	md=md'; n=sum(md[2]); mt=sum(md[1]*md[2])/n;
	s1=sum(md[2]*(md[1]-mt)^2);
	return 1-fdis((s1/(argn()-1))/(s/(n-argn())),argn()-1,n-argn());
endfunction

function binsum1 (i,n,p)
	if i>=n; return 1; endif;
	d=sqrt(n*p*(1-p));
	i1=n*p-10*d;
	if i1<0; i1=0; endif;
	if i<i1; return 0; endif;
	if i>n*p+10*d; return 1; endif;
	s=n*log(1-p);
	if i>=1;
		j=1:i+1;
		s=cumsum(s|(log((n-j+1)/j*p/(1-p))));
	endif;
	return sum(exp(s[floor(i1):i+1]));
endfunction

function binsum (i,n,p)
## Compute the probablitiy of getting i or less hits
## in n runs, where the probability for each hit is p.
## Works even for large i and n, but is ineffective then.
## One may use the normalsum function for large n and
## medium p.
	return map("binsum1",i,n,p);
endfunction

function normalsum (i,n,p)
## Works like binsum, but is much faster for large n
## and medium p.
	return normaldis((i+0.5-n*p)/sqrt(n*p*(1-p)));
endfunction

function invbinsum1 (x,n,p)
	if x<=0; return 0; endif;
	if x>=1; return n; endif;
	s=n*log(1-p);
	d=sqrt(n*p*(1-p));
	i1=floor(n*p-10*d); i2=floor(n*p+10*d);
	if i1<0; i1=0; endif;
	if i2>n; i2=n; endif;
	j=1:i2;
	s=cumsum(s|(log((n-j+1)/j*p/(1-p))));
	return find(cumsum(exp(s[i1:length(s)])),x)+i1;
endfunction

function invbinsum (x,n,p)
## Computes i, such that binomialsum(i,n,p) is just larger than x.
	return map("invbinsum1",x,n,p)
endfunction

function hypergeomsum1 (i,n,i1,n1)
	if i<i1-(n1-n); return 0; endif;
	if i>=i1; return 1; endif;
	if i1<=n1-n;
		s=logbin(n1-n,i1)-logbin(n1,i1);
		if i>=1;
			j=1:i;
			s=cumsum(s|(log(n-j+1)-log(j)+log((i1-j+1))-log((n1-n-i1+j))));
		endif;
	else
		s=log(bin(n,i1-(n1-n)))-log(bin(n1,i1));
		if i>i1-(n1-n);
			j=(i1-(n1-n)+1):i;
			s=cumsum(s|(log(n-j+1)-log(j)+log(i1-j+1)-log(n1-n-i1+j)));
		endif;
	endif
	return sum(exp(s));
endfunction

function hypergeomsum (i,n,itot,ntot)
## Return the probability of hitting i or less black balls, if
## n are chosen out of ntot, and there are a total of itot black
## balls (and ntot-itot white balls).
	return map("hypergeomsum1",i,n,itot,ntot);
endfunction

function mediantest (a,b)
## Test the two distributions a and b on equal mean value.
## To do this both distributions are checked on exceeding
## the median of both.
## Returns the error you have, if you assume a does not
## exceed the median to often (i.e. a may be equal to b)
	c=sort(a|b); n=cols(c);
	if mod(n,2)==0; m=(c[n/2]+c[n/2+1])/2;
	else m=c[n/2+1];
	endif;
	return 1-hypergeomsum(sum(a<m)-1,cols(a),floor(n/2),n);
endfunction

function ranktest (a,b,eps=sqrt(epsilon()))
## The Mann-Whitney test tests a and b on same distribution.
## Return the error you have, if you reject same distribution.
	n1=cols(a); n2=cols(b); n=n1+n2;
	{c,i}=sort(a|b); R=1:n;
	{c1,i1}=sort(c+eps*(n:-1:1));
	R=(R+R[i1])/2;
	R1=sum(R*(i<=n1)); R2=sum(R*(i>n1));
	return 1-normaldis(abs((min(R1-n1*(n1+1)/2,R2-n2*(n2+1)/2)-n1*n2/2)/ ..
		sqrt(n1*n2*(n1+n2+1)/12)));
endfunction

function signtest (a,b)
## Assume a(i) and b(i) are results of treatment a and b at i.
## a and b must be row vectors of equal length.
## Test, if a is not better than b.
## Return the error you have, if you decide that a is better
## than b.
	n=cols(a); i=sum(a>b);
	return 1-binsum(i-1,n,0.5);
endfunction

function wilcoxon (a,b,eps=sqrt(epsilon()))
## This is a sharper test for the same problem as in signtest.
## See: signtest
## Returns the error you have, if you decide that a is better
## than b.
	d=a-b; n=cols(d);
	{c,i}=sort(abs(d)); R=1:n;
	{c1,i1}=sort(c+eps*(n:-1:1));
	R=(R+R[i1])/2;
	R1=sum(R*(d[i]<0)); R2=sum(R*(d[i]>=0));
	W=R2;
	return 1-normaldis((W-n*(n+1)/4)/ ..
		sqrt(n*(n+1)*(2*n+1)/24)));
endfunction