/usr/include/coin/CoinFactorization.hpp is in coinor-libcoinutils-dev 2.9.10-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 | /* $Id: CoinFactorization.hpp 1590 2013-04-10 16:48:33Z stefan $ */
// Copyright (C) 2002, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
/*
Authors
John Forrest
*/
#ifndef CoinFactorization_H
#define CoinFactorization_H
//#define COIN_ONE_ETA_COPY 100
#include <iostream>
#include <string>
#include <cassert>
#include <cstdio>
#include <cmath>
#include "CoinTypes.hpp"
#include "CoinIndexedVector.hpp"
class CoinPackedMatrix;
/** This deals with Factorization and Updates
This class started with a parallel simplex code I was writing in the
mid 90's. The need for parallelism led to many complications and
I have simplified as much as I could to get back to this.
I was aiming at problems where I might get speed-up so I was looking at dense
problems or ones with structure. This led to permuting input and output
vectors and to increasing the number of rows each rank-one update. This is
still in as a minor overhead.
I have also put in handling for hyper-sparsity. I have taken out
all outer loop unrolling, dense matrix handling and most of the
book-keeping for slacks. Also I always use FTRAN approach to updating
even if factorization fairly dense. All these could improve performance.
I blame some of the coding peculiarities on the history of the code
but mostly it is just because I can't do elegant code (or useful
comments).
I am assuming that 32 bits is enough for number of rows or columns, but CoinBigIndex
may be redefined to get 64 bits.
*/
class CoinFactorization {
friend void CoinFactorizationUnitTest( const std::string & mpsDir );
public:
/**@name Constructors and destructor and copy */
//@{
/// Default constructor
CoinFactorization ( );
/// Copy constructor
CoinFactorization ( const CoinFactorization &other);
/// Destructor
~CoinFactorization ( );
/// Delete all stuff (leaves as after CoinFactorization())
void almostDestructor();
/// Debug show object (shows one representation)
void show_self ( ) const;
/// Debug - save on file - 0 if no error
int saveFactorization (const char * file ) const;
/** Debug - restore from file - 0 if no error on file.
If factor true then factorizes as if called from ClpFactorization
*/
int restoreFactorization (const char * file , bool factor=false) ;
/// Debug - sort so can compare
void sort ( ) const;
/// = copy
CoinFactorization & operator = ( const CoinFactorization & other );
//@}
/**@name Do factorization */
//@{
/** When part of LP - given by basic variables.
Actually does factorization.
Arrays passed in have non negative value to say basic.
If status is okay, basic variables have pivot row - this is only needed
If status is singular, then basic variables have pivot row
and ones thrown out have -1
returns 0 -okay, -1 singular, -2 too many in basis, -99 memory */
int factorize ( const CoinPackedMatrix & matrix,
int rowIsBasic[], int columnIsBasic[] ,
double areaFactor = 0.0 );
/** When given as triplets.
Actually does factorization. maximumL is guessed maximum size of L part of
final factorization, maximumU of U part. These are multiplied by
areaFactor which can be computed by user or internally.
Arrays are copied in. I could add flag to delete arrays to save a
bit of memory.
If status okay, permutation has pivot rows - this is only needed
If status is singular, then basic variables have pivot row
and ones thrown out have -1
returns 0 -okay, -1 singular, -99 memory */
int factorize ( int numberRows,
int numberColumns,
CoinBigIndex numberElements,
CoinBigIndex maximumL,
CoinBigIndex maximumU,
const int indicesRow[],
const int indicesColumn[], const double elements[] ,
int permutation[],
double areaFactor = 0.0);
/** Two part version for maximum flexibility
This part creates arrays for user to fill.
estimateNumberElements is safe estimate of number
returns 0 -okay, -99 memory */
int factorizePart1 ( int numberRows,
int numberColumns,
CoinBigIndex estimateNumberElements,
int * indicesRow[],
int * indicesColumn[],
CoinFactorizationDouble * elements[],
double areaFactor = 0.0);
/** This is part two of factorization
Arrays belong to factorization and were returned by part 1
If status okay, permutation has pivot rows - this is only needed
If status is singular, then basic variables have pivot row
and ones thrown out have -1
returns 0 -okay, -1 singular, -99 memory */
int factorizePart2 (int permutation[],int exactNumberElements);
/// Condition number - product of pivots after factorization
double conditionNumber() const;
//@}
/**@name general stuff such as permutation or status */
//@{
/// Returns status
inline int status ( ) const {
return status_;
}
/// Sets status
inline void setStatus ( int value)
{ status_=value; }
/// Returns number of pivots since factorization
inline int pivots ( ) const {
return numberPivots_;
}
/// Sets number of pivots since factorization
inline void setPivots ( int value )
{ numberPivots_=value; }
/// Returns address of permute region
inline int *permute ( ) const {
return permute_.array();
}
/// Returns address of pivotColumn region (also used for permuting)
inline int *pivotColumn ( ) const {
return pivotColumn_.array();
}
/// Returns address of pivot region
inline CoinFactorizationDouble *pivotRegion ( ) const {
return pivotRegion_.array();
}
/// Returns address of permuteBack region
inline int *permuteBack ( ) const {
return permuteBack_.array();
}
/** Returns address of pivotColumnBack region (also used for permuting)
Now uses firstCount to save memory allocation */
inline int *pivotColumnBack ( ) const {
//return firstCount_.array();
return pivotColumnBack_.array();
}
/// Start of each row in L
inline CoinBigIndex * startRowL() const
{ return startRowL_.array();}
/// Start of each column in L
inline CoinBigIndex * startColumnL() const
{ return startColumnL_.array();}
/// Index of column in row for L
inline int * indexColumnL() const
{ return indexColumnL_.array();}
/// Row indices of L
inline int * indexRowL() const
{ return indexRowL_.array();}
/// Elements in L (row copy)
inline CoinFactorizationDouble * elementByRowL() const
{ return elementByRowL_.array();}
/// Number of Rows after iterating
inline int numberRowsExtra ( ) const {
return numberRowsExtra_;
}
/// Set number of Rows after factorization
inline void setNumberRows(int value)
{ numberRows_ = value; }
/// Number of Rows after factorization
inline int numberRows ( ) const {
return numberRows_;
}
/// Number in L
inline CoinBigIndex numberL() const
{ return numberL_;}
/// Base of L
inline CoinBigIndex baseL() const
{ return baseL_;}
/// Maximum of Rows after iterating
inline int maximumRowsExtra ( ) const {
return maximumRowsExtra_;
}
/// Total number of columns in factorization
inline int numberColumns ( ) const {
return numberColumns_;
}
/// Total number of elements in factorization
inline int numberElements ( ) const {
return totalElements_;
}
/// Length of FT vector
inline int numberForrestTomlin ( ) const {
return numberInColumn_.array()[numberColumnsExtra_];
}
/// Number of good columns in factorization
inline int numberGoodColumns ( ) const {
return numberGoodU_;
}
/// Whether larger areas needed
inline double areaFactor ( ) const {
return areaFactor_;
}
inline void areaFactor ( double value ) {
areaFactor_=value;
}
/// Returns areaFactor but adjusted for dense
double adjustedAreaFactor() const;
/// Allows change of pivot accuracy check 1.0 == none >1.0 relaxed
inline void relaxAccuracyCheck(double value)
{ relaxCheck_ = value;}
inline double getAccuracyCheck() const
{ return relaxCheck_;}
/// Level of detail of messages
inline int messageLevel ( ) const {
return messageLevel_ ;
}
void messageLevel ( int value );
/// Maximum number of pivots between factorizations
inline int maximumPivots ( ) const {
return maximumPivots_ ;
}
void maximumPivots ( int value );
/// Gets dense threshold
inline int denseThreshold() const
{ return denseThreshold_;}
/// Sets dense threshold
inline void setDenseThreshold(int value)
{ denseThreshold_ = value;}
/// Pivot tolerance
inline double pivotTolerance ( ) const {
return pivotTolerance_ ;
}
void pivotTolerance ( double value );
/// Zero tolerance
inline double zeroTolerance ( ) const {
return zeroTolerance_ ;
}
void zeroTolerance ( double value );
#ifndef COIN_FAST_CODE
/// Whether slack value is +1 or -1
inline double slackValue ( ) const {
return slackValue_ ;
}
void slackValue ( double value );
#endif
/// Returns maximum absolute value in factorization
double maximumCoefficient() const;
/// true if Forrest Tomlin update, false if PFI
inline bool forrestTomlin() const
{ return doForrestTomlin_;}
inline void setForrestTomlin(bool value)
{ doForrestTomlin_=value;}
/// True if FT update and space
inline bool spaceForForrestTomlin() const
{
CoinBigIndex start = startColumnU_.array()[maximumColumnsExtra_];
CoinBigIndex space = lengthAreaU_ - ( start + numberRowsExtra_ );
return (space>=0)&&doForrestTomlin_;
}
//@}
/**@name some simple stuff */
//@{
/// Returns number of dense rows
inline int numberDense() const
{ return numberDense_;}
/// Returns number in U area
inline CoinBigIndex numberElementsU ( ) const {
return lengthU_;
}
/// Setss number in U area
inline void setNumberElementsU(CoinBigIndex value)
{ lengthU_ = value; }
/// Returns length of U area
inline CoinBigIndex lengthAreaU ( ) const {
return lengthAreaU_;
}
/// Returns number in L area
inline CoinBigIndex numberElementsL ( ) const {
return lengthL_;
}
/// Returns length of L area
inline CoinBigIndex lengthAreaL ( ) const {
return lengthAreaL_;
}
/// Returns number in R area
inline CoinBigIndex numberElementsR ( ) const {
return lengthR_;
}
/// Number of compressions done
inline CoinBigIndex numberCompressions() const
{ return numberCompressions_;}
/// Number of entries in each row
inline int * numberInRow() const
{ return numberInRow_.array();}
/// Number of entries in each column
inline int * numberInColumn() const
{ return numberInColumn_.array();}
/// Elements of U
inline CoinFactorizationDouble * elementU() const
{ return elementU_.array();}
/// Row indices of U
inline int * indexRowU() const
{ return indexRowU_.array();}
/// Start of each column in U
inline CoinBigIndex * startColumnU() const
{ return startColumnU_.array();}
/// Maximum number of Columns after iterating
inline int maximumColumnsExtra()
{ return maximumColumnsExtra_;}
/** L to U bias
0 - U bias, 1 - some U bias, 2 some L bias, 3 L bias
*/
inline int biasLU() const
{ return biasLU_;}
inline void setBiasLU(int value)
{ biasLU_=value;}
/** Array persistence flag
If 0 then as now (delete/new)
1 then only do arrays if bigger needed
2 as 1 but give a bit extra if bigger needed
*/
inline int persistenceFlag() const
{ return persistenceFlag_;}
void setPersistenceFlag(int value);
//@}
/**@name rank one updates which do exist */
//@{
/** Replaces one Column to basis,
returns 0=OK, 1=Probably OK, 2=singular, 3=no room
If checkBeforeModifying is true will do all accuracy checks
before modifying factorization. Whether to set this depends on
speed considerations. You could just do this on first iteration
after factorization and thereafter re-factorize
partial update already in U */
int replaceColumn ( CoinIndexedVector * regionSparse,
int pivotRow,
double pivotCheck ,
bool checkBeforeModifying=false,
double acceptablePivot=1.0e-8);
/** Combines BtranU and delete elements
If deleted is NULL then delete elements
otherwise store where elements are
*/
void replaceColumnU ( CoinIndexedVector * regionSparse,
CoinBigIndex * deleted,
int internalPivotRow);
//@}
/**@name various uses of factorization (return code number elements)
which user may want to know about */
//@{
/** Updates one column (FTRAN) from regionSparse2
Tries to do FT update
number returned is negative if no room
regionSparse starts as zero and is zero at end.
Note - if regionSparse2 packed on input - will be packed on output
*/
int updateColumnFT ( CoinIndexedVector * regionSparse,
CoinIndexedVector * regionSparse2);
/** This version has same effect as above with FTUpdate==false
so number returned is always >=0 */
int updateColumn ( CoinIndexedVector * regionSparse,
CoinIndexedVector * regionSparse2,
bool noPermute=false) const;
/** Updates one column (FTRAN) from region2
Tries to do FT update
number returned is negative if no room.
Also updates region3
region1 starts as zero and is zero at end */
int updateTwoColumnsFT ( CoinIndexedVector * regionSparse1,
CoinIndexedVector * regionSparse2,
CoinIndexedVector * regionSparse3,
bool noPermuteRegion3=false) ;
/** Updates one column (BTRAN) from regionSparse2
regionSparse starts as zero and is zero at end
Note - if regionSparse2 packed on input - will be packed on output
*/
int updateColumnTranspose ( CoinIndexedVector * regionSparse,
CoinIndexedVector * regionSparse2) const;
/** makes a row copy of L for speed and to allow very sparse problems */
void goSparse();
/** get sparse threshold */
inline int sparseThreshold ( ) const
{ return sparseThreshold_;}
/** set sparse threshold */
void sparseThreshold ( int value );
//@}
/// *** Below this user may not want to know about
/**@name various uses of factorization (return code number elements)
which user may not want to know about (left over from my LP code) */
//@{
/// Get rid of all memory
inline void clearArrays()
{ gutsOfDestructor();}
//@}
/**@name various updates - none of which have been written! */
//@{
/** Adds given elements to Basis and updates factorization,
can increase size of basis. Returns rank */
int add ( CoinBigIndex numberElements,
int indicesRow[],
int indicesColumn[], double elements[] );
/** Adds one Column to basis,
can increase size of basis. Returns rank */
int addColumn ( CoinBigIndex numberElements,
int indicesRow[], double elements[] );
/** Adds one Row to basis,
can increase size of basis. Returns rank */
int addRow ( CoinBigIndex numberElements,
int indicesColumn[], double elements[] );
/// Deletes one Column from basis, returns rank
int deleteColumn ( int Row );
/// Deletes one Row from basis, returns rank
int deleteRow ( int Row );
/** Replaces one Row in basis,
At present assumes just a singleton on row is in basis
returns 0=OK, 1=Probably OK, 2=singular, 3 no space */
int replaceRow ( int whichRow, int numberElements,
const int indicesColumn[], const double elements[] );
/// Takes out all entries for given rows
void emptyRows(int numberToEmpty, const int which[]);
//@}
/**@name used by ClpFactorization */
/// See if worth going sparse
void checkSparse();
/// For statistics
inline bool collectStatistics() const
{ return collectStatistics_;}
/// For statistics
inline void setCollectStatistics(bool onOff) const
{ collectStatistics_ = onOff;}
/// The real work of constructors etc 0 just scalars, 1 bit normal
void gutsOfDestructor(int type=1);
/// 1 bit - tolerances etc, 2 more, 4 dummy arrays
void gutsOfInitialize(int type);
void gutsOfCopy(const CoinFactorization &other);
/// Reset all sparsity etc statistics
void resetStatistics();
//@}
/**@name used by factorization */
/// Gets space for a factorization, called by constructors
void getAreas ( int numberRows,
int numberColumns,
CoinBigIndex maximumL,
CoinBigIndex maximumU );
/** PreProcesses raw triplet data.
state is 0 - triplets, 1 - some counts etc , 2 - .. */
void preProcess ( int state,
int possibleDuplicates = -1 );
/// Does most of factorization
int factor ( );
protected:
/** Does sparse phase of factorization
return code is <0 error, 0= finished */
int factorSparse ( );
/** Does sparse phase of factorization (for smaller problems)
return code is <0 error, 0= finished */
int factorSparseSmall ( );
/** Does sparse phase of factorization (for larger problems)
return code is <0 error, 0= finished */
int factorSparseLarge ( );
/** Does dense phase of factorization
return code is <0 error, 0= finished */
int factorDense ( );
/// Pivots when just one other row so faster?
bool pivotOneOtherRow ( int pivotRow,
int pivotColumn );
/// Does one pivot on Row Singleton in factorization
bool pivotRowSingleton ( int pivotRow,
int pivotColumn );
/// Does one pivot on Column Singleton in factorization
bool pivotColumnSingleton ( int pivotRow,
int pivotColumn );
/** Gets space for one Column with given length,
may have to do compression (returns True if successful),
also moves existing vector,
extraNeeded is over and above present */
bool getColumnSpace ( int iColumn,
int extraNeeded );
/** Reorders U so contiguous and in order (if there is space)
Returns true if it could */
bool reorderU();
/** getColumnSpaceIterateR. Gets space for one extra R element in Column
may have to do compression (returns true)
also moves existing vector */
bool getColumnSpaceIterateR ( int iColumn, double value,
int iRow);
/** getColumnSpaceIterate. Gets space for one extra U element in Column
may have to do compression (returns true)
also moves existing vector.
Returns -1 if no memory or where element was put
Used by replaceRow (turns off R version) */
CoinBigIndex getColumnSpaceIterate ( int iColumn, double value,
int iRow);
/** Gets space for one Row with given length,
may have to do compression (returns True if successful),
also moves existing vector */
bool getRowSpace ( int iRow, int extraNeeded );
/** Gets space for one Row with given length while iterating,
may have to do compression (returns True if successful),
also moves existing vector */
bool getRowSpaceIterate ( int iRow,
int extraNeeded );
/// Checks that row and column copies look OK
void checkConsistency ( );
/// Adds a link in chain of equal counts
inline void addLink ( int index, int count ) {
int *nextCount = nextCount_.array();
int *firstCount = firstCount_.array();
int *lastCount = lastCount_.array();
int next = firstCount[count];
lastCount[index] = -2 - count;
if ( next < 0 ) {
//first with that count
firstCount[count] = index;
nextCount[index] = -1;
} else {
firstCount[count] = index;
nextCount[index] = next;
lastCount[next] = index;
}}
/// Deletes a link in chain of equal counts
inline void deleteLink ( int index ) {
int *nextCount = nextCount_.array();
int *firstCount = firstCount_.array();
int *lastCount = lastCount_.array();
int next = nextCount[index];
int last = lastCount[index];
if ( last >= 0 ) {
nextCount[last] = next;
} else {
int count = -last - 2;
firstCount[count] = next;
}
if ( next >= 0 ) {
lastCount[next] = last;
}
nextCount[index] = -2;
lastCount[index] = -2;
return;
}
/// Separate out links with same row/column count
void separateLinks(int count,bool rowsFirst);
/// Cleans up at end of factorization
void cleanup ( );
/// Updates part of column (FTRANL)
void updateColumnL ( CoinIndexedVector * region, int * indexIn ) const;
/// Updates part of column (FTRANL) when densish
void updateColumnLDensish ( CoinIndexedVector * region, int * indexIn ) const;
/// Updates part of column (FTRANL) when sparse
void updateColumnLSparse ( CoinIndexedVector * region, int * indexIn ) const;
/// Updates part of column (FTRANL) when sparsish
void updateColumnLSparsish ( CoinIndexedVector * region, int * indexIn ) const;
/// Updates part of column (FTRANR) without FT update
void updateColumnR ( CoinIndexedVector * region ) const;
/** Updates part of column (FTRANR) with FT update.
Also stores update after L and R */
void updateColumnRFT ( CoinIndexedVector * region, int * indexIn );
/// Updates part of column (FTRANU)
void updateColumnU ( CoinIndexedVector * region, int * indexIn) const;
/// Updates part of column (FTRANU) when sparse
void updateColumnUSparse ( CoinIndexedVector * regionSparse,
int * indexIn) const;
/// Updates part of column (FTRANU) when sparsish
void updateColumnUSparsish ( CoinIndexedVector * regionSparse,
int * indexIn) const;
/// Updates part of column (FTRANU)
int updateColumnUDensish ( double * COIN_RESTRICT region,
int * COIN_RESTRICT regionIndex) const;
/// Updates part of 2 columns (FTRANU) real work
void updateTwoColumnsUDensish (
int & numberNonZero1,
double * COIN_RESTRICT region1,
int * COIN_RESTRICT index1,
int & numberNonZero2,
double * COIN_RESTRICT region2,
int * COIN_RESTRICT index2) const;
/// Updates part of column PFI (FTRAN) (after rest)
void updateColumnPFI ( CoinIndexedVector * regionSparse) const;
/// Permutes back at end of updateColumn
void permuteBack ( CoinIndexedVector * regionSparse,
CoinIndexedVector * outVector) const;
/// Updates part of column transpose PFI (BTRAN) (before rest)
void updateColumnTransposePFI ( CoinIndexedVector * region) const;
/** Updates part of column transpose (BTRANU),
assumes index is sorted i.e. region is correct */
void updateColumnTransposeU ( CoinIndexedVector * region,
int smallestIndex) const;
/** Updates part of column transpose (BTRANU) when sparsish,
assumes index is sorted i.e. region is correct */
void updateColumnTransposeUSparsish ( CoinIndexedVector * region,
int smallestIndex) const;
/** Updates part of column transpose (BTRANU) when densish,
assumes index is sorted i.e. region is correct */
void updateColumnTransposeUDensish ( CoinIndexedVector * region,
int smallestIndex) const;
/** Updates part of column transpose (BTRANU) when sparse,
assumes index is sorted i.e. region is correct */
void updateColumnTransposeUSparse ( CoinIndexedVector * region) const;
/** Updates part of column transpose (BTRANU) by column
assumes index is sorted i.e. region is correct */
void updateColumnTransposeUByColumn ( CoinIndexedVector * region,
int smallestIndex) const;
/// Updates part of column transpose (BTRANR)
void updateColumnTransposeR ( CoinIndexedVector * region ) const;
/// Updates part of column transpose (BTRANR) when dense
void updateColumnTransposeRDensish ( CoinIndexedVector * region ) const;
/// Updates part of column transpose (BTRANR) when sparse
void updateColumnTransposeRSparse ( CoinIndexedVector * region ) const;
/// Updates part of column transpose (BTRANL)
void updateColumnTransposeL ( CoinIndexedVector * region ) const;
/// Updates part of column transpose (BTRANL) when densish by column
void updateColumnTransposeLDensish ( CoinIndexedVector * region ) const;
/// Updates part of column transpose (BTRANL) when densish by row
void updateColumnTransposeLByRow ( CoinIndexedVector * region ) const;
/// Updates part of column transpose (BTRANL) when sparsish by row
void updateColumnTransposeLSparsish ( CoinIndexedVector * region ) const;
/// Updates part of column transpose (BTRANL) when sparse (by Row)
void updateColumnTransposeLSparse ( CoinIndexedVector * region ) const;
public:
/** Replaces one Column to basis for PFI
returns 0=OK, 1=Probably OK, 2=singular, 3=no room.
In this case region is not empty - it is incoming variable (updated)
*/
int replaceColumnPFI ( CoinIndexedVector * regionSparse,
int pivotRow, double alpha);
protected:
/** Returns accuracy status of replaceColumn
returns 0=OK, 1=Probably OK, 2=singular */
int checkPivot(double saveFromU, double oldPivot) const;
/********************************* START LARGE TEMPLATE ********/
#ifdef INT_IS_8
#define COINFACTORIZATION_BITS_PER_INT 64
#define COINFACTORIZATION_SHIFT_PER_INT 6
#define COINFACTORIZATION_MASK_PER_INT 0x3f
#else
#define COINFACTORIZATION_BITS_PER_INT 32
#define COINFACTORIZATION_SHIFT_PER_INT 5
#define COINFACTORIZATION_MASK_PER_INT 0x1f
#endif
template <class T> inline bool
pivot ( int pivotRow,
int pivotColumn,
CoinBigIndex pivotRowPosition,
CoinBigIndex pivotColumnPosition,
CoinFactorizationDouble work[],
unsigned int workArea2[],
int increment2,
T markRow[] ,
int largeInteger)
{
int *indexColumnU = indexColumnU_.array();
CoinBigIndex *startColumnU = startColumnU_.array();
int *numberInColumn = numberInColumn_.array();
CoinFactorizationDouble *elementU = elementU_.array();
int *indexRowU = indexRowU_.array();
CoinBigIndex *startRowU = startRowU_.array();
int *numberInRow = numberInRow_.array();
CoinFactorizationDouble *elementL = elementL_.array();
int *indexRowL = indexRowL_.array();
int *saveColumn = saveColumn_.array();
int *nextRow = nextRow_.array();
int *lastRow = lastRow_.array() ;
//store pivot columns (so can easily compress)
int numberInPivotRow = numberInRow[pivotRow] - 1;
CoinBigIndex startColumn = startColumnU[pivotColumn];
int numberInPivotColumn = numberInColumn[pivotColumn] - 1;
CoinBigIndex endColumn = startColumn + numberInPivotColumn + 1;
int put = 0;
CoinBigIndex startRow = startRowU[pivotRow];
CoinBigIndex endRow = startRow + numberInPivotRow + 1;
if ( pivotColumnPosition < 0 ) {
for ( pivotColumnPosition = startRow; pivotColumnPosition < endRow; pivotColumnPosition++ ) {
int iColumn = indexColumnU[pivotColumnPosition];
if ( iColumn != pivotColumn ) {
saveColumn[put++] = iColumn;
} else {
break;
}
}
} else {
for (CoinBigIndex i = startRow ; i < pivotColumnPosition ; i++ ) {
saveColumn[put++] = indexColumnU[i];
}
}
assert (pivotColumnPosition<endRow);
assert (indexColumnU[pivotColumnPosition]==pivotColumn);
pivotColumnPosition++;
for ( ; pivotColumnPosition < endRow; pivotColumnPosition++ ) {
saveColumn[put++] = indexColumnU[pivotColumnPosition];
}
//take out this bit of indexColumnU
int next = nextRow[pivotRow];
int last = lastRow[pivotRow];
nextRow[last] = next;
lastRow[next] = last;
nextRow[pivotRow] = numberGoodU_; //use for permute
lastRow[pivotRow] = -2;
numberInRow[pivotRow] = 0;
//store column in L, compress in U and take column out
CoinBigIndex l = lengthL_;
if ( l + numberInPivotColumn > lengthAreaL_ ) {
//need more memory
if ((messageLevel_&4)!=0)
printf("more memory needed in middle of invert\n");
return false;
}
//l+=currentAreaL_->elementByColumn-elementL;
CoinBigIndex lSave = l;
CoinBigIndex * startColumnL = startColumnL_.array();
startColumnL[numberGoodL_] = l; //for luck and first time
numberGoodL_++;
startColumnL[numberGoodL_] = l + numberInPivotColumn;
lengthL_ += numberInPivotColumn;
if ( pivotRowPosition < 0 ) {
for ( pivotRowPosition = startColumn; pivotRowPosition < endColumn; pivotRowPosition++ ) {
int iRow = indexRowU[pivotRowPosition];
if ( iRow != pivotRow ) {
indexRowL[l] = iRow;
elementL[l] = elementU[pivotRowPosition];
markRow[iRow] = static_cast<T>(l - lSave);
l++;
//take out of row list
CoinBigIndex start = startRowU[iRow];
CoinBigIndex end = start + numberInRow[iRow];
CoinBigIndex where = start;
while ( indexColumnU[where] != pivotColumn ) {
where++;
} /* endwhile */
#if DEBUG_COIN
if ( where >= end ) {
abort ( );
}
#endif
indexColumnU[where] = indexColumnU[end - 1];
numberInRow[iRow]--;
} else {
break;
}
}
} else {
CoinBigIndex i;
for ( i = startColumn; i < pivotRowPosition; i++ ) {
int iRow = indexRowU[i];
markRow[iRow] = static_cast<T>(l - lSave);
indexRowL[l] = iRow;
elementL[l] = elementU[i];
l++;
//take out of row list
CoinBigIndex start = startRowU[iRow];
CoinBigIndex end = start + numberInRow[iRow];
CoinBigIndex where = start;
while ( indexColumnU[where] != pivotColumn ) {
where++;
} /* endwhile */
#if DEBUG_COIN
if ( where >= end ) {
abort ( );
}
#endif
indexColumnU[where] = indexColumnU[end - 1];
numberInRow[iRow]--;
assert (numberInRow[iRow]>=0);
}
}
assert (pivotRowPosition<endColumn);
assert (indexRowU[pivotRowPosition]==pivotRow);
CoinFactorizationDouble pivotElement = elementU[pivotRowPosition];
CoinFactorizationDouble pivotMultiplier = 1.0 / pivotElement;
pivotRegion_.array()[numberGoodU_] = pivotMultiplier;
pivotRowPosition++;
for ( ; pivotRowPosition < endColumn; pivotRowPosition++ ) {
int iRow = indexRowU[pivotRowPosition];
markRow[iRow] = static_cast<T>(l - lSave);
indexRowL[l] = iRow;
elementL[l] = elementU[pivotRowPosition];
l++;
//take out of row list
CoinBigIndex start = startRowU[iRow];
CoinBigIndex end = start + numberInRow[iRow];
CoinBigIndex where = start;
while ( indexColumnU[where] != pivotColumn ) {
where++;
} /* endwhile */
#if DEBUG_COIN
if ( where >= end ) {
abort ( );
}
#endif
indexColumnU[where] = indexColumnU[end - 1];
numberInRow[iRow]--;
assert (numberInRow[iRow]>=0);
}
markRow[pivotRow] = static_cast<T>(largeInteger);
//compress pivot column (move pivot to front including saved)
numberInColumn[pivotColumn] = 0;
//use end of L for temporary space
int *indexL = &indexRowL[lSave];
CoinFactorizationDouble *multipliersL = &elementL[lSave];
//adjust
int j;
for ( j = 0; j < numberInPivotColumn; j++ ) {
multipliersL[j] *= pivotMultiplier;
}
//zero out fill
CoinBigIndex iErase;
for ( iErase = 0; iErase < increment2 * numberInPivotRow;
iErase++ ) {
workArea2[iErase] = 0;
}
CoinBigIndex added = numberInPivotRow * numberInPivotColumn;
unsigned int *temp2 = workArea2;
int * nextColumn = nextColumn_.array();
//pack down and move to work
int jColumn;
for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
int iColumn = saveColumn[jColumn];
CoinBigIndex startColumn = startColumnU[iColumn];
CoinBigIndex endColumn = startColumn + numberInColumn[iColumn];
int iRow = indexRowU[startColumn];
CoinFactorizationDouble value = elementU[startColumn];
double largest;
CoinBigIndex put = startColumn;
CoinBigIndex positionLargest = -1;
CoinFactorizationDouble thisPivotValue = 0.0;
//compress column and find largest not updated
bool checkLargest;
int mark = markRow[iRow];
if ( mark == largeInteger+1 ) {
largest = fabs ( value );
positionLargest = put;
put++;
checkLargest = false;
} else {
//need to find largest
largest = 0.0;
checkLargest = true;
if ( mark != largeInteger ) {
//will be updated
work[mark] = value;
int word = mark >> COINFACTORIZATION_SHIFT_PER_INT;
int bit = mark & COINFACTORIZATION_MASK_PER_INT;
temp2[word] = temp2[word] | ( 1 << bit ); //say already in counts
added--;
} else {
thisPivotValue = value;
}
}
CoinBigIndex i;
for ( i = startColumn + 1; i < endColumn; i++ ) {
iRow = indexRowU[i];
value = elementU[i];
int mark = markRow[iRow];
if ( mark == largeInteger+1 ) {
//keep
indexRowU[put] = iRow;
elementU[put] = value;
if ( checkLargest ) {
double absValue = fabs ( value );
if ( absValue > largest ) {
largest = absValue;
positionLargest = put;
}
}
put++;
} else if ( mark != largeInteger ) {
//will be updated
work[mark] = value;
int word = mark >> COINFACTORIZATION_SHIFT_PER_INT;
int bit = mark & COINFACTORIZATION_MASK_PER_INT;
temp2[word] = temp2[word] | ( 1 << bit ); //say already in counts
added--;
} else {
thisPivotValue = value;
}
}
//slot in pivot
elementU[put] = elementU[startColumn];
indexRowU[put] = indexRowU[startColumn];
if ( positionLargest == startColumn ) {
positionLargest = put; //follow if was largest
}
put++;
elementU[startColumn] = thisPivotValue;
indexRowU[startColumn] = pivotRow;
//clean up counts
startColumn++;
numberInColumn[iColumn] = put - startColumn;
int * numberInColumnPlus = numberInColumnPlus_.array();
numberInColumnPlus[iColumn]++;
startColumnU[iColumn]++;
//how much space have we got
int next = nextColumn[iColumn];
CoinBigIndex space;
space = startColumnU[next] - put - numberInColumnPlus[next];
//assume no zero elements
if ( numberInPivotColumn > space ) {
//getColumnSpace also moves fixed part
if ( !getColumnSpace ( iColumn, numberInPivotColumn ) ) {
return false;
}
//redo starts
if (positionLargest >= 0)
positionLargest = positionLargest + startColumnU[iColumn] - startColumn;
startColumn = startColumnU[iColumn];
put = startColumn + numberInColumn[iColumn];
}
double tolerance = zeroTolerance_;
int *nextCount = nextCount_.array();
for ( j = 0; j < numberInPivotColumn; j++ ) {
value = work[j] - thisPivotValue * multipliersL[j];
double absValue = fabs ( value );
if ( absValue > tolerance ) {
work[j] = 0.0;
assert (put<lengthAreaU_);
elementU[put] = value;
indexRowU[put] = indexL[j];
if ( absValue > largest ) {
largest = absValue;
positionLargest = put;
}
put++;
} else {
work[j] = 0.0;
added--;
int word = j >> COINFACTORIZATION_SHIFT_PER_INT;
int bit = j & COINFACTORIZATION_MASK_PER_INT;
if ( temp2[word] & ( 1 << bit ) ) {
//take out of row list
iRow = indexL[j];
CoinBigIndex start = startRowU[iRow];
CoinBigIndex end = start + numberInRow[iRow];
CoinBigIndex where = start;
while ( indexColumnU[where] != iColumn ) {
where++;
} /* endwhile */
#if DEBUG_COIN
if ( where >= end ) {
abort ( );
}
#endif
indexColumnU[where] = indexColumnU[end - 1];
numberInRow[iRow]--;
} else {
//make sure won't be added
int word = j >> COINFACTORIZATION_SHIFT_PER_INT;
int bit = j & COINFACTORIZATION_MASK_PER_INT;
temp2[word] = temp2[word] | ( 1 << bit ); //say already in counts
}
}
}
numberInColumn[iColumn] = put - startColumn;
//move largest
if ( positionLargest >= 0 ) {
value = elementU[positionLargest];
iRow = indexRowU[positionLargest];
elementU[positionLargest] = elementU[startColumn];
indexRowU[positionLargest] = indexRowU[startColumn];
elementU[startColumn] = value;
indexRowU[startColumn] = iRow;
}
//linked list for column
if ( nextCount[iColumn + numberRows_] != -2 ) {
//modify linked list
deleteLink ( iColumn + numberRows_ );
addLink ( iColumn + numberRows_, numberInColumn[iColumn] );
}
temp2 += increment2;
}
//get space for row list
unsigned int *putBase = workArea2;
int bigLoops = numberInPivotColumn >> COINFACTORIZATION_SHIFT_PER_INT;
int i = 0;
// do linked lists and update counts
while ( bigLoops ) {
bigLoops--;
int bit;
for ( bit = 0; bit < COINFACTORIZATION_BITS_PER_INT; i++, bit++ ) {
unsigned int *putThis = putBase;
int iRow = indexL[i];
//get space
int number = 0;
int jColumn;
for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
unsigned int test = *putThis;
putThis += increment2;
test = 1 - ( ( test >> bit ) & 1 );
number += test;
}
int next = nextRow[iRow];
CoinBigIndex space;
space = startRowU[next] - startRowU[iRow];
number += numberInRow[iRow];
if ( space < number ) {
if ( !getRowSpace ( iRow, number ) ) {
return false;
}
}
// now do
putThis = putBase;
next = nextRow[iRow];
number = numberInRow[iRow];
CoinBigIndex end = startRowU[iRow] + number;
int saveIndex = indexColumnU[startRowU[next]];
//add in
for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
unsigned int test = *putThis;
putThis += increment2;
test = 1 - ( ( test >> bit ) & 1 );
indexColumnU[end] = saveColumn[jColumn];
end += test;
}
//put back next one in case zapped
indexColumnU[startRowU[next]] = saveIndex;
markRow[iRow] = static_cast<T>(largeInteger+1);
number = end - startRowU[iRow];
numberInRow[iRow] = number;
deleteLink ( iRow );
addLink ( iRow, number );
}
putBase++;
} /* endwhile */
int bit;
for ( bit = 0; i < numberInPivotColumn; i++, bit++ ) {
unsigned int *putThis = putBase;
int iRow = indexL[i];
//get space
int number = 0;
int jColumn;
for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
unsigned int test = *putThis;
putThis += increment2;
test = 1 - ( ( test >> bit ) & 1 );
number += test;
}
int next = nextRow[iRow];
CoinBigIndex space;
space = startRowU[next] - startRowU[iRow];
number += numberInRow[iRow];
if ( space < number ) {
if ( !getRowSpace ( iRow, number ) ) {
return false;
}
}
// now do
putThis = putBase;
next = nextRow[iRow];
number = numberInRow[iRow];
CoinBigIndex end = startRowU[iRow] + number;
int saveIndex;
saveIndex = indexColumnU[startRowU[next]];
//add in
for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
unsigned int test = *putThis;
putThis += increment2;
test = 1 - ( ( test >> bit ) & 1 );
indexColumnU[end] = saveColumn[jColumn];
end += test;
}
indexColumnU[startRowU[next]] = saveIndex;
markRow[iRow] = static_cast<T>(largeInteger+1);
number = end - startRowU[iRow];
numberInRow[iRow] = number;
deleteLink ( iRow );
addLink ( iRow, number );
}
markRow[pivotRow] = static_cast<T>(largeInteger+1);
//modify linked list for pivots
deleteLink ( pivotRow );
deleteLink ( pivotColumn + numberRows_ );
totalElements_ += added;
return true;
}
/********************************* END LARGE TEMPLATE ********/
//@}
////////////////// data //////////////////
protected:
/**@name data */
//@{
/// Pivot tolerance
double pivotTolerance_;
/// Zero tolerance
double zeroTolerance_;
#ifndef COIN_FAST_CODE
/// Whether slack value is +1 or -1
double slackValue_;
#else
#ifndef slackValue_
#define slackValue_ -1.0
#endif
#endif
/// How much to multiply areas by
double areaFactor_;
/// Relax check on accuracy in replaceColumn
double relaxCheck_;
/// Number of Rows in factorization
int numberRows_;
/// Number of Rows after iterating
int numberRowsExtra_;
/// Maximum number of Rows after iterating
int maximumRowsExtra_;
/// Number of Columns in factorization
int numberColumns_;
/// Number of Columns after iterating
int numberColumnsExtra_;
/// Maximum number of Columns after iterating
int maximumColumnsExtra_;
/// Number factorized in U (not row singletons)
int numberGoodU_;
/// Number factorized in L
int numberGoodL_;
/// Maximum number of pivots before factorization
int maximumPivots_;
/// Number pivots since last factorization
int numberPivots_;
/// Number of elements in U (to go)
/// or while iterating total overall
CoinBigIndex totalElements_;
/// Number of elements after factorization
CoinBigIndex factorElements_;
/// Pivot order for each Column
CoinIntArrayWithLength pivotColumn_;
/// Permutation vector for pivot row order
CoinIntArrayWithLength permute_;
/// DePermutation vector for pivot row order
CoinIntArrayWithLength permuteBack_;
/// Inverse Pivot order for each Column
CoinIntArrayWithLength pivotColumnBack_;
/// Status of factorization
int status_;
/** 0 - no increasing rows - no permutations,
1 - no increasing rows but permutations
2 - increasing rows
- taken out as always 2 */
//int increasingRows_;
/// Number of trials before rejection
int numberTrials_;
/// Start of each Row as pointer
CoinBigIndexArrayWithLength startRowU_;
/// Number in each Row
CoinIntArrayWithLength numberInRow_;
/// Number in each Column
CoinIntArrayWithLength numberInColumn_;
/// Number in each Column including pivoted
CoinIntArrayWithLength numberInColumnPlus_;
/** First Row/Column with count of k,
can tell which by offset - Rows then Columns */
CoinIntArrayWithLength firstCount_;
/// Next Row/Column with count
CoinIntArrayWithLength nextCount_;
/// Previous Row/Column with count
CoinIntArrayWithLength lastCount_;
/// Next Column in memory order
CoinIntArrayWithLength nextColumn_;
/// Previous Column in memory order
CoinIntArrayWithLength lastColumn_;
/// Next Row in memory order
CoinIntArrayWithLength nextRow_;
/// Previous Row in memory order
CoinIntArrayWithLength lastRow_;
/// Columns left to do in a single pivot
CoinIntArrayWithLength saveColumn_;
/// Marks rows to be updated
CoinIntArrayWithLength markRow_;
/// Detail in messages
int messageLevel_;
/// Larger of row and column size
int biggerDimension_;
/// Base address for U (may change)
CoinIntArrayWithLength indexColumnU_;
/// Pivots for L
CoinIntArrayWithLength pivotRowL_;
/// Inverses of pivot values
CoinFactorizationDoubleArrayWithLength pivotRegion_;
/// Number of slacks at beginning of U
int numberSlacks_;
/// Number in U
int numberU_;
/// Maximum space used in U
CoinBigIndex maximumU_;
/// Base of U is always 0
//int baseU_;
/// Length of U
CoinBigIndex lengthU_;
/// Length of area reserved for U
CoinBigIndex lengthAreaU_;
/// Elements of U
CoinFactorizationDoubleArrayWithLength elementU_;
/// Row indices of U
CoinIntArrayWithLength indexRowU_;
/// Start of each column in U
CoinBigIndexArrayWithLength startColumnU_;
/// Converts rows to columns in U
CoinBigIndexArrayWithLength convertRowToColumnU_;
/// Number in L
CoinBigIndex numberL_;
/// Base of L
CoinBigIndex baseL_;
/// Length of L
CoinBigIndex lengthL_;
/// Length of area reserved for L
CoinBigIndex lengthAreaL_;
/// Elements of L
CoinFactorizationDoubleArrayWithLength elementL_;
/// Row indices of L
CoinIntArrayWithLength indexRowL_;
/// Start of each column in L
CoinBigIndexArrayWithLength startColumnL_;
/// true if Forrest Tomlin update, false if PFI
bool doForrestTomlin_;
/// Number in R
int numberR_;
/// Length of R stuff
CoinBigIndex lengthR_;
/// length of area reserved for R
CoinBigIndex lengthAreaR_;
/// Elements of R
CoinFactorizationDouble *elementR_;
/// Row indices for R
int *indexRowR_;
/// Start of columns for R
CoinBigIndexArrayWithLength startColumnR_;
/// Dense area
double * denseArea_;
/// Dense permutation
int * densePermute_;
/// Number of dense rows
int numberDense_;
/// Dense threshold
int denseThreshold_;
/// First work area
CoinFactorizationDoubleArrayWithLength workArea_;
/// Second work area
CoinUnsignedIntArrayWithLength workArea2_;
/// Number of compressions done
CoinBigIndex numberCompressions_;
/// Below are all to collect
mutable double ftranCountInput_;
mutable double ftranCountAfterL_;
mutable double ftranCountAfterR_;
mutable double ftranCountAfterU_;
mutable double btranCountInput_;
mutable double btranCountAfterU_;
mutable double btranCountAfterR_;
mutable double btranCountAfterL_;
/// We can roll over factorizations
mutable int numberFtranCounts_;
mutable int numberBtranCounts_;
/// While these are average ratios collected over last period
double ftranAverageAfterL_;
double ftranAverageAfterR_;
double ftranAverageAfterU_;
double btranAverageAfterU_;
double btranAverageAfterR_;
double btranAverageAfterL_;
/// For statistics
mutable bool collectStatistics_;
/// Below this use sparse technology - if 0 then no L row copy
int sparseThreshold_;
/// And one for "sparsish"
int sparseThreshold2_;
/// Start of each row in L
CoinBigIndexArrayWithLength startRowL_;
/// Index of column in row for L
CoinIntArrayWithLength indexColumnL_;
/// Elements in L (row copy)
CoinFactorizationDoubleArrayWithLength elementByRowL_;
/// Sparse regions
mutable CoinIntArrayWithLength sparse_;
/** L to U bias
0 - U bias, 1 - some U bias, 2 some L bias, 3 L bias
*/
int biasLU_;
/** Array persistence flag
If 0 then as now (delete/new)
1 then only do arrays if bigger needed
2 as 1 but give a bit extra if bigger needed
*/
int persistenceFlag_;
//@}
};
// Dense coding
#ifdef COIN_HAS_LAPACK
#define DENSE_CODE 1
/* Type of Fortran integer translated into C */
#ifndef ipfint
//typedef ipfint FORTRAN_INTEGER_TYPE ;
typedef int ipfint;
typedef const int cipfint;
#endif
#endif
#endif
// Extra for ugly include
#ifdef UGLY_COIN_FACTOR_CODING
#define FAC_UNSET (FAC_SET+1)
{
goodPivot=false;
//store pivot columns (so can easily compress)
CoinBigIndex startColumnThis = startColumn[iPivotColumn];
CoinBigIndex endColumn = startColumnThis + numberDoColumn + 1;
int put = 0;
CoinBigIndex startRowThis = startRow[iPivotRow];
CoinBigIndex endRow = startRowThis + numberDoRow + 1;
if ( pivotColumnPosition < 0 ) {
for ( pivotColumnPosition = startRowThis; pivotColumnPosition < endRow; pivotColumnPosition++ ) {
int iColumn = indexColumn[pivotColumnPosition];
if ( iColumn != iPivotColumn ) {
saveColumn[put++] = iColumn;
} else {
break;
}
}
} else {
for (CoinBigIndex i = startRowThis ; i < pivotColumnPosition ; i++ ) {
saveColumn[put++] = indexColumn[i];
}
}
assert (pivotColumnPosition<endRow);
assert (indexColumn[pivotColumnPosition]==iPivotColumn);
pivotColumnPosition++;
for ( ; pivotColumnPosition < endRow; pivotColumnPosition++ ) {
saveColumn[put++] = indexColumn[pivotColumnPosition];
}
//take out this bit of indexColumn
int next = nextRow[iPivotRow];
int last = lastRow[iPivotRow];
nextRow[last] = next;
lastRow[next] = last;
nextRow[iPivotRow] = numberGoodU_; //use for permute
lastRow[iPivotRow] = -2;
numberInRow[iPivotRow] = 0;
//store column in L, compress in U and take column out
CoinBigIndex l = lengthL_;
// **** HORRID coding coming up but a goto seems best!
{
if ( l + numberDoColumn > lengthAreaL_ ) {
//need more memory
if ((messageLevel_&4)!=0)
printf("more memory needed in middle of invert\n");
goto BAD_PIVOT;
}
//l+=currentAreaL_->elementByColumn-elementL;
CoinBigIndex lSave = l;
CoinBigIndex * startColumnL = startColumnL_.array();
startColumnL[numberGoodL_] = l; //for luck and first time
numberGoodL_++;
startColumnL[numberGoodL_] = l + numberDoColumn;
lengthL_ += numberDoColumn;
if ( pivotRowPosition < 0 ) {
for ( pivotRowPosition = startColumnThis; pivotRowPosition < endColumn; pivotRowPosition++ ) {
int iRow = indexRow[pivotRowPosition];
if ( iRow != iPivotRow ) {
indexRowL[l] = iRow;
elementL[l] = element[pivotRowPosition];
markRow[iRow] = l - lSave;
l++;
//take out of row list
CoinBigIndex start = startRow[iRow];
CoinBigIndex end = start + numberInRow[iRow];
CoinBigIndex where = start;
while ( indexColumn[where] != iPivotColumn ) {
where++;
} /* endwhile */
#if DEBUG_COIN
if ( where >= end ) {
abort ( );
}
#endif
indexColumn[where] = indexColumn[end - 1];
numberInRow[iRow]--;
} else {
break;
}
}
} else {
CoinBigIndex i;
for ( i = startColumnThis; i < pivotRowPosition; i++ ) {
int iRow = indexRow[i];
markRow[iRow] = l - lSave;
indexRowL[l] = iRow;
elementL[l] = element[i];
l++;
//take out of row list
CoinBigIndex start = startRow[iRow];
CoinBigIndex end = start + numberInRow[iRow];
CoinBigIndex where = start;
while ( indexColumn[where] != iPivotColumn ) {
where++;
} /* endwhile */
#if DEBUG_COIN
if ( where >= end ) {
abort ( );
}
#endif
indexColumn[where] = indexColumn[end - 1];
numberInRow[iRow]--;
assert (numberInRow[iRow]>=0);
}
}
assert (pivotRowPosition<endColumn);
assert (indexRow[pivotRowPosition]==iPivotRow);
CoinFactorizationDouble pivotElement = element[pivotRowPosition];
CoinFactorizationDouble pivotMultiplier = 1.0 / pivotElement;
pivotRegion_.array()[numberGoodU_] = pivotMultiplier;
pivotRowPosition++;
for ( ; pivotRowPosition < endColumn; pivotRowPosition++ ) {
int iRow = indexRow[pivotRowPosition];
markRow[iRow] = l - lSave;
indexRowL[l] = iRow;
elementL[l] = element[pivotRowPosition];
l++;
//take out of row list
CoinBigIndex start = startRow[iRow];
CoinBigIndex end = start + numberInRow[iRow];
CoinBigIndex where = start;
while ( indexColumn[where] != iPivotColumn ) {
where++;
} /* endwhile */
#if DEBUG_COIN
if ( where >= end ) {
abort ( );
}
#endif
indexColumn[where] = indexColumn[end - 1];
numberInRow[iRow]--;
assert (numberInRow[iRow]>=0);
}
markRow[iPivotRow] = FAC_SET;
//compress pivot column (move pivot to front including saved)
numberInColumn[iPivotColumn] = 0;
//use end of L for temporary space
int *indexL = &indexRowL[lSave];
CoinFactorizationDouble *multipliersL = &elementL[lSave];
//adjust
int j;
for ( j = 0; j < numberDoColumn; j++ ) {
multipliersL[j] *= pivotMultiplier;
}
//zero out fill
CoinBigIndex iErase;
for ( iErase = 0; iErase < increment2 * numberDoRow;
iErase++ ) {
workArea2[iErase] = 0;
}
CoinBigIndex added = numberDoRow * numberDoColumn;
unsigned int *temp2 = workArea2;
int * nextColumn = nextColumn_.array();
//pack down and move to work
int jColumn;
for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
int iColumn = saveColumn[jColumn];
CoinBigIndex startColumnThis = startColumn[iColumn];
CoinBigIndex endColumn = startColumnThis + numberInColumn[iColumn];
int iRow = indexRow[startColumnThis];
CoinFactorizationDouble value = element[startColumnThis];
double largest;
CoinBigIndex put = startColumnThis;
CoinBigIndex positionLargest = -1;
CoinFactorizationDouble thisPivotValue = 0.0;
//compress column and find largest not updated
bool checkLargest;
int mark = markRow[iRow];
if ( mark == FAC_UNSET ) {
largest = fabs ( value );
positionLargest = put;
put++;
checkLargest = false;
} else {
//need to find largest
largest = 0.0;
checkLargest = true;
if ( mark != FAC_SET ) {
//will be updated
workArea[mark] = value;
int word = mark >> COINFACTORIZATION_SHIFT_PER_INT;
int bit = mark & COINFACTORIZATION_MASK_PER_INT;
temp2[word] = temp2[word] | ( 1 << bit ); //say already in counts
added--;
} else {
thisPivotValue = value;
}
}
CoinBigIndex i;
for ( i = startColumnThis + 1; i < endColumn; i++ ) {
iRow = indexRow[i];
value = element[i];
int mark = markRow[iRow];
if ( mark == FAC_UNSET ) {
//keep
indexRow[put] = iRow;
element[put] = value;
if ( checkLargest ) {
double absValue = fabs ( value );
if ( absValue > largest ) {
largest = absValue;
positionLargest = put;
}
}
put++;
} else if ( mark != FAC_SET ) {
//will be updated
workArea[mark] = value;
int word = mark >> COINFACTORIZATION_SHIFT_PER_INT;
int bit = mark & COINFACTORIZATION_MASK_PER_INT;
temp2[word] = temp2[word] | ( 1 << bit ); //say already in counts
added--;
} else {
thisPivotValue = value;
}
}
//slot in pivot
element[put] = element[startColumnThis];
indexRow[put] = indexRow[startColumnThis];
if ( positionLargest == startColumnThis ) {
positionLargest = put; //follow if was largest
}
put++;
element[startColumnThis] = thisPivotValue;
indexRow[startColumnThis] = iPivotRow;
//clean up counts
startColumnThis++;
numberInColumn[iColumn] = put - startColumnThis;
int * numberInColumnPlus = numberInColumnPlus_.array();
numberInColumnPlus[iColumn]++;
startColumn[iColumn]++;
//how much space have we got
int next = nextColumn[iColumn];
CoinBigIndex space;
space = startColumn[next] - put - numberInColumnPlus[next];
//assume no zero elements
if ( numberDoColumn > space ) {
//getColumnSpace also moves fixed part
if ( !getColumnSpace ( iColumn, numberDoColumn ) ) {
goto BAD_PIVOT;
}
//redo starts
positionLargest = positionLargest + startColumn[iColumn] - startColumnThis;
startColumnThis = startColumn[iColumn];
put = startColumnThis + numberInColumn[iColumn];
}
double tolerance = zeroTolerance_;
int *nextCount = nextCount_.array();
for ( j = 0; j < numberDoColumn; j++ ) {
value = workArea[j] - thisPivotValue * multipliersL[j];
double absValue = fabs ( value );
if ( absValue > tolerance ) {
workArea[j] = 0.0;
element[put] = value;
indexRow[put] = indexL[j];
if ( absValue > largest ) {
largest = absValue;
positionLargest = put;
}
put++;
} else {
workArea[j] = 0.0;
added--;
int word = j >> COINFACTORIZATION_SHIFT_PER_INT;
int bit = j & COINFACTORIZATION_MASK_PER_INT;
if ( temp2[word] & ( 1 << bit ) ) {
//take out of row list
iRow = indexL[j];
CoinBigIndex start = startRow[iRow];
CoinBigIndex end = start + numberInRow[iRow];
CoinBigIndex where = start;
while ( indexColumn[where] != iColumn ) {
where++;
} /* endwhile */
#if DEBUG_COIN
if ( where >= end ) {
abort ( );
}
#endif
indexColumn[where] = indexColumn[end - 1];
numberInRow[iRow]--;
} else {
//make sure won't be added
int word = j >> COINFACTORIZATION_SHIFT_PER_INT;
int bit = j & COINFACTORIZATION_MASK_PER_INT;
temp2[word] = temp2[word] | ( 1 << bit ); //say already in counts
}
}
}
numberInColumn[iColumn] = put - startColumnThis;
//move largest
if ( positionLargest >= 0 ) {
value = element[positionLargest];
iRow = indexRow[positionLargest];
element[positionLargest] = element[startColumnThis];
indexRow[positionLargest] = indexRow[startColumnThis];
element[startColumnThis] = value;
indexRow[startColumnThis] = iRow;
}
//linked list for column
if ( nextCount[iColumn + numberRows_] != -2 ) {
//modify linked list
deleteLink ( iColumn + numberRows_ );
addLink ( iColumn + numberRows_, numberInColumn[iColumn] );
}
temp2 += increment2;
}
//get space for row list
unsigned int *putBase = workArea2;
int bigLoops = numberDoColumn >> COINFACTORIZATION_SHIFT_PER_INT;
int i = 0;
// do linked lists and update counts
while ( bigLoops ) {
bigLoops--;
int bit;
for ( bit = 0; bit < COINFACTORIZATION_BITS_PER_INT; i++, bit++ ) {
unsigned int *putThis = putBase;
int iRow = indexL[i];
//get space
int number = 0;
int jColumn;
for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
unsigned int test = *putThis;
putThis += increment2;
test = 1 - ( ( test >> bit ) & 1 );
number += test;
}
int next = nextRow[iRow];
CoinBigIndex space;
space = startRow[next] - startRow[iRow];
number += numberInRow[iRow];
if ( space < number ) {
if ( !getRowSpace ( iRow, number ) ) {
goto BAD_PIVOT;
}
}
// now do
putThis = putBase;
next = nextRow[iRow];
number = numberInRow[iRow];
CoinBigIndex end = startRow[iRow] + number;
int saveIndex = indexColumn[startRow[next]];
//add in
for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
unsigned int test = *putThis;
putThis += increment2;
test = 1 - ( ( test >> bit ) & 1 );
indexColumn[end] = saveColumn[jColumn];
end += test;
}
//put back next one in case zapped
indexColumn[startRow[next]] = saveIndex;
markRow[iRow] = FAC_UNSET;
number = end - startRow[iRow];
numberInRow[iRow] = number;
deleteLink ( iRow );
addLink ( iRow, number );
}
putBase++;
} /* endwhile */
int bit;
for ( bit = 0; i < numberDoColumn; i++, bit++ ) {
unsigned int *putThis = putBase;
int iRow = indexL[i];
//get space
int number = 0;
int jColumn;
for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
unsigned int test = *putThis;
putThis += increment2;
test = 1 - ( ( test >> bit ) & 1 );
number += test;
}
int next = nextRow[iRow];
CoinBigIndex space;
space = startRow[next] - startRow[iRow];
number += numberInRow[iRow];
if ( space < number ) {
if ( !getRowSpace ( iRow, number ) ) {
goto BAD_PIVOT;
}
}
// now do
putThis = putBase;
next = nextRow[iRow];
number = numberInRow[iRow];
CoinBigIndex end = startRow[iRow] + number;
int saveIndex;
saveIndex = indexColumn[startRow[next]];
//add in
for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
unsigned int test = *putThis;
putThis += increment2;
test = 1 - ( ( test >> bit ) & 1 );
indexColumn[end] = saveColumn[jColumn];
end += test;
}
indexColumn[startRow[next]] = saveIndex;
markRow[iRow] = FAC_UNSET;
number = end - startRow[iRow];
numberInRow[iRow] = number;
deleteLink ( iRow );
addLink ( iRow, number );
}
markRow[iPivotRow] = FAC_UNSET;
//modify linked list for pivots
deleteLink ( iPivotRow );
deleteLink ( iPivotColumn + numberRows_ );
totalElements_ += added;
goodPivot= true;
// **** UGLY UGLY UGLY
}
BAD_PIVOT:
;
}
#undef FAC_UNSET
#endif
|