This file is indexed.

/usr/lib/ats-anairiats-0.2.11/prelude/SATS/arith.sats is in ats-lang-anairiats 0.2.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
(***********************************************************************)
(*                                                                     *)
(*                         Applied Type System                         *)
(*                                                                     *)
(*                              Hongwei Xi                             *)
(*                                                                     *)
(***********************************************************************)

(*
** ATS - Unleashing the Potential of Types!
** Copyright (C) 2002-2010 Hongwei Xi, Boston University
** All rights reserved
**
** ATS is free software;  you can  redistribute it and/or modify it under
** the terms of the GNU LESSER GENERAL PUBLIC LICENSE as published by the
** Free Software Foundation; either version 2.1, or (at your option)  any
** later version.
** 
** ATS is distributed in the hope that it will be useful, but WITHOUT ANY
** WARRANTY; without  even  the  implied  warranty  of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE.  See the  GNU General Public License
** for more details.
** 
** You  should  have  received  a  copy of the GNU General Public License
** along  with  ATS;  see the  file COPYING.  If not, please write to the
** Free Software Foundation,  51 Franklin Street, Fifth Floor, Boston, MA
** 02110-1301, USA.
*)

(* ****** ****** *)

(* author: Hongwei Xi (hwxi AT cs DOT bu DOT edu) *)

(* ****** ****** *)

#include "prelude/params.hats"

(* ****** ****** *)

#if VERBOSE_PRELUDE #then
#print "Loading [arith.sats] starts!\n"
#endif // end of [VERBOSE_PRELUDE]

(* ****** ****** *)

dataprop MUL (int, int, int) =
  | {n:int} MULbas (0, n, 0)
  | {m,n,p:int | m >= 0} MULind (m+1, n, p+n) of MUL (m, n, p)
  | {m,n,p:int | m > 0} MULneg (~m, n, ~p) of MUL (m, n, p)
// end of [MUL]

(* ****** ****** *)

(*
** HX: [mul_make] can be proven based on [mul_istot] and [mul_elim]
*)
praxi mul_make : {m,n:int} () -<prf> MUL (m, n, m*n)
praxi mul_elim : {m,n:int} {p:int} MUL (m, n, p) -<prf> [p == m*n] void

//
// HX: (m+i)*n = m*n+i*n
//
praxi mul_add_const {i:int}
  {m,n:int} {p:int} (pf: MUL (m, n, p)):<prf> MUL (m+i, n, p+i*n)
// end of [mul_add_const]

//
// HX: (ax+b)*(cy+d) = ac*xy + ad*x + bc*y + bd
//
praxi mul_expand_linear
  {a,b:int} {c,d:int} // a,b,c,d: constants!
  {x,y:int} {xy:int} (pf: MUL (x, y, xy)):<prf> MUL (a*x+b, c*y+d, a*c*xy+a*d*x+b*c*y+b*d)
// end of [mul_expand_linear]

//
// HX: (a1x1+a2x2+b)*(c1y1+c2y2+d) = ...
//
praxi
mul_expand2_linear // a1,b1,c1,a2,b2,c2: constants!
  {a1,a2,b:int}
  {c1,c2,d:int}
  {x1,x2:int}
  {y1,y2:int}
  {x1y1,x1y2,x2y1,x2y2:int} (
  pf11: MUL (x1, y1, x1y1), pf12: MUL (x1, y2, x1y2)
, pf21: MUL (x2, y1, x2y1), pf22: MUL (x2, y2, x2y2)
) :<prf> MUL (
  a1*x1+a2*x2+b
, c1*y1+c2*y2+d
, a1*c1*x1y1 + a1*c2*x1y2 +
  a2*c1*x2y1 + a2*c2*x2y2 +
  a1*d*x1 + a2*d*x2 +
  b*c1*y1 + b*c2*y2 +
  b*d
) // end of [mul_expand2_linear]

(* ****** ****** *)

prfun mul_istot {m,n:int} ():<prf> [p:int] MUL (m, n, p)

prfun mul_isfun {m,n:int} {p1,p2:int}
  (pf1: MUL (m, n, p1), pf2: MUL (m, n, p2)):<prf> [p1==p2] void

(* ****** ****** *)

prfun mul_nat_nat_nat :
  {m,n:nat} {p:int} MUL (m, n, p) -<prf> [p >= 0] void
prfun mul_pos_pos_pos :
  {m,n:pos} {p:int} MUL (m, n, p) -<prf> [p >= m+n-1] void

(* ****** ****** *)

prfun mul_negate {m,n:int} {p:int} (pf: MUL (m, n, p)):<prf> MUL (~m, n, ~p)
prfun mul_negate2 {m,n:int} {p:int} (pf: MUL (m, n, p)):<prf> MUL (m, ~n, ~p)

(* ****** ****** *)

prfun mul_commute {m,n:int} {p:int} (pf: MUL (m, n, p)):<prf> MUL (n, m, p)

(* ****** ****** *)
//
// HX: m*(n1+n2) = m*n1+m*n2
//
prfun mul_distribute {m:int} {n1,n2:int} {p1,p2:int}
  (pf1: MUL (m, n1, p1), pf2: MUL (m, n2, p2)):<prf> MUL (m, n1+n2, p1+p2)
//
// HX: (m1+m2)*n = m1*n + m2*n
//
prfun mul_distribute2 {m1,m2:int} {n:int} {p1,p2:int}
  (pf1: MUL (m1, n, p1), pf2: MUL (m2, n, p2)):<prf> MUL (m1+m2, n, p1+p2)

(* ****** ****** *)

prfun
mul_is_associative
  {x,y,z:int}
  {xy,yz,xy_z,x_yz:int} (
  pf1: MUL (x, y, xy)
, pf2: MUL (y, z, yz)
, pf3: MUL (xy, z, xy_z)
, pf4: MUL (x, yz, x_yz)
) :<prf> [xy_z==x_yz] void

(* ****** ****** *)
//
// HX-2010-12-30: 
//
absprop DIVMOD (
  x:int, y: int, q: int, r: int // x = q * y + r
) // end of [DIVMOD]

propdef DIV (x:int, y:int, q:int) = [r:int] DIVMOD (x, y, q, r)
propdef MOD (x:int, y:int, r:int) = [q:int] DIVMOD (x, y, q, r)

praxi div_istot {x,y:int | x >= 0; y > 0} (): DIV (x, y, x/y)

praxi divmod_istot
  {x,y:int | x >= 0; y > 0} (): [q,r:nat | r < y] DIVMOD (x, y, q, r)

praxi divmod_isfun
  {x,y:int | x >= 0; y > 0}
  {q1,q2:int} {r1,r2:int} (
  pf1: DIVMOD (x, y, q1, r1)
, pf2: DIVMOD (x, y, q2, r2)
) : [q1==q2;r1==r2] void // end of [divmod_isfun]
  
praxi divmod_elim
  {x,y:int | x >= 0; y > 0} {q,r:int}
  (pf: DIVMOD (x, y, q, r)): [qy:int | 0 <= r; r < y; x==qy+r] MUL (q, y, qy)
// end of [divmod_elim]

(* ****** ****** *)

(*
dataprop GCD (int, int, int) =
  | {m:nat} GCDbas1 (m, 0, m)
  | {n:pos} GCDbas2 (0, n, n)
  | {m:pos;n:int | m <= n} {r:int} GCDind1 (m, n, r) of GCD (m, n-m, r)
  | {m:int;n:pos | m > n } {r:int} GCDind2 (m, n, r) of GCD (m-n, n, r)
  | {m:nat;n:int | n < 0} {r:int} GCDneg1 (m, n, r) of GCD (m, ~n, r)
  | {m:int;n:int | m < 0} {r:int} GCDneg2 (m, n, r) of GCD (~m, n, r)
// end of [GCD]
*)

//
// HX-2010-12-31: GCD (0, 0, 0): gcd (0, 0) = 0
//
absprop GCD (int, int, int)

prfun gcd_istot {m,n:int} (): [r:nat] GCD (m,n,r)
prfun gcd_isfun {m,n:int} {r1,r2:int}
  (pf1: GCD (m, n, r1), pf2: GCD (m, n, r2)):<prf> [r1==r2] void

prfun gcd_commute {m,n:int} {r:int} (pf: GCD (m, n, r)):<prf> GCD (n, m, r)

(* ****** ****** *)

dataprop EXP2 (int, int) =
  | {n:nat} {p:nat} EXP2ind (n+1, 2*p) of EXP2 (n, p)
  | EXP2bas (0, 1)
// end of [EXP2]

//
// HX: proven in [arith.dats]
//
prfun lemma_exp2_params :
  {n:int}{p:int} EXP2 (n, p) -<prf> [n>=0;p>=1] void
// end of [lemma_exp2_params]
//
prfun exp2_istot {n:nat} (): [p:nat] EXP2 (n, p)
prfun exp2_isfun {n:nat} {p1,p2:int}
  (pf1: EXP2 (n, p1), pf2: EXP2 (n, p2)): [p1==p2] void
// end of [exp2_isfun]
//
prfun exp2_ispos
  {n:nat} {p:int} (pf: EXP2 (n, p)): [p >= 1] void
// end of [exp2_ispos]
//
prfun exp2_ismono
  {n1,n2:nat | n1 <= n2} {p1,p2:int}
  (pf1: EXP2 (n1, p1), pf2: EXP2 (n2, p2)): [p1 <= p2] void
// end of [exp2_ismono]
//
prfun exp2_mul
  {n1,n2:nat | n1 <= n2} {p1,p2:nat} {p:int} (
  pf1: EXP2 (n1, p1), pf2: EXP2 (n2, p2), pf3: MUL (p1, p2, p)
) : EXP2 (n1+n2, p) // end of [exp2_mul]

(* ****** ****** *)

#if VERBOSE_PRELUDE #then
#print "Loading [arith.sats] finishes!\n"
#endif // end of [VERBOSE_PRELUDE]

(* end of [arith.sats] *)