This file is indexed.

/usr/lib/python/astrometry/util/fits.py is in astrometry.net 0.46-0ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
import os
import pyfits
import numpy as np

def pyfits_writeto(p, filename, **kwargs):
    '''
    *p*: HDUList object
    *filename*: uh, the filename to write to
    '''
    # old pyfits versions (eg the one in Ubuntu 10.04)
    # fail when used with python2.7 (warning.showwarning changed)
    # so work-around pyfits printing a warning when it overwrites an
    # existing file.
    if os.path.exists(filename):
        os.remove(filename)
    p.writeto(filename, **kwargs)

def merge_tables(TT, columns=None):
    assert(len(TT) > 0)
    if columns in [None, 'minimal']:
        cols = set(TT[0].get_columns())
        for T in TT[1:]:
            if columns == 'minimal' and len(cols.symmetric_difference(T.get_columns())):
                cols = cols.intersection(T.get_columns())
                continue
    
            # They must have the same set of columns
            if len(cols.symmetric_difference(T.get_columns())):
                print 'Tables to merge must have the same set of columns.'
                print 'First table columns:', cols
                print 'Target table columns:', T.get_columns()
                print 'Difference:', cols.symmetric_difference(T.get_columns())
            assert(len(cols.symmetric_difference(T.get_columns())) == 0)
        cols = list(cols)

        # Reorder the columns to match their order in TT[0].
        ocols = []
        for c in TT[0].get_columns():
            if c in cols and not c in ocols:
                ocols.append(c)
        cols = ocols

    else:
        for i,T in enumerate(TT):
            # ensure they all have the requested columns
            if not set(columns).issubset(set(T.get_columns())):
                print 'Each table to be merged must have the requested columns'
                print 'Table', i, 'is missing columns:', set(columns)-set(T.get_columns())
                print 'columns', columns
                print 'T.columns', T.get_columns()
                assert(False)
        cols = columns
    N = sum([len(T) for T in TT])
    td = tabledata()
    for col in cols:
        if col.startswith('_'):
            continue
        v0 = TT[0].getcolumn(col)
        if isinstance(v0, np.ndarray):
            V = np.concatenate([T.getcolumn(col) for T in TT])
        elif type(v0) is list:
            V = v0
            for T in TT[1:]:
                V.extend(T.getcolumn(col))
        elif np.isscalar(v0):
            #print 'merge_tables: copying scalar from first table:', col, '=', v0
            V = v0
        else:
            raise RuntimeError("pyfits_utils.merge_tables: Don't know how to concatenate type: %s" % str(type(v0)))
            
        td.set(col, V)
    #td._columns = cols
    assert(td._length == N)
    return td
    

def add_nonstructural_headers(fromhdr, tohdr):
    for card in fromhdr.ascardlist():
        if ((card.key in ['SIMPLE','XTENSION', 'BITPIX', 'END', 'PCOUNT', 'GCOUNT',
                          'TFIELDS',]) or
            card.key.startswith('NAXIS') or
            card.key.startswith('TTYPE') or
            card.key.startswith('TFORM')):
            #card.key.startswith('TUNIT') or
            #card.key.startswith('TDISP')):
            #print 'skipping card', card.key
            continue
        #if tohdr.has_key(card.key):
        #   #print 'skipping existing card', card.key
        #   continue
        #print 'adding card', card.key
        #tohdr.update(card.key, card.value, card.comment, before='END')
        #tohdr.ascardlist().append(
        cl = tohdr.ascardlist()
        if 'END' in cl.keys():
            i = cl.index_of('END')
        else:
            i = len(cl)
        cl.insert(i, pyfits.Card(card.key, card.value, card.comment))

def cut_array(val, I, name=None, to=None):
    if type(I) is slice:
        if to is None:
            return val[I]
        else:
            val[I] = to
            return

    if type(val) in [np.ndarray, np.core.defchararray.chararray]:
        #print 'slicing numpy array "%s": val shape' % name, val.shape
        #print 'slice shape:', I.shape
        # You can't slice a two-dimensional, length-zero, numpy array,
        # with an empty array.
        if len(val) == 0:
            return val
        if to is None:
            return val[I]
        else:
            val[I] = to
            return

    inttypes = [int, np.int64, np.int32, np.int]

    if type(val) in [list,tuple] and type(I) in inttypes:
        if to is None:
            return val[I]
        else:
            val[I] = to
            return

    # HACK -- emulate numpy's boolean and int array slicing
    # (when "val" is a normal python list)
    if type(I) is np.ndarray and hasattr(I, 'dtype') and ((I.dtype.type in [bool, np.bool])
                                                             or (I.dtype == bool)):
        try:
            if to is None:
                return [val[i] for i,b in enumerate(I) if b]
            else:
                for i,(b,t) in enumerate(zip(I,to)):
                    if b:
                        val[i] = t
                return
        except:
            print 'Failed to slice field', name
            #setattr(rtn, name, val)
            #continue

    if type(I) is np.ndarray and all(I.astype(int) == I):
        if to is None:
            return [val[i] for i in I]
        else:
            #[val[i] = t for i,t in zip(I,to)]
            for i,t in zip(I,to):
                val[i] = t
                
    if (np.isscalar(I) and hasattr(I, 'dtype') and
        I.dtype in inttypes):
        if to is None:
            return val[int(I)]
        else:
            val[int(I)] = to
            return

    if hasattr(I, '__len__') and len(I) == 0:
        return []

    print 'Error slicing array:'
    print 'array is'
    print '  type:', type(val)
    print '  ', val
    print 'cut is'
    print '  type:', type(I)
    print '  ', I
    raise Exception('Error in cut_array')

class tabledata(object):

    class td_iter(object):
        def __init__(self, td):
            self.td = td
            self.i = 0
        def __iter__(self):
            return self
        def next(self):
            if self.i >= len(self.td):
                raise StopIteration
            X = self.td[self.i]
            self.i += 1
            return X


    def __init__(self, header=None):
        self._length = 0
        self._header = header
        self._columns = []
    def __str__(self):
        return 'tabledata object with %i rows and %i columns' % (len(self), len([k for k in self.__dict__.keys() if not k.startswith('_')]))
    def about(self):
        keys = [k for k in self.__dict__.keys() if not k.startswith('_')]
        print 'tabledata object with %i rows and %i columns:' % (len(self),  len(keys))
        keys.sort()
        for k in keys:
            print '  ', k,
            v = self.get(k)
            print '(%s)' % (str(type(v))),
            if np.isscalar(v):
                print v,
            elif hasattr(v, 'shape'):
                print 'shape', v.shape,
            elif hasattr(v, '__len__'):
                print 'length', len(v),
            else:
                print v,

            if hasattr(v, 'dtype'):
                print 'dtype', v.dtype,
            print

    def __setattr__(self, name, val):
        object.__setattr__(self, name, val)
        #print 'set', name, 'to', val
        if (self._length == 0) and (not (name.startswith('_'))) and hasattr(val, '__len__') and len(val) != 0 and type(val) != str:
            self._length = len(val)
        if hasattr(self, '_columns') and not name in self._columns:
            self._columns.append(name)
    def set(self, name, val):
        self.__setattr__(name, val)
    def getcolumn(self, name):
        return self.__dict__[name]
        #except:
        #   return self.__dict__[name.lower()]
    def get(self, name):
        return self.getcolumn(name)
    # Returns the list of column names, as they were ordered in the input FITS or text table.
    def get_columns(self, internal=False):
        if internal:
            return self._columns[:]
        return [x for x in self._columns if not x.startswith('_')]
    # Returns the original FITS header.
    def get_header(self):
        return self._header

    def columns(self):
        return [k for k in self.__dict__.keys() if not k.startswith('_')]
    def __len__(self):
        return self._length
    def delete_column(self, c):
        del self.__dict__[c]
        self._columns.remove(c)

    def rename(self, c_old, c_new):
        setattr(self, c_new, getattr(self, c_old))
        self.delete_column(c_old)
        
    def __setitem__(self, I, O):

        #### TEST

        for name,val in self.__dict__.items():
            if name.startswith('_'):
                continue
            cut_array(val, I, name, to=O.get(name))
        return
        ####

        
        if type(I) is slice:
            print 'I:', I
            # HACK... "[:]" -> slice(None, None, None)
            if I.start is None and I.stop is None and I.step is None:
                I = np.arange(len(self))
            else:
                I = np.arange(I.start, I.stop, I.step)
        for name,val in self.__dict__.items():
            if name.startswith('_'):
                continue
            # ?
            if np.isscalar(val):
                self.set(name, O.get(name))
                continue
            try:
                val[I] = O.get(name)
            except Exception:
                # HACK -- emulate numpy's boolean and int array slicing...
                ok = False
                #if type(I) == np.ndarray and hasattr(I, 'dtype') and I.dtype == bool:
                #   for i,b in enumerate(I):
                #       if b:
                #           val[i] = O.get(val)
                #   ok = True
                #if type(I) == np.ndarray and hasattr(I, 'dtype') and I.dtype == 'int':
                #   rtn.set(name, [val[i] for i in I])
                #   ok = True
                #if len(I) == 0:
                #   rtn.set(name, [])
                #   ok = True
                if not ok:
                    print 'Error in slicing an astrometry.util.pyfits_utils.table_data object:'
                    #print '  -->', e

                    import pdb; pdb.set_trace()

                    print 'While setting member:', name
                    print ' setting elements:', I
                    print ' from obj', O
                    print ' target type:', type(O.get(name))
                    print ' dest type:', type(val)
                    print 'index type:', type(I)
                    #if hasattr(val, 'shape'):
                    #   print ' shape:', val.shape
                    #if hasattr(I, 'shape'):
                    #   print ' index shape:', I.shape
                    if hasattr(I, 'dtype'):
                        print '  index dtype:', I.dtype
                    print 'my length:', self._length
                    raise Exception('error in fits_table indexing')

    def copy(self):
        rtn = tabledata()
        for name,val in self.__dict__.items():
            if name.startswith('_'):
                continue
            if np.isscalar(val):
                #print 'copying scalar', name
                rtn.set(name, val)
                continue
            if type(val) in [np.ndarray, np.core.defchararray.chararray]:
                #print 'copying numpy array', name
                rtn.set(name, val.copy())
                continue
            if type(val) in [list,tuple]:
                #print 'copying list', name
                rtn.set(name, val[:])
                continue
            print 'in pyfits_utils: copy(): can\'t copy', name, '=', val[:10], 'type', type(val)
        rtn._header = self._header
        if hasattr(self, '_columns'):
            rtn._columns = [c for c in self._columns]
        return rtn

    def cut(self, I):
        for name,val in self.__dict__.items():
            if name.startswith('_'):
                continue
            if np.isscalar(val):
                continue
            #print 'cutting', name
            C = cut_array(val, I, name)
            self.set(name, C)
            self._length = len(C)

    def __getitem__(self, I):
        rtn = tabledata()
        for name,val in self.__dict__.items():
            if name.startswith('_'):
                continue
            if np.isscalar(val):
                rtn.set(name, val)
                continue
            try:
                C = cut_array(val, I, name)
            except:
                print 'Error in cut_array() via __getitem__, name', name
                raise
            rtn.set(name, C)

            if np.isscalar(I):
                rtn._length = 1
            else:
                rtn._length = len(getattr(rtn, name))
        rtn._header = self._header
        if hasattr(self, '_columns'):
            rtn._columns = [c for c in self._columns]
        return rtn
    def __iter__(self):
        return tabledata.td_iter(self)

    def append(self, X):
        for name,val in self.__dict__.items():
            if name.startswith('_'):
                continue
            if np.isscalar(val):
                continue
            try:
                val2 = X.getcolumn(name)
                if type(val) is list:
                    newX = val + val2
                else:
                    newX = np.append(val, val2, axis=0)
                self.set(name, newX)
                self._length = len(newX)
            except Exception:
                print 'exception appending element "%s"' % name
                raise
                
    def write_to(self, fn, columns=None, header='default', primheader=None,
                 use_fitsio=True, append=False):

        fitsio = None
        if use_fitsio:
            try:
                import fitsio
            except:
                pass

        if columns is None:
            columns = self.get_columns()

        if fitsio:
            arrays = [self.get(c) for c in columns]
            # fitsio has *strange* behavior when file already exists.
            if os.path.exists(fn):
                if not append:
                    os.unlink(fn)
            fits = fitsio.FITS(fn, 'rw')

            #for a,c in zip(arrays, columns):
            #   print 'Writing:', c, 'shape', getattr(a, 'shape', None), 'type', (getattr(a, 'dtype', type(a)))

            if header == 'default':
                header = None
            try:
                fits.write(arrays, names=columns, header=header)
            except:
                print 'Failed to write FITS table'
                print 'Columns:'
                for c,a in zip(columns, arrays):
                    print '  ', c, type(a),
                    try:
                        print a.dtype, a.shape,
                    except:
                        pass
                    print
                raise
            return


        fc = self.to_fits_columns(columns)
        #print 'FITS columns:', fc
        T = pyfits.new_table(fc)
        if header == 'default':
            header = self._header
        if header is not None:
            add_nonstructural_headers(header, T.header)
        if primheader is not None:
            P = pyfits.PrimaryHDU()
            add_nonstructural_headers(primheader, P.header)
            pyfits.HDUList([P, T]).writeto(fn, clobber=True)
        else:
            pyfits_writeto(T, fn)

    writeto = write_to

    def normalize(self, columns=None):
        if columns is None:
            columns = self.get_columns()
        for c in columns:
            X = self.get(c)
            X = normalize_column(X)
            self.set(c, X)

    def to_fits_columns(self, columns=None):
        cols = []

        fmap = {np.float64:'D',
                np.float32:'E',
                np.int32:'J',
                np.int64:'K',
                np.uint8:'B', #
                np.int16:'I',
                #np.bool:'X',
                #np.bool_:'X',
                np.bool:'L',
                np.bool_:'L',
                np.string_:'A',
                }

        if columns is None:
            columns = self.get_columns()
                
        for name in columns:
            if not name in self.__dict__:
                continue
            val = self.get(name)

            #print 'col', name, 'type', val.dtype, 'descr', val.dtype.descr
            #print repr(val.dtype)
            #print val.dtype.type
            #print repr(val.dtype.type)
            #print val.shape
            #print val.size
            #print val.itemsize

            if type(val) in [list, tuple]:
                val = np.array(val)

            try:
                val = normalize_column(val)
            except:
                pass

            try:
                fitstype = fmap.get(val.dtype.type, 'D')
            except:
                print 'Table column "%s" has no "dtype"; skipping' % name
                continue

            if fitstype == 'X':
                # pack bits...
                pass
            if len(val.shape) > 1:
                fitstype = '%i%s' % (val.shape[1], fitstype)
            elif fitstype == 'A' and val.itemsize > 1:
                # strings
                fitstype = '%i%s' % (val.itemsize, fitstype)
            else:
                fitstype = '1'+fitstype
            #print 'fits type', fitstype
            try:
                col = pyfits.Column(name=name, array=val, format=fitstype)
            except:
                print 'Error converting column', name, 'to a pyfits column:'
                print 'fitstype:', fitstype
                try:
                    print 'numpy dtype:'
                    print val.dtype
                    print val.dtype.type
                except:
                    pass
                print 'value:', val
                raise
            cols.append(col)
            #print 'fits type', fitstype, 'column', col
            #print repr(col)
            #print 'col', name, ': data length:', val.shape
        return cols

    def add_columns_from(self, X):
        assert(len(self) == len(X))
        mycols = self.get_columns()
        for c in X.get_columns():
            if c in mycols:
                print 'Not copying existing column', c
                continue
            self.set(c, X.get(c))

def normalize_column(X):
    try:
        dt = X.dtype
    except:
        return X
    if dt.byteorder in ['>','<']:
        # go native
        X = X.astype(dt.newbyteorder('N'))
    return X

def fits_table(dataorfn=None, rows=None, hdunum=1, hdu=None, ext=None,
               header='default',
               columns=None,
               column_map=None,
               lower=True,
               mmap=True,
               normalize=True,
               use_fitsio=True):
    '''
    If 'columns' (a list of strings) is passed, only those columns
    will be read; otherwise all columns will be read.
    '''
    if dataorfn is None:
        return tabledata(header=header)
    
    fitsio = None
    if use_fitsio:
        try:
            import fitsio
        except:
            pass

    pf = None
    hdr = None
    # aliases
    if hdu is not None:
        hdunum = hdu
    if ext is not None:
        hdunum = ext
    if isinstance(dataorfn, str):

        if fitsio:
            F = fitsio.FITS(dataorfn)
            data = F[hdunum]
            hdr = data.read_header()
        else:
            pf = pyfits.open(dataorfn, memmap=mmap)
            data = pf[hdunum].data
            if header == 'default':
                hdr = pf[hdunum].header
            del pf
            pf = None
    else:
        data = dataorfn

    if data is None:
        return None
    T = tabledata(header=hdr)

    T._columns = []

    if fitsio and not (type(data) == pyfits.core.FITS_rec):
        # fitsio sorts the rows and de-duplicates them, so compute
        # permutation vector 'I' to undo that.
        I = None
        if rows is not None:
            rows,I = np.unique(rows, return_inverse=True)

        if type(data) == np.ndarray:
            dd = data
            if columns is None:
                columns = data.dtype.fields.keys()
        else:
            dd = data.read(rows=rows, columns=columns, lower=True)
            if dd is None:
                return None

        if columns is None:
            try:
                columns = data.get_colnames()
            except:
                columns = data.colnames

            if lower:
                columns = [c.lower() for c in columns]

        for c in columns:
            X = dd[c.lower()]
            if I is not None:
                # apply permutation
                X = X[I]
            if column_map is not None:
                c = column_map.get(c, c)
            if lower:
                c = c.lower()
            T.set(c, X)
        
    else:
        if columns is None:
            columns = data.dtype.names
        for c in columns:
            #print 'reading column "%s"' % c
            col = data.field(c)
            if rows is not None:
                col = col[rows]
            if normalize:
                col = normalize_column(col)
            if column_map is not None:
                c = column_map.get(c, c)
            if lower:
                c = c.lower()
            T.set(c, col)

    return T

table_fields = fits_table

### FIXME -- it would be great to have a streaming text2fits as well!
### (fitsio does this fairly easily)
def streaming_text_table(forfn, skiplines=0, split=None, maxcols=None,
                         headerline=None, coltypes=None,
                         intvalmap={'NaN':-1000000, '':-1000000},
                         floatvalmap={'': np.nan},
                         skipcomments=True):
    # unimplemented
    assert(maxcols is None)

    f = None
    if isinstance(forfn, str):
        f = open(forfn)
        print 'Reading file', forfn
    else:
        f = forfn

    for i in range(skiplines):
        x = f.readline()
        print 'Skipping line:', x

    if headerline is None:
        headerline = f.readline().strip()
        print 'Header:', headerline
    header = headerline

    if header[0] == '#':
        header = header[1:]

    if split is None:
        colnames = header.split()
    else:
        colnames = header.split(split)
    print 'Column names:', colnames

    if coltypes is not None:
        if len(coltypes) != len(colnames):
            print 'Column names:', len(colnames)
            print 'Column types:', len(coltypes)
            raise Exception('Column names vs types length mismatch: %i vs %i' %
                            (len(colnames), len(coltypes)))
    else:
        coltypes = [str] * len(colnames)

    Nchunk = 100000
    alldata = []
    ncomplain = 0
    i0 = 0
    while True:
        import time
        t0 = time.clock()

        # Create empty data arrays
        data = [[None] * Nchunk for t in coltypes]
        j = 0
        lines = []
        for i,line in zip(xrange(Nchunk), f):
            line = line.strip()
            if line.startswith('#') and skipcomments:
                print 'Skipping comment line:'
                print line
                print
                continue
            if split is None:
                words = line.split()
            else:
                words = line.split(split)
            if len(words) != len(colnames):
                ncomplain += 1
                if ncomplain > 10:
                    continue
                print ('Expected to find %i columns of data to match headers (%s) in row %i; got %i\n    "%s"\n(Skipping this row of the input file)' %
                       (len(colnames), ', '.join(colnames), i+i0, len(words), line))
                continue
            for d,w in zip(data, words):
                d[j] = w
            j += 1
        nread = i+1
        goodrows = j
        
        t1 = time.clock()

        floattypes = [float,np.float32,np.float64]
        inttypes = [int, np.int32, np.int64]

        for dat,typ in zip(data, coltypes):
            if typ in floattypes:
                valmap = floatvalmap
            elif typ in inttypes:
                valmap = intvalmap
            else:
                continue
            # HACK -- replace with stringified versions of bad-values
            valmap = dict([(k,str(v)) for k,v in valmap.items()])
            for i,d in enumerate(dat):
                #dat[i] = valmap.get(d,d)
                # try:
                #     dat[i] = valmap[d]
                # except KeyError:
                #     pass
                if d in valmap:
                    dat[i] = valmap[d]
        t2 = time.clock()
                    
        # trim to valid rows
        data = [dat[:goodrows] for dat in data]
        # convert
        data = [np.array(dat).astype(typ) for dat,typ in zip(data, coltypes)]
                    
        t3 = time.clock()

        #print 'Reading & splitting:', t1-t0
        #print 'Bad values:', t2-t1
        #print 'Conversion:', t3-t2
        #print 'Total:', t3-t0

        # print 'Read', i+1, 'lines'
        # print 'Read', j, 'valid lines'
        print 'Read line', i0 + nread
        
        alldata.append(data)
        i0 += nread

        if nread != Nchunk:
            break
        
    if ncomplain > 10:
        print 'Total of', ncomplain, 'bad lines'

    # merge chunks
    T = tabledata()
    for name in reversed(colnames):
        print 'Merging', name
        xx = [data.pop() for data in alldata]
        print 'lengths:', [len(x) for x in xx]
        xx = np.hstack(xx)
        print 'total:', len(xx)
        print 'type:', xx.dtype
        T.set(name, xx)

    return T
        
# ultra-brittle text table parsing.
def text_table_fields(forfn, text=None, skiplines=0, split=None, trycsv=True, maxcols=None, headerline=None, coltypes=None,
                      intvalmap={'NaN':-1000000, '':-1000000},
                      floatvalmap={}):
    if text is None:
        f = None
        if isinstance(forfn, str):
            f = open(forfn)
            print 'Reading file', forfn
            data = f.read()
            f.close()
        else:
            data = forfn.read()
            print 'Read', len(data), 'bytes'
    else:
        data = text

    # replace newline variations with a single newline character
    print 'Replacing line endings'
    data = data.replace('\r\n','\n') # windows
    data = data.replace('\r','\n') # mac os
    print 'Splitting lines'
    txtrows = data.split('\n')
    print 'Got', len(txtrows), 'lines'
    print 'First line:', txtrows[0]
    print 'Last line:', txtrows[-1]
    if txtrows[-1] == '':
        print 'Trimming last line.'
        txtrows = txtrows[:-1]
        print 'Last line now:', txtrows[-1]
    if skiplines != 0:
        txtrows = txtrows[skiplines:]
        print 'Skipped', skiplines, 'kept', len(txtrows)

    if headerline is None:
        # column names are in the first (un-skipped) line.
        header = txtrows.pop(0)
        if header[0] == '#':
            header = header[1:]
    else:
        header = headerline
    header = header.split()
    if len(header) == 0:
        raise Exception('Expected to find column names in the first row of text; got \"%s\".' % txt)
    print 'Header:', len(header), 'columns'
    #assert(len(header) >= 1)
    if trycsv and (split is None) and (len(header) == 1) and (',' in header[0]):
        # try CSV
        header = header[0].split(',')
    colnames = header

    if coltypes is not None:
        if len(coltypes) != len(colnames):
            raise Exception('Column types: length %i, vs column names, length %i' %
                            (len(coltypes), len(colnames)))

    fields = tabledata()
    txtrows = [r for r in txtrows if not r.startswith('#')]
    print 'Kept', len(txtrows), 'non-commented rows'
    coldata = [[] for x in colnames]
    ncomplain = 0
    for i,r in enumerate(txtrows):
        if i and (i % 1000000 == 0):
            print 'Row', i
        if maxcols is not None:
            r = r[:maxcols]
        if split is None:
            cols = r.split()
        else:
            cols = r.split(split)
        if len(cols) == 0:
            continue
        if trycsv and (split is None) and (len(cols) != len(colnames)) and (',' in r):
            # try to parse as CSV.
            cols = r.split(',')
            
        if len(cols) != len(colnames):
            #raise Exception('Expected to find %i columns of data to match headers (%s) in row %i; got %i\n "%s"' % (len(colnames), ', '.join(colnames), i, len(cols), r))
            ncomplain += 1
            if ncomplain > 10:
                continue
            print 'Expected to find %i columns of data to match headers (%s) in row %i; got %i\n    "%s"' % (len(colnames), ', '.join(colnames), i, len(cols), r)
            continue
        #assert(len(cols) == len(colnames))
        if coltypes is not None:
            floattypes = [float,np.float32,np.float64]
            for i,(cd,c,t) in enumerate(zip(coldata, cols, coltypes)):
                if t in floattypes:
                    if len(c) == 0:
                        cd.append(np.nan)
                        continue
                    c = floatvalmap.get(c, c)

                if t in [int, np.int32, np.int64]:
                    try:
                        cd.append(t(c))
                    except:
                        if c in intvalmap:
                            cd.append(intvalmap[c])
                        else:
                            raise
                else:
                    cd.append(t(c))
        else:
            for cd,c in zip(coldata, cols):
                cd.append(c)

    if ncomplain > 10:
        print 'Total of', ncomplain, 'bad lines'
                
    if coltypes is None:
        for i,col in enumerate(coldata):
            isint = True
            isfloat = True
            for x in col:
                try:
                    float(x)
                except:
                    isfloat = False
                    #isint = False
                    #break
                try:
                    int(x, 0)
                except:
                    isint = False
                    #break
                if not isint and not isfloat:
                    break
            if isint:
                isfloat = False
    
            if isint:
                vals = [int(x, 0) for x in col]
            elif isfloat:
                vals = [float(x) for x in col]
            else:
                vals = col
    
            fields.set(colnames[i].lower(), np.array(vals))
            fields._length = len(vals)
    else:
        for i,(col,ct) in enumerate(zip(coldata, coltypes)):
            fields.set(colnames[i].lower(), np.array(col)) #, dtype=ct))

    fields._columns = [c.lower() for c in colnames]

    return fields