/usr/share/doc/argyll/colprof.html is in argyll 1.5.1-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>colprof</title>
<meta http-equiv="content-type" content="text/html;
charset=ISO-8859-1">
<meta name="author" content="Graeme Gill">
</head>
<body>
<h2> profile/colprof</h2>
<h3>Summary</h3>
Create an <a href="File_Formats.html#ICC">ICC</a> profile from
the <a href="File_Formats.html#.ti3">.ti3</a> test chart patch
values.<br>
<h3>Usage Summary</h3>
<tt><small>colprof [-<i>options</i>] inoutfile<br>
<a href="#v">-v</a>
Verbose mode<br>
<a href="#A">-A "manufacturer"</a> Set the
manufacturer description string<br>
<a href="#M">-M "model"</a>
Set the model
description string<br>
<a href="#D">-D "description"</a> Set the
profile Description string (Default "<span
style="font-style: italic;">inoutfile</span>")<br>
<a href="#C">-C "copyright"</a> Set the
copyright string<br>
<a href="#Za">-Z tmnb </a>
Attributes:
Transparency, Matte, Negative, BlackAndWhite<br>
</small></tt><tt><small> <a href="colprof.html#Zi">-Z prsa</a>
Default
intent: Perceptual, Rel. Colorimetric, Saturation, Abs.
Colorimetric</small></tt><tt><br>
</tt><tt> </tt><tt><small> <a href="#q">-q lmhu</a>
Quality - Low,
Medium (def), High, Ultra<br>
<a href="#b">-b [lmhun]</a>
Low quality B2A table - or specific B2A quality or none
for input device<br>
<a href="#y">-y</a>
Verify A2B profile<br>
<a href="#ni">-ni</a>
Don't create input (Device) shaper
curves<br>
</small></tt><tt><small> <a href="#np">-np</a>
Don't create input (Device) grid position curves</small></tt><tt><br>
</tt><tt> </tt><tt><small> <a href="#no">-no</a>
Don't create output (PCS) shaper
curves<br>
</small></tt><tt><small> <a href="#nc">-nc</a>
Don't put the input .ti3 data in the profile</small></tt><tt><br>
</tt><tt> </tt><tt><small> <a href="#k">-k zhxr</a>
Black generation: z = zero K,<br>
h
=
0.5
K
(def),
x
=
max K, r = ramp K<br>
<a href="#kp">-k p stle stpo enpo enle shape</a><br>
stle:
K
level
at
White
0.0
- 1.0<br>
stpo:
start
point
of
transition
Wh
0.0 - Bk 1.0<br>
enpo:
End
point
of
transition
Wh
0.0 - Bk 1.0<br>
enle:
K
level
at
Black
0.0 - 1.0<br>
shape:
1.0
=
straight,
0.0-1.0
concave,
1.0-2.0 convex<br>
<a href="#K">-K parameters</a>
Same as -k, but target is K locus rather than K value itself<br>
<a href="#l">-l <i>tlimit</i></a>
override CMYK total ink limit, 0 - 400%
(default from .ti3)<br>
<a href="#L">-L <i>klimit</i></a>
override black ink limit, 0 - 100% (default
from .ti3)<br>
<a href="#a">-a lxXgsmGS</a>
Algorithm type override<br>
l
=
Lab
cLUT
(def.),
x = XYZ cLUT, X = display XYZ cLUT + matrix<br>
g
=
gamma+matrix,
s
=
shaper+matrix, m = matrix only,<br>
G
=
single
gamma+matrix,
S
=
single shaper+matrix<br>
<a href="#u">-u</a>
If input profile, auto scale WP to allow extrapolation</small></tt><tt><br>
</tt><tt> </tt><tt><small><small> <a href="#uc">-uc</a>
If input profile, clip cLUT values above WP<br>
</small> </small></tt><tt><small><a href="#U">-U <span
style="font-style: italic;">scale</span></a>
If input
profile, scale media white point by scale</small></tt><tt><br>
</tt><tt> </tt><tt> </tt><tt><a href="#R">-R</a></tt><tt>
Restrict
white
<=
1.0,
black
and
primaries to be +ve</tt><tt><br>
</tt><tt> </tt><tt><small><small><a
href="file:///D:/src/argyll/doc/colprof.html#f">-f [<i>illum</i>]</a>
Use Fluorescent
Whitening Agent compensation [opt. simulated inst. illum.:<br>
M0, M1, M2, </small></small></tt><tt><small><small><small>A,
C, D50 (def.), D50M2, D65, F5, F8, F10 or file.sp ]</small></small></small></tt><tt><br>
</tt><tt><small><small><small><small> <a
href="file:///D:/src/argyll/doc/colprof.html#i">-i <i>illum</i></a>
Choose illuminant for
computation of CIE XYZ from spectral data & FWA:<br>
A,
C,
D50
(def.),
D50M2,
D65, F5, F8, F10 or file.sp</small></small></small><br>
<a href="#o">-o <i>observ</i></a>
Choose CIE Observer for spectral data:<br>
1931_2 </small></tt><tt><small>(def.)</small></tt><tt><small>,
1964_10, S&B 1955_2, shaw, J&V 1978_2<br>
<a href="#r">-r avgdev</a>
Average deviation of device+instrument readings as
a percentage (default 0.5%)<br>
<a href="#s">-s src.icc</a>
Apply
gamut
mapping
to
output
profile
perceptual
B2A
table
for
given source<br>
<a href="#S">-S src.icc</a>
Apply gamut mapping to output profile perceptual and saturation
B2A table<br>
<a href="#nP">-nP</a>
Use colormetric source gamut to make output profile perceptual
table<br>
<a href="#nS">-nS</a>
Use colormetric source gamut to make output profile saturation
table<br>
<a href="#g">-g src.gam</a>
Use source image
gamut as well for output profile gamut mapping<br>
<a href="#p">-p aprof.icm,...</a> Incorporate
abstract profile(s) into output tables<br>
<a href="#t">-t intent</a>
Override gamut
mapping intent for output profile perceptual table:<br>
<a href="#T">-T intent</a>
Override gamut mapping intent for output profile saturation
table:<br>
</small></tt><tt><small>
a - Absolute Colorimetric (in Jab) [ICC Absolute Colorimetric]<br>
aw - Absolute Colorimetric
(in Jab) with scaling to fit white point<br>
aa - Absolute Appearance<br>
r - White Point Matched
Appearance [ICC Relative Colorimetric]<br>
la - Luminance matched Appearance<br>
p - Perceptual (Preferred) [ICC
Perceptual]<br>
</small></tt><tt><small>
pa - Perceptual Appearance</small></tt><tt><br>
</tt><tt> </tt><tt><small>
ms - Saturation<br>
s - Enhanced Saturation [ICC
Saturation]<br>
al - Absolute Colorimetric (Lab)</small></tt><tt><small><br>
<a href="#c">-c viewcond</a>
set input viewing conditions for output profile CIECAM02 gamut
mapping,<br>
either an enumerated choice, or a parameter<br>
<a href="#d">-d viewcond</a>
set output viewing conditions for output profile CIECAM02, gamut
mapping<br>
either an enumerated choice, or a parameter:value change<br>
Also sets out of gamut clipping CAM space.<br>
Enumerated Viewing Conditions:<br>
</small></tt><tt><small>
pp - Practical Reflection Print (ISO-3664
P2)<br>
pe - Print evaluation environment (CIE
116-1995)<br>
</small></tt><tt><small>
pc - Critical print evaluation
environment (ISO-3664 P1)</small></tt><tt><br>
</tt><tt> </tt><tt><small>
mt - Monitor in typical work
environment<br>
mb - Monitor in bright work environment<br>
md - Monitor in darkened work environment<br>
jm - Projector in dim environment<br>
jd - Projector in dark environment<br>
pcd - Photo CD - original scene outdoors<br>
ob - Original scene - Bright Outdoors<br>
cx - Cut Sheet Transparencies on a viewing box</small></tt><tt><small><br>
s:surround n = auto, a = average, m =
dim, d = dark,<br>
c = transparency (default average)<br>
w:X:Y:Z Adapted white point
as XYZ (default media white)<br>
w:x:y Adapted
white point as x, y<br>
a:adaptation Adaptatation
luminance in cd.m^2 (default 50.0)<br>
b:background Background %
of image luminance (default 20)<br>
l:scenewhite
Scene white in cd.m^2 if surround = auto (default 250)<br>
f:flare Flare light % of
image luminance (default 1)<br>
f:X:Y:Z Flare color as XYZ
(default media white)<br>
f:x:y Flare
color as x, y<br>
<a href="#P">-P</a>
Create gamut gammap_p.wrl and gammap_s.wrl diagostics<br>
</small></tt><tt><small> <a href="#O">-O outputfile</a>
Override
the default output filename & extension.</small></tt><tt><br>
</tt><tt> </tt><tt><small> <a href="#p1"><i>inoutfile</i></a>
Base name for
input.ti3/output.icc file</small></tt><br>
<h3>Options<br>
</h3>
<b><a name="v"></a>-v</b> Turn on verbose mode. Gives progress
information as the profile is created. Since colprof can take a long
time to generate, this is often useful to monitor progress. If used
in combination with the <b>-y</b> flag, the error of each test
point to the resulting profile will be printed out.<br>
<br>
<a name="A"></a>The <b>-A</b> parameter allows setting of the
device manufacturer description tag. The parameter should be a
string that identifies the manufacturer of the device being
profiled. With most command line shells, it will be necessary to
enclose the parameter with double quotes, so that spaces and other
special characters are included in the parameter, and not mistaken
for the start of another flag, or as a final command line
parameters. By default no manufacturer description string tag will
be generated for the profile.<br>
<br>
<a name="M"></a>The <b>-M</b> parameter allows setting of the
device mode description tag. The parameter should be a string that
identifies the particular model of device being profiled. With most
command line shells, it will be necessary to enclose the parameter
with double quotes, so that spaces and other special characters are
included in the parameter, and not mistaken for the start of another
flag, or as a final command line parameters. By default no model
description string tag will be generated for the profile.<br>
<br>
<a name="D"></a>The <b>-D</b> parameter allows setting of the
profile description tag. The parameter should be a string that
describes the device and profile. On many systems, it will be this
string that will be used to identify the profile from a list of
possible profiles. With most command line shells, it will be
necessary to enclose the parameter with double quotes, so that
spaces and other special characters are included in the parameter,
and not mistaken for the start of another flag, or as a final
command line parameter. Many programs that deal with ICC profiles
use the description tag to identify a profile, rather than the
profile filename, so using a descriptive string is important in
being able to find a profile. By default, the base name of the
resulting profile will be used as the description.<br>
<br>
<a name="C"></a>The <b>-C</b> parameter allows setting of the
profile copyright tag. The parameter should be a string that
describes the copyright (if any) claimed on the profile being
generated.. With most command line shells, it will be necessary to
enclose the parameter with double quotes, so that spaces and other
special characters are included in the parameter, and not mistaken
for the start of another flag, or as a final command line
parameters. By default a generic copyright string will be generated
for the profile.<br>
<br>
<a name="Za"></a>The <b>-Z</b> parameter allows setting of the
profile attribute flags. There are four flags: <span
style="font-weight: bold;">t</span> to set Transparency, the
default being Reflective; <span style="font-weight: bold;">m</span>
to set Matte, the default is Glossy; <span style="font-weight:
bold;">n</span> to set Negative, the default is Positive; <span
style="font-weight: bold;">b</span> to set BlackAndWhite, the
default is Color.<br>
<br>
<a name="Zi"></a>The <b>-Z</b> parameter allows setting of the
profile default intent. The default intent can be one of the four
standard intents: <span style="font-weight: bold;">p</span> to set
Perceptual, <span style="font-weight: bold;">r</span> to set
Relative Colorimetric, <span style="font-weight: bold;">s</span> to
set Saturation, and <span style="font-weight: bold;">a</span> to
set Absolute colorimetric.<br>
<br>
<a name="q"></a> The <b>-q</b> parameter sets the level of effort
and/or detail in the resulting profile. For table based profiles
("cLUT" profiles), it sets the main lookup table size, and hence
detail in the resulting profile. For matrix profiles it sets the per
channel curve detail level and fitting "effort". It is <span
style="text-decoration: underline;">highly recommended</span> that
<span style="font-weight: bold;">-qm</span> be used as a starting
point, and other settings only tried after this has been evaluated.
<span style="font-weight: bold;">NOTE</span> that <span
style="font-weight: bold;">-qu</span> is a <span
style="text-decoration: underline;">test mode</span>, and
shouldn't be used, except to prove that it is not worth using.<br>
<br>
<a name="b"></a> The <b>-b</b> flag overrides the <b>-q</b>
parameter, and sets the lut resolution for the BtoA (inverse) to a
low value. The creation of the B2A table is fairly time consuming,
and if the profile is only going to be used by <a
href="targen.html">targen</a>, or if it will only be used as an
input space profile, or if it will only be linked as an output
profile using Argyll's <a href="collink.html">collink</a> tool
using the <b>-G</b> option (inverse AtoB option), then a high
detail BtoA table is not required, and some time and profile space
can be saved. If the profile is to be used as an output space
profile with another CMS, or is going to be linked using the simple
(-s) or mapping mode (-g) options, then a good quality B2A table is
needed, and the -b flag should <span style="font-weight: bold;">NOT</span>
be set. Optionally, a specific B2A table quality can be set.<br>
<br>
For input devices, the presence of a B2A table is not
mandatory, and it can be omitted entirely from the profile by using
<span style="font-weight: bold;">-bn</span>. Note that input
profiles and matrix profiles will only contain a colorimetric intent
table or matrix.<br>
<br>
<a name="y"></a> The <b>-y</b> flag does a verification check on
the AtoB profile. This is done by comparing what CIE colors the
profile predicts for the test chart test patches, and comparing them
to the actual values. A summary of the average and maximum Lab delta
E's will be printed out if this flag is set. If the <b>-v</b> flag
is also set, then information for each patch will also be printed.<br>
<br>
<a name="ni"></a><a name="np"></a><a name="no"></a>Normally cLUT
base profiles are generated with three major elements:- per device
channel (shaper) input curves, the multi-dimensional lut table, and
per PCS channel (shaper) output curves. The Using the <b>-ni</b>
flag disables the creation of the per device channel curves, while
using the <b>-no</b> flag disables the creation of the per PCS
channel curves.<br>
For cLUT based profiles, the input curves that are written to the
profile are composed of two components, a shape to best match the
detailed shape of the device behavior, and a shape to distribute the
input values evenly across the LUT input indexes. The <span
style="font-weight: bold;">-no</span> flag disables the former,
while the <span style="font-weight: bold;">-np</span> flag disables
the latter. <br>
<br>
<a name="nc"></a><span style="font-weight: bold;">-nc </span>Normally
the
device and CIE/spectral sample data and calibration curves used to
create a profile is stored in the <span style="font-weight: bold;">'targ'</span>
text tag in the resulting ICC profile. To suppress this and make the
resulting profile smaller, use the <span style="font-weight: bold;">-nc
</span>flag. <span style="font-weight: bold;">Note</span> that this
will then preclude final calibrated device value ink limits from
being computed for the resulting profile in subsequent use (ie. <a
href="collink.html">collink</a>, <a href="xicclu.html">xicclu</a>
etc.).<br>
<br>
<a name="k"></a> -<b>k</b> parameter sets the target level of black
(K) when creating a B2A CMYK output tables. This is often called a
black level, a black inking rule, black generation, or under color
removal. These set the target black level.<br>
<br>
Possible arguments to the <b>-k</b> flag are:<br>
<br>
<b> -kz</b> selects minimum black (0.0)<br>
<b> -kh</b> selects a black value of 0.5<br>
<b> -kx</b> selects the maximum possible black (1.0)<br>
<b> -kr</b> selects a linear black ramp, starting at minimum black
for highlight, and maximum black for shadow (equivalent to -kp 0 0 1
1 1). This is the default.<br>
<br>
<b><a name="kp"></a>-k p stle stpo enpo enle shape</b> allows
an arbitrary black value ramp to be defined, consisting of a
starting value (stle) for highlights, a breakpoint L value (stpo)
where it starts to transition to the shadow level, an end breakpoint
L (enpo) where it flattens out again, and the finishing black level
(enle) for the shadows. There is also a curve parameter, that
modifies the transition from stle to enle to either be concave
(ie. the transition starts gradually and and finished more
abruptly) using values 0.0-1.0, with 0.0 being most concave, or
convex (the transition starts more abruptly but finishes gradually),
using values 1.0-2.0, with 2.0 being the most convex.<br>
<br>
Typical black value generation curve with parameters something like:
-kp 0 .1 .9 1 .5<br>
<br>
<tt> 1.0 K |
enpo<br>
|
_______ enle<br>
| /<br>
| /<br>
| /<br>
| /<br>
stle | ------/<br>
+-------------------<br>
0.0 K
0.0
stpo 1.0<br>
White
Black<br>
</tt> <br>
For minimum sensitivity of printed output to the lighting spectrum,
it currently seems best to use the maximum possible black, but other
black generation levels (ie. 0.3 to 0.5) may well be preferred if
one wants to minimize the noisy appearance of black on an inkjet
device, or if the banding behaviour or other rendering flaws of the
printer is to be minimized. <br>
<br>
Note that the black level curve is applied throughout the gamut,
resulting in GCR (Grey Component Replacement). There is no facility
to restrict black to just neutral colors, hence UCR is not currently
supported.<br>
<br>
The <a href="xicclu.html">xicclu</a> tool can be used to plot out
the resulting black level for a given set of parameters, by using
the <a href="xicclu.html#g">-g</a> flag of a profile already
created from the same .ti3 file.<br>
<br>
<a name="K"></a> <span style="font-weight: bold;">-K parameters.</span>
Any of the <span style="font-weight: bold;">-k</span> options above
can use the <span style="font-weight: bold;">-K</span> version, in
which rather than a black value target being defined by the inking
rule, a black <span style="text-decoration: underline;">locus</span>
target is defined. For each lookup, the minimum possible black level
and the maximum possible black level is determined, the former
corresponding to a locus target of 0, and the latter corresponding
to a locus target of 1. For instance, at the white point, no black
will be used in the output, even if the black locus specifies a
maximum (since the maximum amount of black that can be used to print
white is actually zero). Similarly, at the black point, black may
well be used, even if the black locus specifies zero black (since a
certain amount of black is needed to achieve the desired density of
color). <br>
<tt> </tt><br>
<a name="l"></a> The <b>-l</b> <i>tlimit</i> parameter sets the
total ink limit (TAC, Total Area Coverage) for the CMYK separation,
as a total percentage from 0% to 400%, and overrides any ink limit
specified in the .ti3 file. The limit value should generally be set
a little below the value used in the test chart generation, to avoid
the very edges of the gamut. If the test chart ink limit has been
chosen to be a little beyond an acceptable level, then this number
should be the acceptable level. Although limits can be set below
200%, this will generally restrict the color gamut noticeably, as
fully saturated secondary colors will not be reproduced. Values are
between 220% and 300% for typical printing devices. Ink limits will
be in the final calibrated device values if the <span
style="font-weight: bold;">.ti3</span> includes the calibration
table.<br>
<br>
<a name="L"></a> The <b>-L</b> <i>klimit</i> parameter sets the
black channel ink limit for the CMYK separation, as a total
percentage from 0% to 100%. For printing press like devices, this
can be used to prevent the black channel screening pattern "filling
in". Typical values might be from 95% to 99%. Note that with the
current implementation this can slow down the creation of the
profile quite noticeably, so do not use <span style="font-weight:
bold;">-L</span> unless you really need to. Ink limits will be in
the final calibrated device values if the <span style="font-weight:
bold;">.ti3</span> includes the calibration table.<br>
<br>
<a name="a"></a> The <b>-a</b> parameter allows choosing an
alternate profile type. <br>
<br>
By default (equivalent to <b>-al</b>) profile creates a <span
style="font-weight: bold;">cLUT</span> based table profile with a
PCS (Profile Connection Space) of L*a*b*, which generally gives the
most accurate results, and allows for the four different rendering
intents that ICC profiles can support.<br>
<br>
A cLUT base table profile using a PCS of XYZ can be created if <b>-ax</b>
is used, and this may have the advantage of better accuracy for
additive type devices (displays, scanners, cameras etc.), may avoid
clipping for displays with a colorant chromaticity that can't be
encoded in L*a*b* PCS space, and may give a more accurate white
point for input devices by avoiding clipping of values above the
white point that can occur in L*a*b* based cLUT input profiles. By
default cLUT XYZ PCS Display profiles will also have a set of dummy
matrix tags included in them, for better compatibility with other
systems. The dummy matrix deliberately interchanges Red, Green and
Blue channels, so that it is obvious if the cLUT tables are not
being used. If it is important for both the cLUT and matrix be
accurate, use <span style="font-weight: bold;">-aX</span>, which
will create shaper/matrix tags.<br>
<br>
For RGB input or display profiles, a simpler type of profile using
either a gamma curves or a general shaper curves, combined with a
matrix can be created, although such a profile cannot support
perceptual or saturation intents. Gamma curve and matrix profiles
can be created by specifying <b>-ag</b> or <b>-aG</b>, the former
creating three independent gamma curves, one for each device
channel, and the latter creating one common curve for all the device
channels. The latter may be needed with certain applications that
will not accept different gamma curves for each channel. General
shaper curve and matrix profiles (which are superior to gamma curve
profiles) can be created by specifying <b>-as</b> or <b>-aS</b>,
the former creating three independent shaper curves, one for each
device channel, and the latter creating one common curve for all the
device channels. The latter may be needed with certain applications
that will not accept different shaper curves for each channel.<br>
<br>
The <span style="font-weight: bold;">-am</span> option will create
a matrix profile with linear (i.e. gamma = 1.0) curves. This may be
useful in creating a profile for a device that is known to have a
perfectly linear response, such as a camera in RAW mode.<br>
<br>
<a name="u"></a> <span style="font-weight: bold;">-u:</span> Input
profiles will normally be created such that the white patch of the
test chart will be mapped to perfect white when used with any of the
non-absolute colorimetric intents. This is the expected behavior for
input profiles. If such a profile is then used with a sample that
has a lighter color than the original test chart, then a cLUT
profile will clip the value, since it cannot be represented in the
lut table. Using the <b>-u</b> flag causes the media white point to
be automatically scaled (using the same type of scaling as the <span
style="font-weight: bold;">-U scale</span> option) to avoid
clipping values up to full device white. This flag can be useful
when an input profile is needed for using a scanner as a "poor mans"
colorimeter, or if the white point of the test chart doesn't
represent the white points of media that will be used in practice,
and that white point adjustment will be done individually in some
downstream application.<br>
<br>
<a name="uc"></a> <span style="font-weight: bold;">-uc:</span> For
input profiles it is sometimes desirable that any highlights
brighter than the white point, map exactly to white, and this option
post processes the cLUT entries to ensure this is the case. Note
that due to the finite nature of the cLUT grid, this may affect the
accuracy of colors near the light surface of the device gamut.<br>
<br>
<a name="U"></a><span style="font-weight: bold;"> -U <span
style="font-style: italic;">scale</span>:</span> Input profiles
will normally be created such that the white patch of the test chart
will be mapped to perfect white when used with any of the
non-absolute colorimetric intents. This is the expected behavior for
input profiles. Sometimes the test chart white is not quite the same
as the media being converted through the input profile, and it may
be desirable in these cases to adjust the input profile white point
to compensate for this. This can happen in the case of a camera
profile, where the test chart is not perfectly exposed. The <span
style="font-weight: bold;">-U</span> parameter allows this. If the
media converted is a little darker than the test chart white, then
use a scale factor slightly less than 1.0 to make sure that the
media white comes out as white on conversion (ie. try 0.9 for
instance). If the media is a little lighter than the test chart
white and is "blowing out" the highlights, try a value slightly
greater than 1.0 (ie. try 1.1 for instance). The <span
style="font-weight: bold;">-u</span> option sets the scale
automatically to accomodate a perfect white, but <span
style="font-weight: bold;">-U scale</span> can be used on top of
this automatic scaling.<br>
<br>
<a name="R"></a><span style="font-weight: bold;"> -</span><span
style="font-weight: bold;">R</span><span style="font-weight:
bold;">:</span> Normally the white point, black point and primary
locations (for matrix profiles) are computed so as to create
profiles that best match the sample data provided. Some programs are
not happy with the resulting locations if they have negative XYZ
values, or if the white point has a Y value > 1. The <span
style="font-weight: bold;">-R</span> option restricts the white,
black and primary values, so as to work with these programs, but
this will reduce the accuracy of the profile.<br>
<br>
<a name="f"></a> The <b>-f</b> flag enables Fluorescent Whitening
Agent (FWA) compensation. This only works if spectral data is
available and, the instrument is not UV filtered. FWA
compensation adjusts the spectral samples so that they appear to
have been measured using an illuminant that has a different level of
Ultra Violet to the one the instrument actually used in the
measurement. There are two ways this can be used:<br>
<br>
The first and most common is to use the <b>-f</b> flag with the <b>-i</b>
illuminant parameter, to make the color values more accurately
reflect their appearance under the viewing illuminant. This will
work accurately if you specify the <span style="text-decoration:
underline;">actual illuminant spectrum you are using to view the
print</span>, using the <span style="font-weight: bold;"><span
style="font-weight: bold;">-i</span></span> flag. If you are
doing proofing, you need to apply this to <span
style="text-decoration: underline;">both your source profile, and
your destination profile</span>. Note that it is not sufficient to
specify an illuminant with the same white point as the one you are
using, you should specify the spectrum of the illuminant you are <span
style="text-decoration: underline;">actually using</span> for the
proofing, including its <span style="text-decoration: underline;">Ultra
Violet</span> spectral content, otherwise FWA compensation won't
work properly. This means you ideally need to measure your
illuminant spectrum using an instrument that can measure down to
300nm. Such instruments are not easy to come by. The best
alternative is to use the <a href="illumread.html">illumread</a>
utility, which uses an indirect means of measuring an illuminant and
estimating its UV content. Another alternative is to simply try
different illuminant spectra in the <span style="font-weight:
bold;">ref </span>directory, and see if one gives you the result
you are after, although this will be fairly a tedious approach. The
ref/D50_X.X.sp set of illuminant spectra are the D50 spectrum with
different levels of U.V. added or subtracted, ref/D50_1.0.sp being
the standard D50 illuminant, and may be somewhere to start.<br>
[Note: Generally using <span style="font-weight: bold;">-f</span>
with the standard (<b>-i) </b>D50 illuminant spectrum will predict
that the device will produce bluer output than the default of not
FWA compensation. This is because most instruments use an
incandescent illuminant (A type illuminant), which has lower
relative levels of UV than D50, so the FWA compensation simulates
the effect of the greater UV in the D50. Also note that in an
absolute colorimetric color transformation, the more a profile
predicts the output device will have blue output, the yellower the
result will be, as the overall color correction compensates for the
blueness. The opposite will happen for an input profile.]<br>
<br>
The second way of using the <b>-f</b> flag is to provide it with a
instrument simulation illuminant spectrum parameter, in addition to
the default D50 or <b>-i</b> parameter CIE XYZ
calculation illuminant<b></b>. This more complicated scenario
simulates the measurement of the spectral reflectance of the samples
under a particular instrument illuminant, then computes the CIE XYZ
values of that reflectance spectrum under the default D50 or <b>-i</b>
parameter illuminant. This is <u>not</u> used to give a more
accurate real world result, but to provide simulations of various
standardized measurement conditions. For instance, to reproduce ISO
13655:2009 M2 measurement conditions, the <b>-f D50M2</b> could be
used (together with the default <b>-i D50</b> setting). There are
shortcuts provided for ISO 13655:2009 conditions:<br>
<br>
<b>-f M0</b>
equivalent to<b> -f A</b><br>
<b>-f M1</b>
equivalent to<b> -f D50</b><br>
<b>-f M2</b>
equivalent to<b> -f D50M2</b><b><br>
</b><br>
Note that using <span style="font-weight: bold;">-f</span> <b>M2</b>
gives a result that is comparable to that of a U.V. cut filter
instrument. See also the discussion <a href="FWA.html">About
Fluorescent Whitening Agent compensation</a>.<br>
<br>
<a name="i"></a> The <b>-i</b> parameter allows specifying a
standard or custom illumination spectrum, applied to spectral .ti3
data to compute PCS (Profile Connection Space) tristimulus values. <b>A</b>,
<b>D50</b>, <b>D65</b>, <b>F5</b>, <b>F8</b>, <b>F10</b> are a
selection of standard illuminant spectrums, with <b>D50</b> being
the default. If a filename is specified instead, it will be assumed
to be an Argyll specific <a href="File_Formats.html#.sp">.sp</a>
custom spectrum file. This only works if spectral data is available.
Illuminant details are:<br>
<br>
A CIE
tungsten filament lamp 2848K<br>
D50 CIE daylight 5000K<br>
D65 CIE daylight 6500K<br>
F5 CIE Fluorescent
6350K, CRI 72<br>
F8 CIE Fluorescent
5000K, CRI 95<br>
F10 CIE Fluorescent
5000K, CRI 81<br>
<br>
Custom illuminants are most often used when a viewing booth or
other known viewing conditions is going to be used to view results.
Other illuminant reference files could be created using a suitable
measuring instrument such as a spectrolino, or an eyeone using <a
href="spotread.html">spotread</a>, although such instruments do
not themselves provide the necessary response down to Ultra Violet
that is needed for accurate operation of Fluorescent Whitening Agent
compensation. The best way of measuring a custom illuminant is to
use <a href="illumread.html">illumread</a>, since it uses a special
method to estimate the illuminant UV in a way that complements FWA
compensation. (See the discussion above for the <b>-f</b> flag).<br>
<br>
Note that if an illuminant other than D50 is chosen, the resulting
ICC profile will not be standard, and may not work perfectly with
other profiles that that use the standard ICC D50 illuminant,
particularly if the absolute rendering intent is used. Profiles
should generally be linked with other profiles that have the same
illuminant and observer.<br>
<br>
<a name="o"></a> The <b>-o</b> flag allows specifying a tristimulus
observer, and is used to compute tristimulus values. The following
choices are available:<br>
<b> 1931_2</b> selects the standard CIE 1931 2 degree
observer. The default.<br>
<b>1964_10</b> selects the standard CIE 1964 10 degree
observer.<br>
<b>1955_2</b> selects the Stiles and Birch 1955 2 degree
observer<br>
<b>1978_2 </b>selects the Judd and Voss 1978 2 degree
observer<br>
<b>shaw</b> selects the Shaw and Fairchild 1997 2 degree
observer<br>
<br>
Note that if an observer other than 1931 2 degree is chosen, the
resulting ICC profile will not be standard, and cannot be freely
interchanged with other profiles that that use the standard 1931 2
degree observer. Profiles should only be linked with other profiles
that have the same illuminant and observer. The <b>1978_2</b>
observer or <span style="font-weight: bold;">shaw</span> observer
may give slightly better results than the <b>1931_2</b> observer.<br>
<br>
<br>
<a name="r"></a> The <b>-r</b> parameter specifies the average
deviation of device+instrument readings from the perfect, noiseless
values as a percentage. Knowing the uncertainty in the reproduction
and test patch reading can allow the profiling process to be
optimized in determining the behaviour of the underlying system. The
lower the uncertainty, the more each individual test reading can be
relied on to infer the underlying systems color behaviour at that
point in the device space. Conversely, the higher the uncertainty,
the less the individual readings can be relied upon, and the more
the collective response will have to be used. In effect, the higher
the uncertainty, the more the input test patch values will be
smoothed in determining the devices response. If the perfect,
noiseless test patch values had a uniformly distributed error of +/-
1.0% added to them, then this would be an average deviation of 0.5%.
If the perfect, noiseless test patch values had a normally
distributed error with a standard deviation of 1% added to
them, then this would correspond to an average deviation of 0.564%.
For a lower quality instrument (less than say a Gretag Spectrolino
or Xrite DTP41), or a more variable device (such as a xerographic
print engine, rather than a good quality inkjet), then you might be
advised to increase the <span style="font-weight: bold;">-r</span>
parameter above its default value (double or perhaps 4x would be
good starting values.) <br>
<br>
<a name="S"></a><a name="s"></a><span style="font-weight: bold;">-s
-S </span>In order to generate perceptual and saturation
intent B2A tables for output profiles, it is necessary to specify at
least one profile to define what source gamut should be used in the
source to destination gamut mapping. [For more information on <span
style="text-decoration: underline;">why</span> a source gamut is
needed, see <a href="iccgamutmapping.html">About ICC profiles and
Gamut Mapping</a>] The <b>-S</b> parameter is used to do this,
and doing so causes perceptual and saturation tables to be
generated. If only a perceptual intent is needed, then the <b>-s</b>
flag can be used, and the saturation intent will use the same table
as the perceptual intent. Note that a input, output, display or
device colororspace profile should be specified, not a non-device
colorspace, device link, abstract or named color profile.<br>
If no source gamut is specified for a cLUT Display profile, then an
ICC Version 2.2.0 profile will be created with only an A2B0 and B2A0
tag. If a source gamut is specified, then an ICC Version 2.4.0
profile will be created with a full complement of B2A tags to
support all intents. The source gamut is created from the
corresponding intent table of the provided profile to the output
table being created. A TIFF or JPEG file containing an embedded ICC
profile may be supplied as the argument.<br>
<span style="font-weight: bold;">Note</span> that input profiles and
matrix profiles will only contain a colorimetric intent table or
matrix, and hence the <span style="font-weight: bold;">-s</span>
and <span style="font-weight: bold;">-S</span> option is not
relevant.<br>
<br>
<a name="nP"></a><span style="font-weight: bold;">-nP</span>:
Normally when a source profile is provided to define the source
gamut for the output profile perceptual table gamut mapping, the
perceptual source table is used to determine this gamut. This is
because some profile have gamut transformations in their perceptual
A2B tables that is not in the colorimetric A2B table, and this needs
to be taken into account in creating the perceptual B2A table, so
that when the two profiles are linked together with the perceptual
intent, the gamut mapping works as intended. The <span
style="font-weight: bold;">-nP</span> option causes the source
gamut to be taken from the source profile colorimetric table
instead, causing the perceptual gamut mapping created for the
perceptual table to be from the natural source colorspace gamut to
the output space gamut.<br>
<br>
<a name="nS"></a><span style="font-weight: bold;">-nS</span>:
Normally when a source profile is provided to define the source
gamut for the output profile saturation table gamut mapping, the
saturation source table is used to determine this gamut. This is
because some profile have gamut transformations in their saturation
A2B tables that is not in the colorimetric A2B table, and this needs
to be taken into account in creating the saturation B2A table, so
that when the two profiles are linked together with the saturation
intent, the gamut mapping works as intended. The <span
style="font-weight: bold;">-nS</span> option causes the source
gamut to be taken from the source profile colorimetric table
instead, causing the saturation gamut mapping created for the
saturation table to be from the natural source colorspace gamut to
the output space gamut.<small><span style="font-family: monospace;"></span></small><br>
<br>
<a name="g"></a>The <span style="font-weight: bold;">-g</span> flag
and its argument allow the use of a specific source gamut instead of
that of the source profile. This is to allow optimizing the gamut
mapping to a source gamut of a particular image, which can
give slightly better results that gamut mapping from the gamut of
the source colorspace. Such a source image gamut can be created
using the <a href="tiffgamut.html"> tiffgamut</a> tool. The gamut
provided to the <span style="font-weight: bold;">-g</span> <span
style="font-weight: bold;"></span> flag should be in the same
colorspace that <span style="font-weight: bold;">colprof</span> is
using internally to connect the two profiles. For all intents except
the last one (no. <span style="font-weight: bold;">7</span>), the
space should be Jab appearance space, with the viewing conditions
generally being those of the input profile viewing conditions. The
input profile will normally be the one used to create a source image
gamut using <span style="font-weight: bold;">tiffgamut</span>.<br>
<br>
<b><a name="p"></a></b>The <b>-p</b> option allows specifying one
or more abstract profiles that will be applied to the output tables,
after any gamut mapping. An abstract profile is a way of specifying
a color adjustment in a device independent way. The abstract profile
might have been created using one of the <span style="font-weight:
bold;">tweak</span> tools, such as <a href="refine.html">refine</a>.<br>
If a single abstract profile is specified, then it will be applied
to all the output tables (colorimetric, perceptual and saturation).
To specify different abstract profiles for each output table, use a
contiguous comma separated list of filenames. Omit a filename
between the commas if no abstract profile is to be applied to a
table. For instance: -<span style="font-weight: bold;">p
colabst.icm,percabst.icm,satabst.icm</span> for three different
abstract transforms, or: <span style="font-weight: bold;">-p
,percabst.icm,</span> for just a perceptual table abstract
transform.<br>
<br>
One strategy for getting the best perceptual results with output
profile when using ICC profiles with systems that don't accept
device link profiles, is as follows: Specify a gamut mapping profile
of opposite type to the type of device being profiled, and when
linking, use the relative colorimetric intent if the two profiles
are of the same type, and perceptual intent if the two profiles are
of the opposite type. For instance, if you are creating a CMYK
output profile, specify an RGB profile for the <b>-s</b> or <b>-S</b>
parameter. If linking that profile with a CMYK source profile, use
relative colorimetric intent, or if linking with an RGB profile, use
the perceptual intent. Conversely, if creating an RGB output
profile, specify a CMYK profile for the <b>-s</b> or <b>-S</b>
parameter, and if linking that profile with an RGB source profile,
use relative colorimetric intent, or if linking with a CMYK profile,
use the perceptual intent.<br>
<br>
(Note that the perceptual and saturation table gamut mapping doesn't
make any allowance for the application of the abstract profile. This
is a bug.)<br>
<br>
<a name="t"></a><a name="T"></a><span style="font-weight: bold;"></span><span
style="font-weight: bold;"></span>Normally, the gamut mapping used
in creating the perceptual and saturation intent tables for output
profiles is set to perceptual and saturation gamut mapping (as would
be expected), but it is possible to override this default selection
for each intent using the <b>-t</b> and <b>-T</b> flags. The <b>-t</b>
flag can be used to set the gamut mapping for the perceptual table,
and the <b>-T</b> flag can be used to set the gamut mapping for the
saturation table. A more detailed description of the different
intents is given in <a href="collink.html#i">collink</a>. Note that
selecting any of the absolute intents will probably not function as
expected, since the perceptual and saturation tables are inherently
relative colorimetric in nature.<br>
<br>
<a name="c"></a><b><a name="d"></a></b>Since appearance space is
used in the gamut mapping (just as it is in <a href="collink.html">
collink</a>), the viewing conditions for the source and
destination colorspaces should really be specified. The source
colorspace is the profile specified with the <b>-s</b> or <b>-S</b>
flag, and the destination is the profile being created. The <b>-c</b>
and <b>-d</b> options allow specification of their respective,
associated viewing conditions. The viewing condition information is
used to map the profile PCS (Profile Connection Space, which us
either XYZ or L*a*b*) color into appearance space (CIECAM02), which
is a better colorspace to do gamut mapping in. The viewing
conditions allow the conversion into appearance space to take
account of how color will be seen under particular viewing
conditions.<br>
<br>
Viewing conditions can be specified in two basic ways. One is to
select from the list of "pre canned", enumerated viewing conditions,
choosing one that is closest to the conditions that are appropriate
for the media type and situation. Alternatively, the viewing
conditions parameters can be specified individually. If both methods
are used, them the chosen enumerated condition will be used as a
base, and its parameters will then be individually overridden.<br>
<br>
Appearance space is also used to provide a space to map any
remaining out of gamut colors (after a possible gamut mapping has
been applied) into the device gamut. <br>
<br>
<b><a name="P"></a></b>The <b>-P</b> option causes diagnostic 3D <a
href="File_Formats.html#VRML">VRML</a> plots to be created that
illustrate the gamut mappings generated for the perceptual and
saturation intent tables.<br>
<br>
<a name="O"></a>The <span style="font-weight: bold;">-O</span>
parameter allows the output file name & extension to be
specified independently of the final parameter basename. Note that
the full filename must be specified, including the extension.<span
style="font-weight: bold;"></span><br>
<br>
<a name="p1"></a> The final parameter is the file base name for the
<a href="File_Formats.html#.ti3">.ti3</a> input test point data, and
the resulting <a href="File_Formats.html#ICC">ICC</a> output
profile (.icm extension on the MSWindows platform, .icc on Apple or
Unix platforms). The <span style="font-weight: bold;">-O</span>
parameter will override this default.
<h3>Discussion</h3>
Note that monochrome profiling isn't currently supported. It may be
supported sometime in the future.<br>
<br>
If the <b>-v</b> flag is used (verbose), then at the end of
creating a profile, the maximum and average fit error of the input
points to the resulting profile will be reported. This is a good
guide as to whether things have gone smoothly in creating a profile.
Depending on the type of device, and the consistency of the
readings, average errors of 5 or less, and maximum errors of 15 or
less would normally be expected. If errors are grossly higher than
this, then this is an indication that something is seriously wrong
with the device testing, or profile creation.<br>
<br>
Given a .ti3 file from a display device that contains calibration
curves (generated by <a href="dispcal.html">dispcal</a>, passed
through <a href="dispread.html">dispread</a>) and the calibration
indicates that the VideoLUTs are accessible for the device, then <span
style="font-weight: bold;">colprof</span> will convert the
calibration into a <span style="font-weight: bold;">vcgt</span> tag
in the resulting profile so that the operating system tools can
configure the display hardware appropriately, whenever the profile
is used. If the VideoLUTs are not marked as being accessible, <span
style="font-weight: bold;">colprof</span> will do nothing with the
calibration curves. In this case, to apply calibration, the curves
have to be incorporated in the subsequent workflow, either by
incorporating them into the profile using <a
href="applycal.html#p1">applycal</a>, or including them after the
profile in a <a href="cctiff.html#p2">cctiff</a> profile chain.<br>
<br>
Given a .ti3 file from a print device that contains the per-channel
calibration information (generated by <a href="printcal.html">printcal</a>,
passed through <a href="printtarg.html">printtarg</a> and <a
href="chartread.html">chartread</a>), <span style="font-weight:
bold;">colprof</span> will save this along with the .ti3 file in
the <span style="font-weight: bold;">'targ'</span> text tag in the
profile, <span style="font-weight: bold;"></span> so that
subsequent evaluation of ink limits can compute the final calibrated
device values.<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
</body>
</html>
|