This file is indexed.

/usr/share/doc/yacas-doc/html/Algochapter1.html is in yacas-doc 1.3.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
<html>
<head>
  <title>Symbolic algebra algorithms</title>
  <link rel="stylesheet" href="yacas.css" TYPE="text/css" MEDIA="screen">
</head>
<body>
<a name="c1">

</a>
<h1>
1. Symbolic algebra algorithms
</h1>
<p> </p>
<a name="c1s1">

</a>
<h2>
<hr>1.1 Sparse representations
</h2>
<h3>
<hr>The sparse tree data structure
</h3>
Yacas has a sparse tree object for use as a storage for storing 
(key,value) pairs for which the following properties hold:


<p>
<ul><li>(key, value1) + (key, value2) = (key, value1+value2)
</li></ul>

<p>
In addition, for multiplication the following rule is obeyed:


<p>
<ul><li>(key1, value1) * (key2, value2) = (key1+key2, value1*value2)
</li></ul>

<p>
The last is optional. For multivariate polynomials (described elsewhere)
both hold, but for matrices, only the addition property holds.
The function <b><tt>MultiplyAddSparseTrees</tt></b> (described below) should not
be used in these cases.


<p>

<h3>
<hr>Internal structure
</h3>
A key is defined to be a list of integer numbers (<b>n[1]</b>, ..., <b>n[m]</b>).
Thus for a two-dimensional key, one item in the sparse tree database
could be reflected as the (key,value) pair <b><tt> {{1,2},3} </tt></b>, which states that 
element <b><tt>(1,2)</tt></b> has value <b><tt>3</tt></b>. (Note: this is not the way it is stored
in the database!).


<p>
The storage is recursive. The sparse tree begins with a list of 
objects <b><tt> {n1,tree1} </tt></b> for values of <b><tt>n1</tt></b> for the first item in the
key. The <b><tt>tree1</tt></b> part then contains a sub-tree for all the items
in the database for which the value of the first item in the key is <b><tt>n1</tt></b>.


<p>
The above single element could be created with 


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; r:=CreateSparseTree({1,2},3)
Out&gt; {{1,{{2,3}}}};
</pre></tr>
</table>
<b><tt>CreateSparseTree</tt></b> makes a database with exactly one item.
Items can now be obtained from the sparse tree with <b><tt>SparseTreeGet</tt></b>.


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; SparseTreeGet({1,2},r)
Out&gt; 3;
In&gt; SparseTreeGet({1,3},r)
Out&gt; 0;
</pre></tr>
</table>
And values can also be set or changed:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; SparseTreeSet({1,2},r,Current+5)
Out&gt; 8;
In&gt; r
Out&gt; {{1,{{2,8}}}};
In&gt; SparseTreeSet({1,3},r,Current+5)
Out&gt; 5;
In&gt; r
Out&gt; {{1,{{3,5},{2,8}}}};
</pre></tr>
</table>
The variable <b><tt>Current</tt></b> represents the current value, and can
be used to determine the new value. <b><tt>SparseTreeSet</tt></b> destructively
modifies the original, and returns the new value. If the key
pair was not found, it is added to the tree.


<p>
The sparse tree can be traversed, one element at a time, with 
<b><tt>SparseTreeScan</tt></b>:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; SparseTreeScan(Hold({{k,v},Echo({k,v})}),2,r)
{1,3} 5 
{1,2} 8 
</pre></tr>
</table>


<p>
An example of the use of this function could be multiplying a
sparse matrix with a sparse vector, where the entire matrix
can be scanned with <b><tt>SparseTreeScan</tt></b>, and each non-zero matrix element
<b>A[i][j]</b> can then be multiplied with a vector element <b>v[j]</b>,
and the result added to a sparse vector <b>w[i]</b>, using the 
<b><tt>SparseTreeGet</tt></b> and <b><tt>SparseTreeSet</tt></b> functions.
Multiplying two sparse matrices would require two nested calls
to <b><tt>SparseTreeScan</tt></b> to multiply every item from one matrix with
an element from the other, and add it to the appropriate element 
in the resulting sparse matrix.


<p>
When the matrix elements <b>A[i][j]</b> are defined by a function
<b>f(i,j)</b> (which can be considered a dense representation), 
and it needs to be multiplied with a sparse vector <b>v[j]</b>,
it is better to iterate over the sparse vector <b>v[j]</b>.
Representation defines the most efficient algorithm to use
in this case.


<p>
The API to sparse trees is:
<ul><li></li><b><tt>CreateSparseTree(coefs,fact)</tt></b> - 
Create a sparse tree with one monomial, where 'coefs' is the 
key, and 'fact' the value. 'coefs' should be a list of integers.
<li></li><b><tt>SparseTreeMap(op,depth,tree)</tt></b> - 
Walk over the sparse tree, one element at a time, and apply the 
function "op" on the arguments (key,value). The 'value' in the
tree is replaced by the value returned by the <b><tt>op</tt></b> function. 'depth'
signifies the dimension of the tree (number of indices in the key).
<li></li><b><tt>SparseTreeScan(op,depth,tree)</tt></b> - 
Same as SparseTreeMap, but without changing elements.
<li></li><b><tt>AddSparseTrees(depth,x,y)</tt></b>, <b><tt>MultiplyAddSparseTrees(depth,x,y,coefs,fact)</tt></b> -
Add sparse tree 'y' to sparse tree 'x', destructively.
in the <b><tt>MultiplyAdd</tt></b> case, the monomials are treated as 
if they were multiplied by a monomial with coefficients 
with the (key,value) pair (coefs,fact). 'depth'
signifies the dimension of the tree (number of indices in the key).
<li></li><b><tt>SparseTreeGet(key,tree)</tt></b> - 
return value stored for key in the tree.
<li></li><b><tt>SparseTreeSet(key,tree,newvalue)</tt></b> - 
change the value stored for the key to newvalue. If the key was not found then
<b><tt>newvalue</tt></b> is stored as a new item. The variable <b><tt>Current</tt></b> is set to the
old value (or zero if the key didn't exist in the tree) before evaluating
<b><tt>newvalue</tt></b>. 
</ul>

<p>

<a name="c1s2">

</a>
<h2>
<hr>1.2 Implementation of multivariate polynomials
</h2>
This section describes the implementation of multivariate
polynomials in Yacas.


<p>
Concepts and ideas are taken from the books [Davenport <i>et al.</i> 1989] and [von zur Gathen <i>et al.</i> 1999].


<p>

<h3>
<hr>Definitions
</h3>
The following definitions define multivariate polynomials,
and the functions defined on them that are of interest
for using such multivariates.


<p>
A <i>term</i> is an object which can be written as 


<p>

<p><center><b>c*x[1]^n[1]*x[2]^n[2]*...*x[m]^n[m] </b></center></p>

for <b>m</b> variables (<b> x[1]</b>, ..., <b>x[m]</b>). The numbers <b>n[m]</b>
are integers. <b>c</b> is called a <i>coefficient</i>, and 
<b> x[1]^n[1]*x[2]^n[2]*...*x[m]^n[m]</b> a <i>monomial</i>.


<p>
A <i>multivariate polynomial</i> is taken to be a sum over terms.


<p>
We write <b>c[a]*x^a</b> for a term, where <b> a</b> is a list of
powers for the monomial, and <b> c[a]</b> the <i>coefficient</i> of the 
term.


<p>
It is useful to define an ordering of monomials, to be able to 
determine a canonical form of a multivariate. 


<p>
For the currently implemented code the <i>lexicographic order</i> has 
been chosen:


<p>
<ul><li>first an ordering of variables is chosen, ( </li><b>x[1]</b>, ..., <b>x[m]</b>)
<li>for the exponents of a monomial, </li><b>a</b> = (<b> a[1]</b>, ..., <b>a[m]</b>) the
lexicographic order first looks at the first exponent, <b>a[1]</b>,
to determine which of the two monomials comes first in the multivariate.
If the two exponents are the same, the next exponent is considered.
</ul>

<p>
This method is called <i>lexicographic</i> because it is similar
to the way words are ordered in a usual dictionary. 


<p>
For all algorithms (including division) there is some freedom in 
the ordering of monomials. One interesting advantage of the lexicographic
order is that it can be implemented with a recursive data structure, 
where the first variable, <b>x[1]</b> can be treated as the main variable,
thus presenting it as a univariate polynomial in <b>x[1]</b> with all its
terms grouped together.


<p>
Other orderings can be used, by re-implementing a part of the
code dealing with multivariate polynomials, and then selecting
the new code to be used as a driver, as will be described later
on.


<p>
Given the above ordering, the following definitions can be stated:


<p>
For a non-zero <i>multivariate polynomial</i>


<p>

<p><center><b>f=Sum(a,a[max],a[min],c[a]*x^a) </b></center></p>



<p>
with a monomial order:


<p>
<ul><li></li><b>c[a]*x^a</b> is a <i>term</i> of the multivariate.
<li>the </li><i>multidegree</i> of <b> f</b> is <b> mdeg(f):=a[max]</b>.
<li>the </li><i>leading coefficient</i> of <b>f</b> is <b> lc(f):=c[mdeg(f)]</b>,
for the first term with non-zero coefficient.
<li>the </li><i>leading monomial</i> of <b>f</b> is <b> lm(f):=x^mdeg(f)</b>.
<li>the </li><i>leading term</i> of <b>f</b> is <b> lt(f):=lc(f)*lm(f)</b>.
</ul>

<p>
The above define access to the leading monomial, which is used for
divisions, gcd calculations and the like. Thus an implementation 
needs be able to determine <b><tt> {mdeg(f),lc(f)} </tt></b> . Note the similarity
with the (key,value) pairs described in the sparse tree section.
<b>mdeg(f)</b> can be thought of as a 'key', and <b>lc(f)</b> as a 'value'.


<p>
The <i>multicontent</i>, <b>multicont(f)</b>, is defined to be a term that
divides all the terms in <b>f</b>, and is the term described by
(<b> Min(a)</b>, <b>Gcd(c)</b>), with <b>Gcd(c)</b> the GCD of all the coefficients,
and <b>Min(a)</b> the lowest exponents for each variable, occurring
in <b>f</b> for which <b> c</b> is non-zero.


<p>
The <i>multiprimitive part</i> is then defined as <b> pp(f):=f</b>/<b> multicont(f)</b>.


<p>
For a multivariate polynomial, the obvious addition and (distributive)
multiplication rules hold:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
(a+b) + (c+d) := a+b+c+d 
</pre></tr>
</table>


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
a*(b+c) := (a*b)+(a*c)
</pre></tr>
</table>


<p>
These are supported in the Yacas system through a multiply-add operation:

<p><center><b>muadd(f,t,g):=f+t*g.</b></center></p>

This allows for both adding two polynomials (<b> t:=1</b>), or multiplication
of two polynomials by scanning one polynomial, and multiplying each term
of the scanned polynomial with the other polynomial, and adding the result
to the polynomial that will be returned. Thus there should be an efficient
<b><tt>muadd</tt></b> operation in the system.


<p>

<h3>
<hr>Representation
</h3>
For the representation of polynomials, on computers it is natural to do this
in an array: (<b> a[1]</b>, <b>a[2]</b>, ..., <b>a[n]</b>) for a univariate polynomial, and the equivalent
for multivariates. This is called a <i>dense</i> representation, because all
the coefficients are stored, even if they are zero. 
Computers are efficient at dealing with arrays. However, in the case of 
multivariate polynomials, arrays can become
rather large, requiring a lot of storage and processing power even
to add two such polynomials. For instance, <b>x^200*y^100*z^300+1</b>
could take 6000000 places in an array for the coefficients. Of course
variables could be substituted for the single factors, <b> p:=x^200</b>
etc., but it requires an additional ad hoc step.


<p>
An alternative is to store only the terms for which the coefficients
are non-zero. This adds a little overhead to polynomials that could
efficiently be stored in a dense representation, but it is still
little memory, whereas large sparse polynomials are stored in 
acceptable memory too. It is of importance to still be able to
add, multiply divide and get the leading term of a multivariate
polynomial, when the polynomial is stored in a sparse representation.


<p>
For the representation, the data structure containing the 
<b><tt>(exponents,coefficient)</tt></b> pair can be viewed as a database
holding <b><tt>(key,value)</tt></b> pairs, where the list of exponents is
the key, and the coefficient of the term is the value stored
for that key. Thus, for a variable set <b><tt>{x,y}</tt></b> the list <b><tt>{{1,2},3}</tt></b>
represents <b> 3*x*y^2</b>.


<p>
Yacas stores multivariates internally as <b><tt>MultiNomial (vars, terms)</tt></b>,
where <b><tt>vars</tt></b> is the ordered list of variables, and terms some 
object storing all the <b><tt>(key, value)</tt></b> pairs representing the terms.
Note we keep the storage vague: the <b><tt>terms</tt></b> placeholder is 
implemented by other code, as a database of terms. The specific
representation can be configured at startup (this is described
in more detail below).


<p>
For the current version, Yacas uses the 'sparse tree' representation,
which is a recursive sparse representation. 
For example, for a variable set <b><tt>{x,y,z}</tt></b>, the 'terms' object
contains a list of objects of form <b><tt>{deg,terms}</tt></b>, one for each degree <b><tt>deg</tt></b>
for the variable 'x' occurring in the polynomial. The 'terms'
part of this object is then a sub-sparse tree for the variables <b><tt>{y,z}</tt></b>.


<p>
An explicit example:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; MM(3*x^2+y)
Out&gt; MultiNomial({x,y},{{2,{{0,3}}},{0,{{1,1},
  {0,0}}}});
</pre></tr>
</table>
The first item in the main list is <b><tt>{2,{{0,3}}}</tt></b>, which states that
there is a term of the form <b> x^2*y^0*3</b>. The second item 
states that there are two terms, <b> x^0*y^1*1</b> and <b> x^0*y^0*0=0</b>.


<p>
This representation is sparse:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; r:=MM(x^1000+x)
Out&gt; MultiNomial({x},{{1000,1},{1,1}});
</pre></tr>
</table>
and allows for easy multiplication:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; r*r
Out&gt; MultiNomial({x},{{2000,1},{1001,2},
  {2,1},{0,0}});
In&gt; NormalForm(%)
Out&gt; x^2000+2*x^1001+x^2;
</pre></tr>
</table>


<p>

<h3>
<hr>Internal code organization
</h3>
The implementation of multivariates can be divided in three levels.


<p>
At the top level are the routines callable by the user or the rest
of the system: MultiDegree, MultiDivide, MultiGcd, Groebner, etc.
In general, this is the level implementing the operations actually
desired.


<p>
The middle level does the book-keeping of the <b><tt>MultiNomial(vars,terms)</tt></b>
expressions, using the functionality offered by the lowest level.


<p>
For the current system, the middle level is in 
<b><tt>multivar.rep/ sparsenomial.ys</tt></b>, and it uses the sparse tree representation
implemented in <b><tt>sparsetree.ys</tt></b>.


<p>
The middle level is called the 'driver', and can be changed, or 
re-implemented if necessary. For instance, in case calculations need
to be done for which dense representations are actually acceptable,
one could write C++ implementing above-mentioned database
structure, and then write a middle-level driver using the code.
The driver can then be selected at startup. In the file 'yacasinit.ys'
the default driver is chosen, but this can be overridden in the 
<b><tt>.yacasrc</tt></b> file or some file that is loaded, or at the command line,
as long as it is done before the multivariates module is loaded (which
loads the selected driver). Driver selection is as simple as setting
a global variable to contain a file name of the file implementing the
driver:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
Set(MultiNomialDriver,
  "multivar.rep/sparsenomial.ys");
</pre></tr>
</table>
where "multivar.rep/sparsenomial.ys" is the file implementing the 
driver (this is also the default driver, so the above command would
not change any thing).


<p>
The choice was made for static configuration of the driver before
the system starts up because it is expected that there will in 
general be one best way of doing it, given a certain system with
a certain set of libraries installed on the operating system,
and for a specific version of Yacas. The best version can then
be selected at start up, as a configuration step. The advantage
of static selection is that no overhead is imposed: there is no
performance penalty for the abstraction layers between the three levels.


<p>

<h3>
<hr>Driver interface
</h3>
The driver should implement the following interface:


<p>
<ul><li></li><b><tt>CreateTerm(vars,{exp,coef})</tt></b> - 
create a multivariate polynomial with one term, in the
variables defined in 'var', with the (key,value) pair
(coefs,fact)
<li></li><b><tt>MultiNomialAdd(multi1, multi2) </tt></b> -
add two multivars, and (possibly) destructively modify multi1 to contain
the result: [ multi1 := multi1 + multi2; multi1; ];
<li></li><b><tt>MultiNomialMultiplyAdd(multi1, multi2,exp,coef)</tt></b> - 
add two multivars, and (possibly) destructively modify multi1 to contain
the result. multi2 is considered multiplied by a term
represented by the (key,value) pair (exp,coef).
[ multi1 := multi1 + term * multi2; multi1; ];
<li></li><b><tt>MultiNomialNegate(multi)</tt></b> - 
negate a multivar, returning -multi, and destructively changing
the original. [ multi := - multi; multi1; ];
<li></li><b><tt>MultiNomialMultiply(multi1,multi2)</tt></b> - 
Multiply two multivars, and (possibly) destructively modify multi1 to contain
the result, returning the result: [ multi1 := multi1 * multi2; multi1; ];
<li></li><b><tt>NormalForm(multi)</tt></b> - 
convert MultiNomial to normal form (as would be typed in be the user).
This is part of the driver because the driver might be able to do
this more efficiently than code above it which can use ScanMultiNomial.
<li></li><b><tt>MultiLeadingTerm(multi)</tt></b> - 
return the (key,value) pair (mdeg(f),lc(f)) representing the leading
term. This is all the information needed about the leading term, 
and thus the leading coefficient and multidegree can be extracted from it.
<li></li><b><tt>MultiDropLeadingZeroes(multi)</tt></b> - 
remove leading terms with zero factors.
<li></li><b><tt>MultiTermLess(x,y)</tt></b> - 
for two (key,value) pairs, return <b><tt>True</tt></b> if <b> x&lt;y</b>, where the operation <b><tt>&lt;</tt></b> is the one used for
the representation, and <b><tt>False</tt></b> otherwise.
<li></li><b><tt>ScanMultiNomial(op,multi)</tt></b> - 
traverse all the terms of the multivariate, applying the
function 'op' to each (key,value) pair (exp,coef). The monomials
are traversed in the ordering defined by MultiTermLess. 'op' should
be a function accepting two arguments.
<li></li><b><tt>MultiZero(multi)</tt></b> - 
return <b><tt>True</tt></b> if the multivariate is zero (all coefficients are zero),
<b><tt>False</tt></b> otherwise.
</ul>

<p>

<a name="c1s3">

</a>
<h2>
<hr>1.3 Integration
</h2>
Integration can be performed by the function <b><tt>Integrate</tt></b>, which
has two calling conventions:


<p>
<ul><li>Integrate(variable) expression
</li><li>Integrate(variable, from, to) expression
</li></ul>

<p>
Integrate can have its own set of rules for specific integrals,
which might return a correct answer immediately. Alternatively,
it calls the function AntiDeriv, to see if the anti-derivative
can be determined for the integral requested. If this is the
case, the anti-derivative is used to compose the output.


<p>
If the integration algorithm cannot perform the integral, the
expression is returned unsimplified.


<p>

<h3>
<hr>The integration algorithm
</h3>
This section describes the steps taken in doing integration.


<p>

<h3>
<hr>General structure
</h3>
The integration starts at the function <b><tt>Integrate</tt></b>, but the
task is delegated to other functions, one after the other.
Each function can deem the integral unsolvable, and thus return
the integral unevaluated. These different functions offer
hooks for adding new types of integrals to be handled.


<p>

<h3>
<hr>Expression clean-up
</h3>
Integration starts by first cleaning up the expression, by
calling <b><tt>TrigSimpCombine</tt></b> to simplify expressions containing
multiplications of trigonometric functions into additions of
trigonometric functions (for which the integration rules are
trivial), and then passing the result to <b><tt>Simplify</tt></b>.


<p>

<h3>
<hr>Generalized integration rules
</h3>
For the function <b><tt>AntiDeriv</tt></b>, which is responsible for finding
the anti-derivative of a function, the code splits up expressions
according to the additive properties of integration, eg. integration
of <b>a+b</b> is the same as integrating <b> a</b> + integrating <b> b</b>.


<p>
<ul><li>Polynomials which can be expressed as univariate polynomials 
in the variable to be integrated over are handled by one integration rule.
</li><li>Expressions of the form </li><b> p*f(x)</b>, where <b>p</b> represents a 
univariate polynomial, and <b> f(x)</b> an integrable function, are handled
by a special integration rule. This transformation rule has to be designed
carefully not to invoke infinite recursion.
<li>Rational functions, </li><b>f(x)/g(x)</b> with both <b>f(x)</b> and
<b>g(x)</b> univariate polynomials, is handled separately also, using
partial fraction expansion to reduce rational function to a sum
of simpler expressions.
</ul>

<p>

<h3>
<hr>Integration tables
</h3>
For elementary functions, Yacas uses integration tables. For instance,
the fact that the anti-derivative of <b>Cos(x)</b> is <b>Sin(x)</b> is
declared in an integration table.


<p>
For the purpose of setting up the integration table, a few
declaration functions have been defined, which use some
generalized pattern matchers to be more flexible in recognizing
expressions that are integrable.


<p>

<h3>
<hr>Integrating simple functions of a variable
</h3>
For functions like <b>Sin(x)</b> the anti-derivative can be declared
with the function <b><tt>IntFunc</tt></b>. 


<p>
The calling sequence for <b><tt>IntFunc</tt></b> is


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
IntFunc(variable,pattern,antiderivative)
</pre></tr>
</table>


<p>
For instance, for the function <b>Cos(x)</b> there is a declaration:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
IntFunc(x,Cos(_x),Sin(x));
</pre></tr>
</table>


<p>
The fact that the second argument is a pattern means that each
occurrence of the variable to be matched should be referred
to as <b><tt>_x</tt></b>, as in the example above.


<p>
IntFunc generalizes the integration implicitly, in that it will
set up the system to actually recognize expressions of the form
<b>Cos(a*x+b)</b>, and return <b>Sin(a*x+b)/a</b> automatically.
This means that the variables <b> a</b> and <b> b</b> are reserved, and
can not be used in the pattern. Also, the variable used (in this 
case, <b><tt>_x</tt></b> is actually matched to the expression passed in to the
function, and the variable <b><tt>var</tt></b> is the real variable being integrated
over. To clarify: suppose the user wants to integrate <b> Cos(c*y+d)</b>
over <b>y</b>, then the following variables are set:


<p>
<ul><li></li><b><tt>a</tt></b> = <b> c</b>
<li></li><b><tt>b</tt></b> = <b> d</b>
<li></li><b><tt>x</tt></b> = <b> a*y+b</b>
<li></li><b><tt>var</tt></b> = <b> x</b>
</ul>

<p>
When functions are multiplied by constants, that situation is
handled by the integration rule that can deal with univariate
polynomials multiplied by functions, as a constant is a polynomial
of degree zero.


<p>

<h3>
<hr>Integrating functions containing expressions of the form <b> a*x^2+b</b>
</h3>
There are numerous expressions containing sub-expressions of the form
<b> a*x^2+b</b> which can easily be integrated.


<p>
The general form for declaring anti-derivatives for such expressions
is:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
IntPureSquare(variable, pattern, sign2, sign0,
  antiderivative)
</pre></tr>
</table>
Here <b><tt>IntPureSquare</tt></b> uses <b><tt>MatchPureSquared</tt></b> to match the expression.


<p>
The expression is searched for the pattern, where the variable
can match to a sub-expression of the form <b> a*x^2+b</b>, and
for which both <b> a</b> and <b> b</b> are numbers and <b> a*sign2&gt;0</b>
and <b> b*sign0&gt;0</b>.


<p>
As an example:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
IntPureSquare(x,num_IsFreeOf(var)/(_x),
  1,1,(num/(a*Sqrt(b/a)))*
  ArcTan(var/Sqrt(b/a)));
</pre></tr>
</table>
declares that the anti-derivative of <b> c/(a*x^2+b)</b> is

<p><center><b>c/(a*Sqrt(b/a))*ArcTan(x/Sqrt(b/a)),</b></center></p>

if both <b>a</b> and <b> b</b> are positive numbers.


<p>

<a name="c1s4">

</a>
<h2>
<hr>1.4 Transforms
</h2>
Currently the only tranform defined is <b><tt>LaplaceTransform</tt></b>,
which has the calling convention:


<p>
<ul><li>LaplaceTransform(var1,var2,func)
</li></ul>

<p>
It has been setup much like the integration algorithm. 
If the transformation algorithm cannot perform the transform, the
expression (in theory) is returned unsimplified. Some cases
may still erroneously return <b><tt>Undefined</tt></b> or <b><tt>Infinity</tt></b>.


<p>

<h3>
<hr>The <b><tt>LaplaceTransform</tt></b> algorithm
</h3>
This section describes the steps taken in doing a Laplace 
transform.


<p>

<h3>
<hr>General structure
</h3>
<b><tt>LaplaceTransform</tt></b> is immediately handed off to <b><tt>LapTran</tt></b>.
This is done because if the last <b><tt>LapTran</tt></b> rule is met, the
Laplace transform couldn't be found and it can then return
<b><tt>LaplaceTransform</tt></b> unevaluated.


<p>

<h3>
<hr>Operational Properties
</h3>
The first rules that are matched against utilize the various
operational properties of <b><tt>LaplaceTransform</tt></b>, such as: 


<p>
<ul><li>Linearity Properties
</li><li>Shift properties, i.e. multiplying the function by an exponential
</li><li></li><b>y*x^n=(-1)^n*(Deriv(x,n)LaplaceTransform(x,x[2],y))</b>
<li></li><b>y/x=(Integrate(x[2],x[2],Infinity)LapTran(x,x[2],y))</b>
</ul>

<p>
The last operational property dealing with integration is not
yet fully bug-tested, it sometimes returns <b><tt>Undefined</tt></b> or <b><tt>Infinity</tt></b>
if the integral returns such. 


<p>

<h3>
<hr>Transform tables
</h3>
For elementary functions, Yacas uses transform tables. For instance,
the fact that the Laplace transform of <b>Cos(t)</b> is <b>s/(s^2+1)</b> is
declared in a transform table.


<p>
For the purpose of setting up the transform table, a few
declaration functions have been defined, which use some
generalized pattern matchers to be more flexible in recognizing
expressions that are transformable.


<p>

<h3>
<hr>Transforming simple functions 
</h3>
For functions like <b>Sin(t)</b> the transform can be declared
with the function <b><tt>LapTranDef</tt></b>. 


<p>
The calling sequence for <b><tt>LapTranDef</tt></b> is


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
LapTranDef( in, out )
</pre></tr>
</table>


<p>
Currently <b><tt>in</tt></b> must be a variable of <b><tt>_t</tt></b> and <b><tt>out</tt></b> must be a function
of <b><tt>s</tt></b>.
For instance, for the function <b>Cos(t)</b> there is a declaration:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
LapTranDef( Cos(_t),                    s/(s^2+1) );
</pre></tr>
</table>


<p>
The fact that the first argument is a pattern means that each
occurrence of the variable to be matched should be referred
to as <b><tt>_t</tt></b>, as in the example above.


<p>
<b><tt>LapTranDef</tt></b> generalizes the transform implicitly, in that it will
set up the system to actually recognize expressions of the form
<b>Cos(a*t)</b> and <b>Cos(t/a)</b> , and return the appropriate answer.
The way this is done is by three separate rules for case of <b><tt>t</tt></b> itself,
<b><tt>a*t</tt></b> and <b><tt>t/a</tt></b>. This is similar to the <b><tt>MatchLinear</tt></b> function that 
<b><tt>Integrate</tt></b> uses, except <b><tt>LaplaceTransforms</tt></b> must have <b><tt>b=0</tt></b>.


<p>

<h3>
<hr>Further Directions
</h3>
Currenlty <b>Sin(t)*Cos(t)</b> cannot be transformed, because it requires
a convolution integral. This will be implemented soon. The inverse
laplace transform will be implement soon also.

<a name="c1s5">

</a>
<h2>
<hr>1.5 Finding real roots of polynomials
</h2>
<a name="real roots">

</a>
This section deals with finding roots of polynomials in the field 
of real numbers.


<p>
Without loss of generality, the coefficients <b>a[i]</b> of a polynomial

<p><center><b>p=a[n]*x^n+...+a[0] </b></center></p>

can be considered
to be rational numbers, as real-valued numbers are truncated in 
practice, when doing calculations on a computer.


<p>
Assuming that the leading coefficient <b>a[n]=1</b>, the polynomial <b> p</b> can also be written as

<p><center><b> p=p[1]^n[1]*...*p[m]^n[m],</b></center></p>

where <b>p[i]</b> are the <b>m</b> distinct irreducible monic factors of the form
<b> p[i]=x-x[i]</b>, and <b>n[i]</b> are multiplicities of the factors. Here the roots
are <b>x[i]</b> and some of them may be complex. However, complex roots of a
polynomial with real coefficients always come in conjugate pairs, so the
corresponding irreducible factors should be taken as <b>p[i]=x^2+c[i]*x+d[i]</b>. In
this case, there will be less than <b>m</b> irreducible factors, and all
coefficients will be real.


<p>

<a name="square free decomposition">

</a>
To find roots, it is useful to first remove the
multiplicities, i.e. to convert the polynomial to one with multiplicity 1
for all irreducible factors, i.e. find the polynomial <b> p[1]*...*p[m]</b>. This is called the "square-free part" of the original polynomial <b>p</b>.


<p>
The square-free part of the polynomial <b> p</b> can be easily found using the polynomial GCD algorithm.
The derivative of a polynomial <b> p</b>
can be written as:

<p><center><b> p'=Sum(i,1,m,p[1]^n[1]*...*n[i]*p[i]^(n[i]-1)*(D(x)p[i])*...*p[m]^n[m]).</b></center></p>



<p>
The g.c.d. of <b>p</b> and <b> p'</b> equals

<p><center><b> Gcd(p,p')=Factorize(i,1,m,p[i]^(n[i]-1)).</b></center></p>
 
So if we divide <b>p</b> by <b> Gcd(p,p')</b>, we get
the square-free part of the polynomial:

<p><center><b>SquareFree(p):=Div(p,Gcd(p,p'))=p[1]*...*p[m].</b></center></p>



<p>
In what follows we shall assume that all polynomials are square-free
with rational coefficients.
Given any polynomial, we can apply the functions <b><tt>SquareFree</tt></b> and <b><tt>Rationalize</tt></b> and reduce it to this form.
The function <b><tt>Rationalize</tt></b> converts all numbers in an expression to
rational numbers. The function <b><tt>SquareFree</tt></b> returns the square-free
part of a polynomial. For example:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; Expand((x+1.5)^5)
Out&gt; x^5+7.5*x^4+22.5*x^3+33.75*x^2+25.3125*x
+7.59375;
In&gt; SquareFree(Rationalize(%))
Out&gt; x/5+3/10;
In&gt; Simplify(%*5)
Out&gt; (2*x+3)/2;
In&gt; Expand(%)
Out&gt; x+3/2;
</pre></tr>
</table>


<p>


<p>

<h3>
<hr>Sturm sequences
</h3>
<a name="real roots!Sturm sequences">

</a>
For a polynomial <b>p(x)</b> of degree <b>n</b>, the Sturm sequence
<b> p[0]</b>, <b>p[1]</b>, ... <b>p[n]</b> is defined by the following
equations (following the book [Davenport <i>et al.</i> 1989]):


<p>

<p><center><b>p[0]=p(x),</b></center></p>


<p><center><b>p[1]=p'(x),</b></center></p>


<p><center><b>p[i]= -remainder(p[i-2],p[i-1]),</b></center></p>

where <b>remainder(p,q)</b> is the remainder of division of polynomials
<b>p</b>,  <b> q</b>.


<p>
The polynomial <b> p</b> can be assumed to have no multiple factors, and thus <b> p</b> and
<b> p'</b> are relatively prime. The sequence of polynomials in the 
Sturm sequence are (up to a minus sign) the consecutive polynomials generated  by 
Euclid's algorithm for the calculation of a 
greatest common divisor for <b> p</b> and <b> p'</b>, so the last 
polynomial <b> p[n]</b> will be a constant.


<p>
In Yacas, the function <b><tt>SturmSequence(p)</tt></b>  returns the Sturm sequence of <b>p</b>,
assuming <b> p</b> is a univariate polynomial in <b> x</b>, <b> p=p(x)</b>.


<p>

<a name="real roots!variations in Sturm sequences">

</a>
Given a Sturm sequence <b>S=SturmSequence(p)</b> of a polynomial <b>p</b>, 
the <i>variation</i> in the Sturm sequence <b> V(S,y)</b> is the number
of sign changes in the sequence <b>p[0]</b>, <b>p[1]</b> , ... , <b>p[n]</b>, evaluated at point <b>y</b>, and
disregarding zeroes in the sequence.


<p>
Sturm's theorem states that if <b> a</b> and <b> b</b> are two real numbers
which are not roots of <b> p</b>, and <b> a&lt;b</b>, then the number of 
roots between <b> a</b> and <b> b</b> is <b> V(S,a)-V(S,b)</b>. A proof can
be found in Knuth, <i>The Art of Computer Programming, Volume 2, Seminumerical Algorithms</i>. 


<p>
For <b>a</b> and <b> b</b>, the values <b>-Infinity</b> and <b> Infinity</b>
can also be used. In these cases, <b> V(S,Infinity)</b> is the number
of sign changes between the leading coefficients of the elements
of the Sturm sequence, and <b>V(S,-Infinity)</b> the same, but with
a minus sign for the leading coefficients for which the degree is
odd.


<p>

<a name="real roots!number of">

</a>
Thus, the number of real roots of a polynomial is 
<b>V(S,-Infinity)-V(S,Infinity)</b>. The function
<b><tt>NumRealRoots(p)</tt></b> returns the number of real roots of <b>p</b>.


<p>
The function <b><tt>SturmVariations(S,y)</tt></b> returns the number of sign changes between
the elements in the Sturm sequence <b> S</b>, at point <b> x=y</b>:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; p:=x^2-1
Out&gt; x^2-1;
In&gt; S:=SturmSequence(p)
Out&gt; {x^2-1,2*x,1};
In&gt; SturmVariations(S,-Infinity)- \
SturmVariations(S,Infinity)
Out&gt; 2;
In&gt; NumRealRoots(p)
Out&gt; 2;
In&gt; p:=x^2+1
Out&gt; x^2+1;
In&gt; S:=SturmSequence(p)
Out&gt; {x^2+1,2*x,-1};
In&gt; SturmVariations(S,-Infinity)- \
SturmVariations(S,Infinity)
Out&gt; 0;
In&gt; NumRealRoots(p)
Out&gt; 0;
</pre></tr>
</table>


<p>

<h3>
<hr>Finding bounds on real roots
</h3>
<a name="real roots!bounds on">

</a>
Armed with the variations in the Sturm sequence given in the
previous section, we can now find the number of real roots
in a range  (<b> a</b>,<b> b</b>), for <b> a&lt;b</b>. We can thus bound all the roots
by subdividing ranges until there is only one root in each range.
To be able to start this process, we first need some upper bounds of
the roots, or an interval that contains all roots. Davenport gives limits on the roots
of a polynomial given the coefficients of the polynomial, as


<p>

<p><center><b> Abs(a)&lt;=Max(Abs(a[n-1]/a[n]),Abs(a[n-2]/a[n])^(1/2),...,Abs(a[0]/a[n])^(1/n)),</b></center></p>

for all real roots <b>a</b> of <b> p</b>. This gives the upper bound on the
absolute value of the roots of the polynomial in question.
if <b> p(0)!=0</b>, the minimum bound can be obtained also by considering
the upper bound of <b> p(1/x)*x^n</b>, and taking <b> 1/bound</b>.


<p>
We thus know that given 

<p><center><b> a[max]=MaximumBound(p) </b></center></p>

and

<p><center><b>a[min]=MinimumBound(p) </b></center></p>

for all roots <b>a</b> of polynomial, either 

<p><center><b>-a[max]&lt;=a&lt;= -a[min] </b></center></p>

or

<p><center><b>a[min]&lt;=a&lt;=a[max].</b></center></p>



<p>
Now we can start the search for the bounds on all roots. The search
starts with initial upper and lower bounds on ranges, subdividing
ranges until a range contains only one root, and adding that range
to the resulting list of bounds. If, when dividing a range, the middle
of the range lands on a root, care must be taken, because the bounds
should not be on a root themselves. This can be solved by observing
that if <b>c</b> is a root, <b> p</b> contains a factor <b> x-c</b>, and thus
taking <b> p(x+c)</b> results in a polynomial with all the roots shifted 
by a constant <b>-c</b>, and the root <b> c</b> moved to zero, e.g. <b> p(x+c)</b>
contains a factor <b>x</b>. Thus a new ranges to the left and right of
<b> c</b> can be determined by first calculating the minimum bound <b> M</b>
of <b> p(x+c)/x</b>. When the original range was (<b> a</b>,<b> b</b>), and <b> c=(a+b)/2</b>
is a root, the new ranges should become (<b> a</b>,<b> c-M</b>) and (<b> c+M</b>,<b> b</b>).


<p>
In Yacas, <b><tt>MimimumBound(p)</tt></b> returns the lower bound described above,
and <b><tt>MaximumBound(p)</tt></b> returns the upper bound on the roots in <b> p</b>.
These bounds are returned as rational numbers.
<b><tt>BoundRealRoots(p)</tt></b> returns a list with sublists with the bounds on
the roots of a polynomial:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; p:=(x+20)*(x+10)
Out&gt; (x+20)*(x+10);
In&gt; MinimumBound(p)
Out&gt; 10/3;
In&gt; MaximumBound(p)
Out&gt; 60;
In&gt; BoundRealRoots(p)
Out&gt; {{-95/3,-35/2},{-35/2,-10/3}};
In&gt; N(%)
Out&gt; {{-31.6666666666,-17.5},
  {-17.5,-3.3333333333}};
</pre></tr>
</table>


<p>
It should be noted that since all calculations are done with rational
numbers, the algorithm for bounding the roots is very robust. This is
important, as the roots can be very unstable for small variations
in the coefficients of the polynomial in question (see Davenport).


<p>

<h3>
<hr>Finding real roots given the bounds on the roots
</h3>
<a name="real roots!finding">

</a>
Given the bounds on the real roots as determined in the previous section,
two methods for finding roots are available: the secant method or the Newton method, where the function is locally approximated
by a line, and extrapolated to find a new estimate for a root. This 
method converges quickly when "sufficiently" near a root, but can easily fail otherwise.
The secant method can easily send the search to infinity.


<p>
The bisection method is more robust, but slower. It works by taking 
the middle of the range, and checking signs of the polynomial to select the half-range where the root is.
As there is only one root
in the range (<b> a</b>,<b> b</b>), in general it will be true that <b> p(a)*p(b)&lt;0</b>,
which is assumed by this method.


<p>
Yacas finds the roots by first trying the secant method, starting
in the middle of the range, <b> c=(a+b)/2</b>. If this fails the bisection
method is tried.


<p>
The function call to find the real roots of a polynomial <b> p</b> in variable <b> x</b>
is <b><tt>FindRealRoots(p)</tt></b>, for example:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; p:=Expand((x+3.1)*(x-6.23))
Out&gt; x^2-3.13*x-19.313;
In&gt; FindRealRoots(p)
Out&gt; {-3.1,6.23};
In&gt; p:=Expand((x+3.1)^3*(x-6.23))
Out&gt; x^4+3.07*x^3-29.109*x^2-149.8199\ 
In&gt; *x-185.59793;
In&gt; p:=SquareFree(Rationalize( \ 
In&gt; Expand((x+3.1)^3*(x-6.23))))
Out&gt; (-160000*x^2+500800*x+3090080)/2611467;
In&gt; FindRealRoots(p)
Out&gt; {-3.1,6.23};
</pre></tr>
</table>


<p>


<script src="http://www.google-analytics.com/urchin.js" type="text/javascript">
</script>
<script type="text/javascript">
_uacct = "UA-2425144-1";
urchinTracker();
</script>
</body>

</html>