This file is indexed.

/usr/share/VTKData/Data/Infovis/eg1.ris is in vtkdata 5.8.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
TY  - JOUR
T1  - Laser frequency stabilization at 1.5 microns using ultranarrow inhomogeneous absorption profiles in Er3+:LiYF4
JF  - Journal of Luminescence
JA  - J Lumin
VL  - 127
IS  - 1
SP  - 83
EP  - 88
PY  - 2007///
SN  - 00222313 (ISSN) 
AU  - Bo?ttger, T.
AU  - Pryde, G.J.
AU  - Thiel, C.W.
AU  - Cone, R.L.
AD  - Physics Department, Montana State University, Bozeman, MT 59717, United States
AD  - Physics Department, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94117, United States
AD  - Centre for Quantum Dynamics, Centre for Quantum Computer Technology, Griffith University, Nathan, Brisbane, 4111, Australia
AB  - Single-frequency diode lasers have been frequency stabilized to 1.5 kHz Allan deviation over 0.05-50 s integration times, with laser frequency drift reduced to less than 1.4 kHz/min, using the frequency reference provided by an ultranarrow inhomogeneously broadened Er3+:4I15/2?4I13/2 optical absorption transition at a vacuum wavelength of 1530.40 nm in a low-strain LiYF4 crystal. The 130 MHz full-width at half-maximum (FWHM) inhomogeneous line width of this reference transition is the narrowest reported for a solid at 1.5 ?m. Strain-induced inhomogeneous broadening was reduced by using the single isotope 7Li and by the very similar radii of Er3+ and the Y3+ ions for which it substitutes. To show the practicability of cryogen-free cooling, this laser stability was obtained with the reference crystal at 5 K; moreover, this performance did not require vibrational isolation of either the laser or crystal frequency reference. Stabilization is feasible up to T=25 K where the Er3+ absorption thermally broadens to ?500 MHz. This stabilized laser system provides a tool for interferometry, high-resolution spectroscopy, real-time optical signal processing based on spatial spectral holography and accumulated photon echoes, secondary frequency standards, and other applications such as quantum information science requiring narrow-band light sources or coherent detection. © 2007 Elsevier B.V. All rights reserved.
KW  - 1.5 ?m wavelength
KW  - Er3+:YLF
KW  - Laser stabilization
KW  - Rare earth
N1  - Export Date: 3 July 2007
N1  - Source: Scopus
N1  - CODEN: JLUMA
N1  - doi: 10.1016/j.jlumin.2007.02.012
N1  - Language of Original Document: English
N1  - Correspondence Address: Bo?ttger, T.; Physics Department; Montana State University Bozeman, MT 59717, United States; email: tbottger@usfca.edu
N1  - References: Macfarlane, R.M., Cassanho, A., Meltzer, R.S., (1992) Phys. Rev. Lett., 69, p. 542; 
Macfarlane, R.M., Meltzer, R.S., Malkin, B.Z., (1998) Phys. Rev. B, 58, p. 5692; 
Agladze, N.I., Popova, M.N., Zhizhin, G.N., Egorov, V.J., Petrova, M.A., (1991) Phys. Rev. Lett., 66, p. 477; 
Sellin, P.B., Strickland, N.M., Bo?ttger, T., Carlsten, J.L., Cone, R.L., (2001) Phys. Rev. B, 63, p. 155111; 
Pryde, G.J., Bo?ttger, T., Cone, R.L., (2002) J. Lumin., 98, p. 309; 
Strickland, N.M., Sellin, P.B., Sun, Y., Carlsten, J.L., Cone, R.L., (2000) Phys. Rev. B, 62, p. 1473; 
Bo?ttger, T., Pryde, G.J., Cone, R.L., (2003) Opt. Lett., 28, p. 200; 
Sellin, P.B., Strickland, N.M., Carlsten, J.L., Cone, R.L., (1999) Opt. Lett., 24, p. 1038; 
Pryde, G.J., Bo?ttger, T., Cone, R.L., (2001) J. Lumin., 94-95, p. 587; 
Cole, Z., Bo?ttger, T., Krishna Mohan, R., Reibel, R., Babbitt, W.R., Cone, R.L., Merkel, K.D., (2002) Appl. Phys. Lett., 81, p. 3525; 
Bo?ttger, T., Thiel, C.W., Sun, Y., Cone, R.L., (2006) Phys. Rev. B, 74, p. 075107; 
Longdell, J.J., Sellars, M.J., (2004) Phys. Rev. A, 69, p. 032307; 
Fraval, E., Sellars, M.J., Longdell, J.J., (2005) Phys. Rev. Lett., 95, p. 030506; 
Shannon, R.D., (1976) Acta Crystallogr. Sect. A, 32, p. 751; 
Popova, M.N., Chukalina, E.P., Malkin, B.Z., Saikin, S.K., (2000) Phys. Rev. B, 61, p. 7421; 
Harris, T.L., Sun, Y., Babbitt, W.R., Cone, R.L., Ritcey, J.A., Equall, R.W., (2000) Opt. Lett., 25, p. 85; 
Supplee, J.M., Whittaker, E.A., Lenth, W., (1994) Appl. Opt., 33, p. 6294; 
Drever, R.W.P., Hall, J.L., Kowalski, F.V., Hough, J., Ford, G.M., Munley, A.J., Ward, H., (1983) Appl. Phys. B, 31, p. 97; 
Allan, D.W., (1987) IEEE Trans., UFFC-34, p. 647; 
Day, T., Gustafson, E.K., Byer, R.L., (1992) IEEE J. Quantum Electron., 28, p. 1106; 
Hobbs, P.C.D., (1997) Appl. Opt., 36, p. 903; 
Hall, J.L., Taubman, M.S., Ye, J., Laser stabilization (2001) Optics Handbook, , Bass M., Enoch J.M., Van Stryland E.W., and Wolfe W.L. (Eds), Optical Society of America p. 27.1. 
UR  - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34248547812&partnerID=40&rel=R6.5.0
ER  - 

TY  - JOUR
T1  - Using biharmonic laser pumping for preparation of pure and entangled multiexciton states in clusters of resonantly interacting fluorescent centres
JF  - Journal of Luminescence
JA  - J Lumin
VL  - 127
IS  - 1
SP  - 48
EP  - 54
PY  - 2007///
SN  - 00222313 (ISSN) 
AU  - Basieva, I.T.
AU  - Basiev, T.T.
AU  - Dietler, G.
AU  - Pukhov, K.K.
AU  - Sekatskii, S.K.
AD  - Laser Materials and Technologies Research Center, General Physics Institute RAS, 38 Vavilov Street, Bld. D, Moscow, 119991, Russian Federation
AD  - Laboratoire de Physique de la Matie?re Vivante, IPMC, Ecole Polytechnique Fe?de?rale de Lausanne, CH 1015 Lausanne-Dorigny, Switzerland
AB  - Use of a biharmonic laser pumping for preparation of pure and entangled multiexciton states in dimers and tetramers of resonantly interacting fluorescent particles is analysed. Special emphasis is given to the preparation of all possible pure exciton states and their maximally entangled Bell states. The general results are illustrated using as an example the pair and quartet centres of neodymium ions in calcium fluoride (M- and N-centres), where all necessary experimental information concerning the interactions and decoherence is available, and experimental preparation of Bell vacuum-single exciton and vacuum-biexciton states has been recently demonstrated. These results can be easily rescaled for the cases of quantum dots and dye molecules. Numerical results are compared with the analytical results obtained for a particular case of the biharmonic excitation of dimers. Excellent agreement between these approaches is demonstrated. © 2007 Elsevier B.V. All rights reserved.
KW  - Coherent optical spectroscopy of rare-earth ions
KW  - Entangled states
KW  - Quantum computer
N1  - Export Date: 3 July 2007
N1  - Source: Scopus
N1  - CODEN: JLUMA
N1  - doi: 10.1016/j.jlumin.2007.02.004
N1  - Language of Original Document: English
N1  - Correspondence Address: Pukhov, K.K.; Laser Materials and Technologies Research Center; General Physics Institute RAS; 38 Vavilov Street, Bld. D Moscow, 119991, Russian Federation; email: pukhov@lst.gpi.ru
N1  - References: Quiroga, L., Johnson, N.F., (1999) Phys. Rev. Lett., 83, p. 2270; 
Biolatti, E., (2000) Phys. Rev. Lett., 85, p. 5647; 
Reina, J.H., Quiroga, L., Johnson, N.F., (2000) Phys. Rev. A, 62, p. 012305; 
Chen, P., Piermarocchi, C., Sham, L.J., (2001) Phys. Rev. Lett., 87, p. 067401; 
Chen, G., Bonadeo, N.H., Steel, D.G., Gammon, D., Katzer, D.S., Park, D., Sham, L.J., (2000) Science, 289, p. 1906; 
Chen, G., Stievater, T.H., Batteh, E.T., Li, X., Steel, D.G., Gammon, D., Katzer, D.S., Sham, L.J., (2002) Phys. Rev. Lett., 88, p. 117901; 
Kawazoe, T., Kobayashi, K., Sangu, S., Ohtsu, M., (2003) Appl. Phys. Lett., 82, p. 2957; 
Unold, T., Mueller, K., Lienau, C., Elsaesser, T., Wieck, A.D., (2005) Phys. Rev. Lett., 94, p. 137404; 
Hettich, C., Schmitt, C., Zitzmann, J., Kuhn, S., Gerhardt, I., Sandoghdar, V., (2002) Science, 298, p. 385; 
Hofmann, C., (2003) Phys. Rev. Lett., 90, p. 013004; 
Sekatskii, S.K., Basiev, T.T., Basieva, I.T., Dietler, G., Fedorov, V.V., Karasik, A.Ya., Orlovskii, Yu.V., Pukhov, K.K., (2006) Opt. Commun., 259, p. 298; 
Sangu, S., Kobayashi, K., Shojiguchi, A., Ohtsu, M., (2004) Phys. Rev., 69, p. 115334; 
Lowett, B.W., Reina, J.H., Nazir, A., (2003) Phys. Rev. B, 68, p. 205319; 
Kis, Z., Paspalakis, E., (2004) J. Appl. Phys., 96, p. 3435; 
Zhang, P., Chang, C.K., Xue, Q.K., (2003) Phys. Rev. A, 67, p. 012312; 
Feng, M., D'Amico, I., Zanardi, P., (2003) Phys. Rev., 67, p. 014306; 
Yi, X.X., Jin, G.R., Zhou, D.L., (2001) Phys. Rev. A, 63, p. 062307; 
Basieva, I.T., Sekatskii, S.K., Pukhov, K.K., Basiev, T.T., Dietler, G., (2004) Laser Phys., 14, p. 1393; 
Sekatskii, S.K., Chergui, M., Dietler, G., (2003) Europhys. Lett., 63, p. 21; 
Basieva, I.T., Sekatskii, S.K., Dietler, J., (2005) Chem. Phys. Lett., 51, p. 1919; 
Nazir, A., Lowett, B.W., Briggs, G.A.D., (2004) Phys. Rev. A, 70, p. 052301; 
Greenberger, D.M., Horne, M., Zeilinger, A., (1989) Bell's Theorem, Quantum Theory, and Conceptions of the Universe, p. 73. , Kafatos M. (Ed), Kluwer, Dordrecht; 
Osiko, V.V., Voron'ko, Yu.K., Sobol, A.A., (1984) Crystals 10, , Springer, Berlin; 
Basiev, T.T., Fedorov, V.V., Karasik, A.Ya., Pukhov, K.K., (1999) J. Luminescence, 81, p. 189; 
Orlovskii, Yu.V., Basiev, T.T., Osiko, V.V., Grass, H., Heber, J., (1999) J. Luminescence, 82, p. 251; 
Basiev, T.T., Karasik, A.Ya., Kornienko, A.A., Papashvili, A.G., Pukhov, K.K., (1999) JETP Lett., 78, p. 319; 
Basiev, T.T., Karasik, A.Ya., Fedorov, V.V., Ver Steeg, K.W., (1998) Sov. Phys. JETP, 86, p. 156; 
Fedorov, V.V., Beck, W., Basiev, T.T., Karasik, A.Ya., Flytzanis, C., (2000) Chem. Phys., 257, p. 275; 
Merzbacher, E., (1998) Quantum Mechanics, , Wiley, New York; 
Macfarlane, R.M., Shelby, R.M., (1987) Spectroscopy of Solids Containing Rare-Earth Ions, p. 51. , Kaplyanskii A.A., and Macfarlane R.M. (Eds), North Holland, Amsterdam; 
. UR  - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34248575795&partnerID=40&rel=R6.5.0
ER  - 

TY  - JOUR
T1  - From quantum entanglement to mirror neuron
JF  - Chaos, Solitons and Fractals
JA  - Chaos Solitons Fractals
VL  - 34
IS  - 2
SP  - 344
EP  - 359
PY  - 2007///
SN  - 09600779 (ISSN) 
AU  - Zak, M.
AD  - Jet Propulsion Laboratory, California Institute of Technology, Advance Computing Algorithms and IVHM Group, 4800 Oak Grove Drive, M/S 126-347, Pasadena, CA 91109, United States
AB  - It is proposed that two fundamental phenomena: quantum entanglement in physics, and mirror neuron in biopsychology, can be described by using the same mathematical formalism, namely, the feedback from the Liouville equation to equation of motion. © 2006 Elsevier Ltd. All rights reserved.
N1  - Export Date: 3 July 2007
N1  - Source: Scopus
N1  - CODEN: CSFOE
N1  - doi: 10.1016/j.chaos.2006.03.087
N1  - Language of Original Document: English
N1  - Correspondence Address: Zak, M.; Jet Propulsion Laboratory; California Institute of Technology; Advance Computing Algorithms and IVHM Group; 4800 Oak Grove Drive, M/S 126-347 Pasadena, CA 91109, United States; email: Michail.Zak@jpl.nasa.gov
N1  - References: Takabayasi, T., Remarks on the formulation of quantum mechanics associated with classical picture (1953) Prog Theor Phys, 8; 
Zak, M., From reversible thermodynamics to life (2005) Chaos, Solitons & Fractals, 26, pp. 1019-1033; 
Berg, H., (1983) Random walks in biology, , University Press, Princeton (NJ); 
Prigogine, I., (1961) Thermodynamics of irreversible processes, , John Wiley, NY; 
Whitham, G., (1974) Linear and nonlinear waves, , Wily-Interscience Publ; 
Zeilinger, A., Physics news update (1997) American Institute of Physics, 10 (December); 
Zak, M., Fijany, A., Quantum resonance for simulating combinatorial problems (2005) Phys Lett A, 345, pp. 167-172; 
Zak, M., Expectation-based intelligent control (2006) Chaos, Solitons & Fractals, 28, pp. 616-626; 
Zak, M., Terminal attractors for associative memory in neural networks (1989) Phys Lett A, 133 (1-2), pp. 18-22; 
Zak, M., Terminal model of Newtonian dynamics (1993) Int J Theor Phys, 32, pp. 159-190; 
Risken, H., (1989) The Fokker-Planck equation, , Springer, NY; 
Zak, M., Postinstability models in dynamics (1994) Int J Theor Phys, 33 (11), pp. 2215-2280; 
Zak, M., Incompatible stochastic processes and complex probabilities (1998) Phys Lett A, 238, pp. 1-7; 
Zak, M., From collective mind to communications (2003) Complex Syst, 14, pp. 335-361; 
Zak, M., Entanglement-based self organization (2002) Chaos, Solitons & Fractals, 14, pp. 745-758; 
Zak, M., Entanglement-based communications (2002) Chaos, Solitons & Fractals, 13, pp. 39-41. 
UR  - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34147162319&partnerID=40&rel=R6.5.0
ER  - 

TY  - JOUR
T1  - Computational study of steric effects on the optical properties of oligomers
JF  - Journal of Luminescence
JA  - J Lumin
VL  - 126
IS  - 2
SP  - 278
EP  - 288
PY  - 2007///
SN  - 00222313 (ISSN) 
AU  - Irving, D.L.
AU  - Devine, B.D.
AU  - Sinnott, S.B.
AD  - Department of Materials Science and Engineering, University of Florida, 154 Rhines Hall, Gainesville, FL 32611-6400, United States
AB  - The optical properties of a variety of copolymer structures and their derivatives are determined from semi-empirical quantum chemical calculations. Possible candidates are found for organic light emitting diode and thin photovoltaic film applications. The largest blue shifts in the absorption spectrum are seen for derivatives that cause the oligomers under consideration to deviate from their unsubstituted planar configurations. This is primarily predicted to occur in systems with large steric interactions. Optical emissions are also predicted based on time dependent density functional calculations of excited states of these materials optimized with configuration interaction Hartree-Fock methods. © 2006 Elsevier B.V. All rights reserved.
KW  - Optical absorption
KW  - Optical emission
KW  - Semi-empirical quantum calculation
N1  - Export Date: 3 July 2007
N1  - Source: Scopus
N1  - CODEN: JLUMA
N1  - doi: 10.1016/j.jlumin.2006.07.006
N1  - Language of Original Document: English
N1  - Correspondence Address: Sinnott, S.B.; Department of Materials Science and Engineering; University of Florida; 154 Rhines Hall Gainesville, FL 32611-6400, United States; email: sinnott@mse.ufl.edu
N1  - References: Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., Holmes, A.B., (1990) Nature, 347 (6293), p. 539; 
Krasovitskii, B.M., Bolotin, B.M., (1988) Organic Luminescent Materials, , VCH, Weinheim, New York, NY; 
Cornil, J., Beljonne, D., Shuai, Z., Hagler, T.W., Campbell, I., Bradley, D.D.C., Bredas, J.L., Mullen, K., (1995) Chem. Phys. Lett., 247 (4-6), p. 425; 
Reddinger, J.L., Reynolds, J.R., (1999) Adv. Polym. Sci., 145, p. 59; 
Friend, R.H., (1999) Nature, 397 (6715), p. 121; 
de Souza, M.M., Rumbles, G., Gould, I.R., Amer, H., Samuel, I.D.W., Moratti, S.C., Holmes, A.B., (2000) Synth. Met., 111, p. 539; 
Miyata, S.O., Nalwa, H.S., (1997) Organic Electroluminescent Materials and Devices, , Gordon and Breach Publishers, Amsterdam; 
(1999) Phosphor Handbook, , Phosphor Research Society, CRC Press, Boca Raton, FL; 
Bauerle, P., (1993) Adv. Mater., 5 (12), p. 879; 
Braun, D., Heeger, A.J., (1991) Appl. Phys. Lett., 58 (18), p. 1982; 
Yang, Y., Pei, Q., Heeger, A.J., (1996) J. Appl. Phys., 79 (2), p. 934; 
Bredas, J.L., Cornil, K., Meyers, F., Beljonne, D., (1997) Handbook of Conducting Polymers, 1, p. 1. , Skotheim T., Elsenbaumer R., and Reynolds J. (Eds), Marcel Dekker Inc., New York; 
Cirpan, A., Argun, A.A., Grenier, C.R.G., Reeves, B.D., Reynolds, J.R., (2003) J. Mater. Chem., 13 (10), p. 2422; 
Argun, A.A., Cirpan, A., Reynolds, J.R., (2003) Adv. Mater., 15 (16), p. 1338; 
Argun, A.A., (2004) Chem. Mater., 16 (23), p. 4401; 
Stewart, J.J.P., (1989) J. Comput. Chem., 10 (2), p. 209; 
Stewart, J.J.P., (1989) J. Comput. Chem., 10 (2), p. 221; 
Stewart, J.J.P., (1990) J. Computer-Aided Mol. Des., 4 (1), p. 1; 
Thiel, W., (2000) Modern Methods and Algorithms of Quantum Chemistry, p. 1. , Grotendorst J. (Ed), John von Neumann Institute for Computing, Julich; 
Thiel, W., (1996) Advances in Chemical Physics, Volume 93, New Methods in Computational Quantum Mechanics, 93, p. 703. , Prigogine I., and Rice S.A. (Eds), Wiley, New York; 
Ridley, J., Zerner, M., (1973) Theor. Chim. Acta, 32 (2), p. 111; 
Zerner, M.C., (1991) Reviews in Computational Chemistry, 2, p. 313. , Lipkowitz K.B., and Boyd D.B. (Eds); 
Stratmann, R., Scuseria, G., Frisch, M., (1998) J. Chem. Phys., 109 (19), p. 8218; 
Becke, A.D., (1988) Phys. Rev. A, 38 (6), p. 3098; 
Gajdek, P., Becker, R.S., Elisei, F., Mazzucato, U., Spalletti, A., (1996) J. Photochem. Photobiol. A-Chem., 100 (1-3), p. 57; 
Mercer, I.P., Gould, I.R., Klug, D.R., (1999) J. Phys. Chem. B, 103 (36), p. 7720; 
Mercer, I.P., Gould, I.R., Klug, D.R., (1997) Faraday Discuss., 108, p. 51; 
Walker, R.C., de Souza, M.M., Mercer, I.P., Gould, I.R., Klug, D.R., (2002) J. Phys. Chem. B, 106 (44), p. 11658; 
Rappoport, D., Furche, F., (2005) J. Chem. Phys., 122 (6); 
Furche, F., Ahlrichs, R., (2004) J. Chem. Phys., 121 (24), p. 12772; 
Furche, F., Ahlrichs, R., (2002) J. Chem. Phys., 117 (16), p. 7433; 
Foresman, J.B., Headgordon, M., Pople, J.A., Frisch, M.J., (1992) J. Phys. Chem., 96 (1), p. 135; 
Tretiak, S., Mukamel, S., (2002) Chem. Rev., 102 (9), p. 3171; 
Marques, M., Gross, E., (2004) Annu. Rev. Phys. Chem., 55, p. 427; 
Hirata, S., Head-Gordon, M., Szczepanski, J., Vala, M., (2003) J. Phys. Chem. A, 107 (24), p. 4940; 
Bauernschmitt, R., Ahlrichs, R., (1996) Chem. Phys. Lett., 256 (4-5), p. 454; 
Casida, M.E., Jamorski, C., Casida, K.C., Salahub, D.R., (1998) J. Chem. Phys., 108 (11), p. 4439; 
Wang, S., Ho, T., (2000) J. Photochem. Photobiol. A: Chem., 135, p. 119; 
Perdew, J.P., Burke, K., Wang, Y., (1996) Phys. Rev. B, 54 (23), p. 16533; 
Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45 (23), p. 13244; 
Hohenberg, P., Kohn, W., (1964) Phys. Rev. B, 136 (3 B), pp. B864; 
Vosko, S.H., Wilk, L., Nusair, M., (1980) Can. J. Phys., 58 (8), p. 1200; 
Lee, C.T., Yang, W.T., Parr, R.G., (1988) Phys. Rev. B, 37 (2), p. 785; 
Karabunarliev, S., Baumgarten, M., Mullen, K., (2000) J. Phys. Chem. A, 104 (35), p. 8236. 
UR  - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34248549735&partnerID=40&rel=R6.5.0
ER  - 

TY  - JOUR
T1  - Steering of a dissipative qubit by direct inversion
JF  - Journal of Computational Electronics
JA  - J. Comput. Electron.
VL  - 6
IS  - 1
SP  - 271
EP  - 274
PY  - 2007///
SN  - 15698025 (ISSN) 
AU  - Wenin, M.
AU  - Po?tz, W.
AD  - Institut fu?r Physik, Theory Division Karl Franzens Universita?t Graz, Universita?tsplatz 5, 8010 Graz, Austria
AB  - We present an analytical investigation of the manipulation of a quantum mechanical two-level system (qubit) with time-dependent fields. The qubit interacts with a phonon-system which acts as a 'heat bath'. It is shown that one can analytically find optimal Hamiltonians to perform state transformations with arbitrarily small loss of purity. © Springer Science+Business Media LLC 2007.
KW  - Inversion
KW  - Optimal control
KW  - Phonons
KW  - Two-level quantum systems
N1  - Export Date: 3 July 2007
N1  - Source: Scopus
N1  - doi: 10.1007/s10825-006-0125-3
N1  - Language of Original Document: English
N1  - Correspondence Address: Wenin, M.; Institut fu?r Physik; Theory Division Karl Franzens Universita?t Graz; Universita?tsplatz 5 8010 Graz, Austria; email: Markus.Wenin@uni-graz.at
N1  - References: Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W., (1987) Rev. Mod. Phys., 59, p. 1; 
Thorwart, M., Ha?nggi, P., (2001) Phys. Rev. A, 65, p. 012309; 
Jacak, L., Krasnyj, J., Jacak, W., Gonczarek, R., Machnikowski, P., (2005) Phys. Rev. B, 72, p. 245309; 
Protopopescu, V., Perez, R., D'Helon, C., Schmulen, J., (2003) J. Phys. A: Math. Gen., 36, pp. 2175-2189; 
Vitali, D., Tombesi, P., (1999) Phys. Rev. A, 59, p. 6; 
DiVincenzo, D.P., Loss, D., (2005) Phys. Rev. B, 71, p. 035318; 
Jirari, H., Po?tz, W., (2005) Phys. Rev. A, 72, p. 013409; 
Viola, L., Lloyd, S., (1998) Phys. Rev. A, 58, p. 2733; 
Lidar, D.A., Chuang, I.L., Whaley, K.B., (1998) Phys. Rev. Lett., 81, p. 12; 
Grigorenko, I.A., Khveshchenko, D.V., (2005) Phys. Rev. Lett., 94, p. 040506; 
Hohenester, U., Stadler, G., (2004) Phys. Rev. Lett., 92, p. 19; 
Stievater, T.H., Li, X., Gammon, D.G., Katzer, D.S., Park, D., Piermarocchi, C., Sham, L.J., (2001) Phys. Rev. Lett., 87, p. 13; 
Makhlin, Y., Scho?n, G., Shnirman, A., (2001) Rev. Mod. Phys., 73, p. 357; 
Rossi, F., Kuhn, T., (2002) Rev. Mod. Phys., 74; 
Wenin, M., (2006) Phys. Rev. A, 74, p. 1. 
UR  - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34247537652&partnerID=40&rel=R6.5.0
ER  - 

TY  - JOUR
T1  - Boundary condition at the junction
JF  - Journal of Computational Electronics
JA  - J. Comput. Electron.
VL  - 6
IS  - 1
SP  - 153
EP  - 157
PY  - 2007///
SN  - 15698025 (ISSN) 
AU  - Harmer, M.
AU  - Pavlov, B.
AU  - Yafyasov, A.
AD  - Inst. of Inf. and Math Sciences, Massey Univ., Albany, New Zealand
AD  - Dept. of Math., The University of Auckland, Auckland, New Zealand
AD  - Institute for Physics, St-Petersburg University, St-Petersburg, Russian Federation
AB  - When modeling a 2-d quantum network by a 1-d quantum graph one usually substitutes the 2-d vertex domains by the point-wise junctions with appropriate boundary conditions imposed on the boundary values ?(a) = (?1(a), ?2(a), ?3(a), ...?n(a)), ?? = ??1 (a), ??2 (a), ??3(a),... ??n(a)) of the wave-function on the leads ?1, ?2,...?n at the junction a. In particular Datta proposed parametrization of the boundary condition, for symmetric T-junction, by some orthogonal 1-d projection P0: Rn ? Rn P0? ?(a) = 0, P0 ??(a) = 0. We consider an arbitrary junction, n ? 3 of 2-d leads attached to a 2-d vertex domain ?int, in case, when there exist a resonance eigenvalue ? = 2m* E? ?-2 of the Schro?dinger operator Lint. We derive, from the first principles, energy-dependent boundary conditions for thin, quasi-1-d, network, and obtain from it, in the limit of zero temperature, Datta-type boundary condition, interpreting the projection P0 in terms of the resonance eigenfunction ?0: Lint?0 = ?0?0 and geometry of the leads. © Springer Science+Business Media LLC 2007.
KW  - Eigenfunction
KW  - Eigenvalue
KW  - Junction
KW  - Scattering matrix
N1  - Export Date: 3 July 2007
N1  - Source: Scopus
N1  - doi: 10.1007/s10825-006-0085-7
N1  - Language of Original Document: English
N1  - Correspondence Address: Harmer, M.; Inst. of Inf. and Math Sciences; Massey Univ. Albany, New Zealand; email: m.s.harmer@massey.ac.nz
N1  - References: Datta, S., (1995) Electronic Transport in Mesoscopic Systems, , Cambridge University Press, Cambridge; 
Meijer, F., Morpurgo, A., Klapwijk, T., (2002) Phys. Rev. B, 66, p. 033107; 
Nitta, J., Meijer, F.E., Takayanagi, H., (1999) Appl. Phys. Lett., 75, pp. 695-697; 
Shelykh, I.A., Galkin, N.G., Bagraev, N.T., (2005) Phys. Rev. B, 72, p. 235316; 
Splettstoesser, J., Governale, M., Zu?licke, U., (2003) Phys. Rev. B, 68, p. 165341; 
Kuchment, P., (2002) Waves in Periodic and Random Media, 12, p. 1; 
Kostrykin, V., Schrader, R., (2001) J. Math. Phys., 42, pp. 1563-1598; 
Kostrykin, V., Schrader, R., (2003) Commun. Math. Phys., 237, pp. 161-179; 
Harmer, M., (2000) J. Phys. A: Mathem. General, 33, pp. 9193-9203; 
Taniguchi, T., Bu?ttiker, M., (1999) Phys. Rev. B, 60, p. 13814; 
Harmer, M., The rashba ring In preparationSylvester, J., Uhlmann, G., (1990) Proceedings of the Conference "Inverse Problems in Partial Differential Equations (Arcata, 1989),", 101. , In: SIAM, Philadelphia; 
Bagraev, N., Mikhailova, A., Pavlov, B.S., Prokhorov, L.V., Yafyasov, A., (2005) Phys. Rev. B, 71, p. 165308; 
Pavlov, B., Antoniou, I., (2005) J. Phys. A: Math. Gen., 38, pp. 4811-4823; 
Glazman, I., (1966) Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators Translated from the Russian By the IPST Staff (Israel Program for Scientific Translations), , Jerusalem, 1965; Daniel Davey & Co., Inc., New York; 
Mittra, R., Lee, S., (1971) Analytical Techniques in the Theory of Guided Waves, p. 323. , The Macmillan Company, NY, Collier-Macmillan Limited, London; 
Mikhailova, A., Pavlov, B., Prokhorov, L., (2004) Arxiv Math-ph/031238, p. 69. 
UR  - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34247340417&partnerID=40&rel=R6.5.0
ER  - 

TY  - JOUR
T1  - Circuit modeling of flux qubits interacting with superconducting waveguides
JF  - Journal of Computational Electronics
JA  - J. Comput. Electron.
VL  - 6
IS  - 1
SP  - 105
EP  - 108
PY  - 2007///
SN  - 15698025 (ISSN) 
AU  - Csaba, G.
AU  - Fahem, Z.
AU  - Peretti, F.
AU  - Lugli, P.
AD  - Institute for Nanoelectronics, Technical University of Munich, Arcisstrasse 21, D-80333 Munich, Germany
AB  - We present an equivalent circuit approach to understand, simulate and design experimental setups, where superconducting coplanar resonators are applied to probe quantum systems. We employ finite-element electromagnetic simulations to construct an equivalent lumped circuit representation of the microwave cavity and we use a circuit model based on the Bloch equations to simulate the behavior of a two-state model quantum system. Interconnection of the two circuit modules gives a semiclassical description of the coupled quantum/classical dynamics and yields predictions that are directly comparable with measurements on realized circuits. © Springer Science+Business Media LLC 2007.
KW  - Cavity QED
KW  - Circuit modeling
KW  - Finite-element electromagnetics
KW  - On-chip spectroscopy
N1  - Export Date: 3 July 2007
N1  - Source: Scopus
N1  - doi: 10.1007/s10825-006-0067-9
N1  - Language of Original Document: English
N1  - Correspondence Address: Csaba, G.; Institute for Nanoelectronics; Technical University of Munich; Arcisstrasse 21 D-80333 Munich, Germany; email: csaba@ei.tum.de
N1  - References: Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J., Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation (2004) Phys. Rev, A69, p. 062320; 
Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Schoelkopf, R.J., Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics (2004) Nature, 431, p. 9; 
Cendes, Z.J., Vector finite elements for electromagnetic field computation (1991) IEEE Trans. Magn., 27 (5); 
http://www.ansoft.com/products/hf/hfss/Mariantoni, M., Storcz, M.J., Wilhelm, F.K., Oliver, W.D., Emmert, A., Marx, A., Gross, R., Solano, E., Generation of Microwave Single Photons and Homodyne Tomography on a Chip, , cond-mat/0509737; 
http://www.comsol.com/Orlando, T., Delin, K.A., (1991) Foundations of Applied Superconductivity Prentice Hall; 
Csurgay, A?., Porod, W., Equivalent circuit representation of arrays composed of Coulomb-coupled nanoscale devices: Modelling, simulation and realizability nt (2001) J. Circ. Theor. Appl., 29 (1), pp. 3-35; 
Csaba, G., Csurgay, A., Porod, W., Computing architecture composed of next-neighbor coupled, opticallt pumped nanodevices (2001) Int. J. Circ. Theor. Appl., 29, p. 73; 
Orlando, T.P., Mooij, J.E., Tian, L., van der Wal, C.H., Levitov, L.S., Lloyd, S., Mazo, J.J., Superconducting persistent-current qubit (1999) Phys. Rev., B60, p. 22; 
Csaba, G., Porod, W., Csurgay, A.I., Computing architecture composed of field-coupled single domain nanomagnets clocked by magnetic field (2003) Int. J. Circ. Theor. Appl., 31, p. 1. 
UR  - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34247535111&partnerID=40&rel=R6.5.0
ER  - 

TY  - JOUR
T1  - Indirect optimal control of a double quantum dot
JF  - Journal of Computational Electronics
JA  - J. Comput. Electron.
VL  - 6
IS  - 1
SP  - 171
EP  - 174
PY  - 2007///
SN  - 15698025 (ISSN) 
AU  - Po?tz, W.
AD  - Institut fu?r Physik, Theory Division, Karl-Franzens-Universita?t Graz, Universita?tplatz 5, 8010 Graz, Austria
AB  - An indirect optimization method for the dynamic control of non-Markovian open quantum systems is presented. It is demonstrated at the example of a spin-boson model for an electron in a double dot which couples to a bath of phonons. This study reveals strategies for controlling the effective system-bath coupling which become available when the system is addressed in its quantum regime. We give examples for population transfer, trapping and quantum operations. © Springer Science+Business Media LLC 2007.
KW  - Dissipation
KW  - Open quantum system
KW  - Optimal control
KW  - Quantum dot
KW  - Qubit
N1  - Export Date: 3 July 2007
N1  - Source: Scopus
N1  - doi: 10.1007/s10825-006-0079-5
N1  - Language of Original Document: English
N1  - Correspondence Address: Po?tz, W.; Institut fu?r Physik; Theory Division; Karl-Franzens-Universita?t Graz; Universita?tplatz 5 8010 Graz, Austria; email: walter.poetz@uni-graz.at
N1  - References: Nielsen, M.A., Chuang, I.L., (2002) Quantum Computation and Quantum Information, , (Cambridge Press, Cambridge); 
Breuer, H.P., Petruccione, F., (2002) The Theory of Open Quantum Systems, , Oxford University Press; 
Jirari, H., Po?tz, W., (2005) Phys. Rev. A, 72, p. 013409; 
Jirari, H., Po?tz, W., (2006) Phys. Rev. A, 74, p. 022306; 
Greiner, W., (2003) Classical Mechanics Springer, , See, for example New York; 
Krotov, V.F., (1996) Global Methods in Optimal Control Theory, , Dekker, New York; 
Po?tz, W., Goritschnig, A., Jirari, H., Proc. 5th MATHMOD 2006, 1, p. 87. , ARGESIM Record no. 30 and Vol. 2, Sessions/PHYS/127; 
Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W., (1987) Rev. Mod. Phy., 59, p. 1; 
Viola, L., Lloyd, S., (1998) Phys. Rev. A, 58 (4), p. 2733. 
UR  - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34247336327&partnerID=40&rel=R6.5.0
ER  - 

TY  - JOUR
T1  - 3D simulation of a silicon quantum dot in a magnetic field based on current spin density functional theory
JF  - Journal of Computational Electronics
JA  - J. Comput. Electron.
VL  - 6
IS  - 1
SP  - 191
EP  - 194
PY  - 2007///
SN  - 15698025 (ISSN) 
AU  - Lisieri, M.
AU  - Fiori, G.
AU  - Iannaccone, G.
AD  - Dipartimento di Ingegneria dell' Informazione, Universita? di Pisa, Via Caruso 16, I-56100 Pisa, Italy
AB  - We have developed a code for the simulation of the electrical and magnetic properties of silicon quantum dots in the framework of the TCAD Package NANOTCAD-ViDES. We adopt current spin density functional theory with a local density approximation and with the effective mass approximation. We show that silicon quantum dots exhibit large variations of the total spin as the number of electrons in the dot and the applied magnetic field are varied. Such properties are mainly due to the silicon band structure, and make silicon quantum dots interesting systems for spintronic and quantum computing experiments. © Springer Science+Business Media LLC 2007.
KW  - Current spin density functional theory
KW  - Silicon quantum dot
KW  - Spintronics
N1  - Export Date: 3 July 2007
N1  - Source: Scopus
N1  - doi: 10.1007/s10825-006-0110-x
N1  - Language of Original Document: English
N1  - Correspondence Address: Lisieri, M.; Dipartimento di Ingegneria dell' Informazione; Universita? di Pisa; Via Caruso 16 I-56100 Pisa, Italy; email: michele.lisieri@iet.unipi.it
N1  - References: Friesen, M., Practical design and simulation of silicon-based quantum-dot qubits (2003) Phys. Rev. B, 67, pp. 121301-1-4; 
Ladd, T.D., All-silicon quantum computer (2002) Phys. Rev. Lett., 89, pp. 017901-1-4; 
Friesen, M., Tahan, C., Joynt, R., Eriksson, M.A., Spin readout and initialization in a semiconductor quantum dot (2004) Phys. Rev. B, 92, pp. 037901-1-4; 
Das Sarma, S., Fabian, J., Hu, X., Z?utic?, I., Theoretical perspective on spintronics and spin-polarized transport (2000) IEEE Trans. Magn., 36, p. 2821; 
Pala, M.G., Governale, M., Kig, J., Zlicke, U., Iannaccone, G., Two-dimensional hole precession in an all-semiconductor spin field effect transistor (2004) Phys. Rev. B, 69, pp. 045304-1-9; 
Rokhinson, L.P., Guo, L.J., Chou, S.Y., Tsui, D.C., Spin transitions in a small Si quantum dot (2000) Phys. Rev. B/, 63, p. 35321; 
Reimann, S.M., Manninen, M., Electronic structure of quantum dots (2002) Rev. Mod. Phys., 74, p. 1325; 
Koskinen, M., Kolehmainen, J., Reimann, S.M., Toivanen, J., Manninen, M., Quantum dots in magnetic fields: Unrestricted symmetries in the current spin-density functional formalism (1999) The Euro. Phys. J. D, 9, pp. 487-490; 
Tanatar, B., Ceperley, D.M., Ground state of the two-dimensional electron gas (1989) Phys. Rev. B, 39, p. 5005; 
Pala, M.G., Iannaccone, G., A three-dimensional solver of the Schro?dinger equation in momentum space for the detailed simulation of nanostructures (2002) Nanotechnology, 13, pp. 369-372; 
Friesen, M., Practical design and simulation of silicon-based quantum-dot qubits (2003) Phys. Rev. B, 67, pp. 121301-1-4. 
UR  - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34247344097&partnerID=40&rel=R6.5.0
ER  - 

TY  - JOUR
T1  - Simulation of the entanglement creation for identical particles scattering in a 2D system
JF  - Journal of Computational Electronics
JA  - J. Comput. Electron.
VL  - 6
IS  - 1
SP  - 89
EP  - 92
PY  - 2007///
SN  - 15698025 (ISSN) 
AU  - Buscemi, F.
AU  - Bordone, P.
AU  - Bertoni, A.
AD  - S3 Research Center, CNR-INFM, via Campi 213/A, I-41100 Modena, Italy
AD  - Dipartimento di Fisica, Universita? di Modena e Reggio Emilia, Modena, Italy
AD  - S3 Research Center, CNR-INFM S3, via Campi 213/A, I-41100 Modena, Italy
AB  - In recent years the dynamics of entanglement formation between two distinguishable charged particles has been investigated for scattering events in bulk semiconductors. The aim of this work is to overcome the hypothesis of distinguishable carriers. Here we present a quantitative evaluation of the entanglement dynamics for electron-electron collisions in a 2D system applying a method, suitable for indistinguishable particles, based on the Slater rank and the von Neumann entropy of the reduced density matrix. The quantum entanglement of both spatial and spin degrees of freedom is computed for various initial conditions of the system. © Springer Science+Business Media LLC 2007.
KW  - Entanglement
KW  - Indistinguishability
KW  - Parallel diagonalization
N1  - Export Date: 3 July 2007
N1  - Source: Scopus
N1  - doi: 10.1007/s10825-006-0071-0
N1  - Language of Original Document: English
N1  - Correspondence Address: Buscemi, F.; S3 Research Center; CNR-INFM; via Campi 213/A I-41100 Modena, Italy; email: buscemi.fabrizio@unimore.it
N1  - References: Giulini, D., (1996) Decoherence and the Appearance of a Classical World in Quantum Theory Springer, , Berlin; 
Bordone, P., Bertoni, A., Simulation of entanglement creation for carrier-impurity scattering in a 2D (to be published on the Proceedings of 14-th International Conference on Non Equilibrium carrier dynamics semiconductors - HCIS 14 - Chicago, July 24-29, 2005)Bordone, P., Bertoni, A., Simulation of the entanglement dynamics for scattering between a free and a bound carrier in a quantum wire (2004) J. Comp. Elec., 3, p. 407; 
Schliemann, J., Cirac, J.I., Kus, M., Lewenstein, M., Loss, D., Quantum correlations in two-fermion systems (2001) Phis. Rev. A., 64, p. 022303; 
Ghirardi, G., Marinatto, L., General criterion for the entanglement of two indistinguishable particles (2004) Phys. Rev. A., 70, p. 012109; 
Buscemi, F., Bordone, P., Bertoni, A., Entanglement dynamics of electron-electron scattering in low dimensional semiconductor system (2006) Phys. Rev. A., 73, p. 052312; 
Lama, L., Leon, J., Dynamical generation of spin-spin entanglement via spin-independent scattering of two identical s = 1/2 fermions Phys (2006) Rev. A., 73, p. 052322. 
UR  - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34247388741&partnerID=40&rel=R6.5.0
ER  - 

TY  - JOUR
T1  - Generalized quantum state sharing of arbitrary unknown two-qubit state
JF  - Optics Communications
JA  - Opt Commun
VL  - 276
IS  - 2
SP  - 322
EP  - 326
PY  - 2007///
SN  - 00304018 (ISSN) 
AU  - Wang, Z.-y.
AU  - Liu, Y.-m.
AU  - Wang, D.
AU  - Zhang, Z.-j.
AD  - Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education of China, School of Physics and Material Science, Hefei, 230039, China
AD  - Department of Physics, Shaoguan University, Shaoguan, 512005, China
AD  - Department of Physics, Center for Quantum Information Science, National Cheng Kung University, Tainan, 70101, Taiwan
AB  - We present first a three-party scheme for probabilistically implementing quantum state sharing of an arbitrary unknown two-qubit state by using two non-maximally entangled three-qubit states as the quantum channel. We show that, by choosing the appropriate performance, it is indeed possible to share an arbitrary unknown two-qubit state using partially entangled states if the parties collaborate. We then sketch the generation of the three-party scheme to N-party case. © 2007 Elsevier B.V. All rights reserved.
KW  - Bell-state measurement
KW  - Generalized quantum state sharing
KW  - Partially entangled state
KW  - Single-qubit projective measurement
N1  - Export Date: 3 July 2007
N1  - Source: Scopus
N1  - CODEN: OPCOB
N1  - doi: 10.1016/j.optcom.2007.03.085
N1  - Language of Original Document: English
N1  - Correspondence Address: Zhang, Z.-j.; Department of Physics; Center for Quantum Information Science; National Cheng Kung University Tainan, 70101, Taiwan; email: zjzhang@ahu.edu.cn
N1  - References: Shamir, A., (1979) Commun. ACM, 22, p. 612; 
Hillery, M., Bu?zek, V., Berthiaume, A., (1999) Phys. Rev. A, 59, p. 1829; 
Karlsson, A., Koashi, M., Imoto, N., (1999) Phys. Rev. A, 59, p. 162; 
Gottesman, D., (2000) Phys. Rev. A, 61, p. 042311; 
Tittel, W., Zbinden, H., Gisin, N., (2001) Phys. Rev. A, 63, p. 042301; 
Karimipour, V., Bahraminasab, A., Bagherinezhad, S., (2002) Phys. Rev. A, 65, p. 042320; 
Chau, H.F., (2002) Phys. Rev. A, 66, p. 060302; 
Bagherinezhad, S., Karimipour, V., (2003) Phys. Rev. A, 67, p. 044302; 
Guo, G.P., Guo, G.C., (2003) Phys. Lett. A, 310, p. 247; 
Xiao, L., Long, G.L., Deng, F.G., Pan, J.W., (2004) Phys. Rev. A, 69, p. 052307; 
Singh, S.K., (2005) Phys. Rev. A, 71, p. 012328; 
Hsu, L.Y., Li, C.M., (2005) Phys. Rev. A, 71, p. 022321; 
Han, L.F., (2005) Phys. Lett. A, 342, p. 60; 
Zhang, Z.J., (2007) Phys. Lett. A, 361, p. 24; 
Zhang, Z.J., (2005) Phys. Rev. A, 71, p. 044301; 
Zhang, Z.J., (2005) Phys. Rev. A, 72, p. 022303; 
Zhang, Z.J., (2005) Chin. Phys. Lett., 22, p. 1588; 
Zhang, Z.J., (2007) Opt. Commun., 269, p. 418; 
Cleve, R., Gottesman, D., Lo, H.K., (1999) Phys. Rev. Lett., 83, p. 648; 
Bandyopadhyay, S., (2000) Phys. Rev. A, 62, p. 012308; 
Hsu, L.Y., (2003) Phys. Rev. A, 68, p. 022306; 
Li, Y.M., Zhang, K.S., Peng, K.C., (2004) Phys. Lett. A, 324, p. 420; 
Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K., (2004) Phys. Rev. Lett., 92, p. 177903; 
Deng, F.G., (2005) Phys. Lett. A, 337, p. 329; 
Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J., (2005) Phys. Rev. A, 72, p. 044302; 
Zhang, Z.J., (2006) Opt. Commun., 261, p. 199; 
Zhang, Z.J., (2005) Eur. Phys. J. D, 33, p. 133; 
Lance, A.M., (2005) Phys. Rev. A, 71, p. 033814; 
Deng, F.G., (2005) Phys. Rev. A, 72, p. 044301; 
Li, X.H., (2006) J. Phys. B, 39, p. 1975; 
Wang, Z.Y., Yuan, H., Shi, S.H., Zhang, Z.J., (2007) Eur. Phys. J. D, 41, p. 371; 
Agrawal, P., Pati, A.K., (2002) Phys. Lett. A, 305, p. 12; 
Gordon, G., Rigolin, G., (2006) Phys. Rev. A, 73, p. 062316; 
Li, W.L., Li, C.F., Guo, G.C., (2000) Phys. Rev. A, 61, p. 034301. 
UR  - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34250169431&partnerID=40&rel=R6.5.0
ER  - 

TY  - JOUR
T1  - Lorenz's attractor applied to the stream cipher (Ali-Pacha generator)
JF  - Chaos, Solitons and Fractals
JA  - Chaos Solitons Fractals
VL  - 33
IS  - 5
SP  - 1762
EP  - 1766
PY  - 2007///
SN  - 09600779 (ISSN) 
AU  - Ali-Pacha, A.
AU  - Hadj-Said, N.
AU  - M'Hamed, A.
AU  - Belgoraf, A.
AD  - University of Sciences and Technology of Oran USTO, BP 1505, El M'Naouer, Oran, 31036, Algeria
AD  - National Institute of Telecommunications, Evry, Paris, France
AB  - The safety of information is primarily founded today on the calculation of algorithms whose confidentiality depends on the number of the necessary bits for the definition of a cryptographic key. If this type of system has proved reliable, then the increasing power of the means of calculation threatens the confidentiality of these methods. The powerful computers are certainly able to quantify and decipher information quickly, but their computing speed allows parallel cryptanalysis, which aims "to break" a code by discovering the key, for example, by testing all the possible keys. The only evocation of the principle of the quantum computer, with the potentially colossal capacities of calculation, has started a shock, even in the most savaged who are convinced of algorithmic cryptography. To mitigate this concern, we will introduce in this article a new cryptographic system based on chaotic concepts. © 2006 Elsevier Ltd. All rights reserved.
N1  - Export Date: 3 July 2007
N1  - Source: Scopus
N1  - CODEN: CSFOE
N1  - doi: 10.1016/j.chaos.2006.03.009
N1  - Language of Original Document: English
N1  - Correspondence Address: Ali-Pacha, A.; University of Sciences and Technology of Oran USTO; BP 1505, El M'Naouer Oran, 31036, Algeria; email: alipacha@yahoo.com
N1  - References: Strogatz, S.H., (1994) Nonlinear systems and chaos, , Perseus Publishing; 
Bruce, S., (1996) Applied cryptography-protocols, algorithms and source code in C. second ed., , John Wiley & Sons, Inc., New York; 
Ali-Pacha, A., Hadj-Said, N., Belmekki, B., Belgoraf, A., Chaotic behaviour for the secrete key of cryptographic system (2005) Chaos, Solitons & Fractals, 23, pp. 1549-1552. 
UR  - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-33947170486&partnerID=40&rel=R6.5.0
ER  - 

TY  - JOUR
T1  - Synchronization of free-space quantum key distribution
JF  - Optics Communications
JA  - Opt Commun
VL  - 275
IS  - 2
SP  - 486
EP  - 490
PY  - 2007///
SN  - 00304018 (ISSN) 
AU  - Wu, Q.-L.
AU  - Han, Z.-F.
AU  - Miao, E.-L.
AU  - Liu, Y.
AU  - Dai, Y.-M.
AU  - Guo, G.-C.
AD  - Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
AB  - In this paper, it is investigated that how the atmosphere effects on the synchronization accuracy in free-space quantum key distribution (QKD). We measured the synchronization error of a free-space QKD in our near-ground platform. According to experimental results and theoretical calculations, we deduce that the intensity fluctuation of synchronization light due to atmosphere disturbance contributes far more to the synchronization accuracy than others. By using the constant fraction discrimination method, the synchronization error of the free-space QKD, passing through the aerosphere, can be limited within 300 ps which meets the synchronization requirement of a satellite-to-ground QKD system. © 2007 Elsevier B.V. All rights reserved.
KW  - Free-space quantum key distribution
KW  - Synchronization
KW  - Synchronization accuracy
N1  - Export Date: 3 July 2007
N1  - Source: Scopus
N1  - CODEN: OPCOB
N1  - doi: 10.1016/j.optcom.2007.03.068
N1  - Language of Original Document: English
N1  - Correspondence Address: Han, Z.-F.; Key Laboratory of Quantum Information; University of Science and Technology of China Hefei, 230026, China; email: zfhan@ustc.edu.cn
N1  - References: Ekert, A.K., (1991) Phys. Rev. Lett., 67, p. 661; 
Mo, X.-F., Zhu, B., Han, Z.-F., (2005) Opt. Lett., 30, p. 2632; 
Gobby, C., Yuan, Z.L., Shields, A.J., (2004) J. Appl. Phys. Lett., 84, p. 3762; 
Hiskett, P.A., Rosenberg, D., Peterson, C.G., (2006) New J. Phys., 8, p. 193; 
Hughes, R.J., Nordholt, J.E., Derkacs, D., (2002) New J. Phys., 4, p. 43; 
Kurtsiefer, C., Zarda, P., Halder, M., (2002) Nature, 419, p. 450; 
Miao, E.-L., Han, Z.-F., Gong, S.-S., (2005) New J. Phys., 7, p. 215; 
Rarity, J.G., Tapster, P.R., Gorman, P.M., (2001) J. Mod. Opt., 48, p. 1887; 
Su, H.H., Plonus, M.A., (1971) J. Opt. Soc. Am., 61, p. 2; 
Liu, C.H., (1993) Wave Propagation in Random Media (Scintillation), , Tatarskii V.I. (Ed), Taylor & Francis; 
Majumdar, A.K., Ricklin, J.C., (2005) Proc. SPIE, 5892, pp. 58920K; 
Mironov, V.L., (1981) Laser Beam Propagation in Turbulence Atmosphere, , Nauka, Moscow; 
Young, C.Y., Andrews, L.C., Ishimaru, A., (1998) Appl. Opt., 37, p. 7655; 
Nicholson, P.W., (1974) Nuclear Electronics, , John Wiley & Sons. 
UR  - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34249340426&partnerID=40&rel=R6.5.0
ER  - 

TY  - JOUR
T1  - Multiparty quantum secret sharing with pure entangled states and decoy photons
JF  - Physica A: Statistical Mechanics and its Applications
JA  - Phys A Stat Mech Appl
VL  - 381
IS  - 1-2
SP  - 164
EP  - 169
PY  - 2007///
SN  - 03784371 (ISSN) 
AU  - Zhou, P.
AU  - Li, X.-H.
AU  - Liang, Y.-J.
AU  - Deng, F.-G.
AU  - Zhou, H.-Y.
AD  - Key Laboratory of Beam Technology and Material Modification, Ministry of Education, Beijing Normal University, Beijing, 100875, China
AD  - Institute of Low Energy Nuclear Physics, Department of Material Science and Engineering, Beijing Normal University, Beijing, 100875, China
AD  - Beijing Radiation Center, Beijing, 100875, China
AB  - We present a scheme for multiparty quantum secret sharing of a private key with pure entangled states and decoy photons. The boss, say Alice uses the decoy photons, which are randomly in one of the four nonorthogonal single-photon states, to prevent a potentially dishonest agent from eavesdropping freely. This scheme requires the parties of communication to have neither an ideal single-photon quantum source nor a maximally entangled one, which makes this scheme more convenient than others in a practical application. Moreover, it has the advantage of having high intrinsic efficiency for qubits and exchanging less classical information in principle. © 2007 Elsevier B.V. All rights reserved.
KW  - Decoy photons
KW  - Pure entangled states
KW  - Quantum communication
KW  - Quantum secret sharing
N1  - Export Date: 3 July 2007
N1  - Source: Scopus
N1  - CODEN: PHYAD
N1  - doi: 10.1016/j.physa.2007.04.018
N1  - Language of Original Document: English
N1  - Correspondence Address: Deng, F.-G.; Key Laboratory of Beam Technology and Material Modification; Ministry of Education; Beijing Normal University Beijing, 100875, China; email: fgdeng@bnu.edu.cn
N1  - References: Gisin, N., Ribordy, G., Tittel, W., Zbinden, H., (2002) Rev. Mod. Phys., 74, p. 145; 
Ekert, A.K., (1991) Phys. Rev. Lett., 67, p. 661; 
Bennett, C.H., Brassard, G., Mermin, N.D., (1992) Phys. Rev. Lett., 68, p. 557; 
Deng, F.G., Long, G.L., (2003) Phys. Rev. A, 68, p. 042315; 
Deng, F.G., Long, G.L., (2004) Phys. Rev. A, 70, p. 012311; 
Long, G.L., Liu, X.S., (2002) Phys. Rev. A, 65, p. 032302; 
Lo, H.K., Chau, H.F., Ardehali, M., (2005) J. Cryptology, 18, p. 122; 
Deng, F.G., Long, G.L., Liu, X.S., (2003) Phys. Rev. A, 68, p. 042317; 
Deng, F.G., Long, G.L., (2004) Phys. Rev. A, 69, p. 052319; 
Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L., (2005) Phys. Rev. A, 71, p. 044305; 
Wang, C., Deng, F.G., Long, G.L., (2005) Opt. Commun., 253, p. 15; 
Li, X.H., Deng, F.G., Li, C.Y., Liang, Y.J., Zhou, P., Zhou, H.Y., (2006) J. Korean Phys. Soc., 49, p. 1354; 
Li, X.H., Deng, F.G., Zhou, H.Y., (2006) Phys. Rev. A, 74, p. 054302; 
Man, Z.X., Zhang, Z.J., Li, Y., (2005) Chin. Phys. Lett., 22, p. 18; 
Yan, F.L., Zhang, X., (2004) Euro. Phys. J. B, 41, p. 75; 
Gao, T., Yan, F.L., Wang, Z.X., (2005) Chin. Phys., 14, p. 893; 
Cai, Q.Y., (2004) B.W. Li Chin. Phys. Lett., 21, p. 601; 
Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S., (2006) Phys. Rev. A, 73, p. 022338; 
Wang, J., Zhang, Q., Tang, C.J., (2006) Phys. Lett. A, 358, p. 256; 
Cao, H.J., Song, H.S., (2006) Chin. Phys. Lett., 23, p. 290; 
Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Liang, Y.J., Zhou, H.Y., (2006) Chin. Phys. Lett., 23, p. 1676; 
Li, X.H., Li, C.Y., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y., (2007) Chin. Phys. Lett., 24, p. 23; 
Nguyen, B.A., (2004) Phys. Lett. A, 328; 
Hillery, M., Buz?ek, V., Berthiaume, A., (1999) Phys. Rev. A, 59, p. 1829; 
Karlsson, A., Koashi, M., Imoto, N., (1999) Phys. Rev. A, 59, p. 162; 
Xiao, L., Long, G.L., Deng, F.G., Pan, J.W., (2004) Phys. Rev. A, 69, p. 052307; 
Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y., (2006) Chin. Phys. Lett., 23, p. 1084; 
Karimipour, V., Bahraminasab, A., Bagherinezhad, S., (2002) Phys. Rev. A, 65, p. 042320; 
Yang, C.P., Gea-Banacloche, J., (2001) J. Opt. B: Qantum Semiclass. Opt., 3, p. 407; 
Bandyopadhyay, S., (2000) Phys. Rev. A, 62, p. 012308; 
Deng, F.G., Long, G.L., Zhou, H.Y., (2005) Phys. Lett. A, 340, p. 43; 
Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y., (2005) Phys. Lett. A, 354, p. 190; 
Chen, P., Deng, F.G., Long, G.L., (2006) Chin. Phys., 15, p. 2228; 
Zhang, Z.J., (2006) Physica A, 361, p. 233; 
Guo, G.P., Guo, G.C., (2003) Phys. Lett. A, 310, p. 247; 
Deng, F.G., Zhou, H.Y., Long, G.L., (2005) Phys. Lett. A, 337, p. 329; 
Deng, F.G., Zhou, H.Y., Long, G.L., (2006) J. Phys. A, 39, p. 14089; 
Yan, F.L., Gao, T., (2005) Phys. Rev. A, 72, p. 012304; 
Zhang, Z.J., Li, Y., Man, Z.X., (2005) Phys. Rev. A, 71, p. 044301; 
Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J., (2005) Phys. Rev. A, 72, p. 044302; 
Li, Y.M., Zhang, K.S., Peng, K.C., (2004) Phys. Lett. A, 324, p. 420; 
Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y., (2005) Phys. Rev. A, 72, p. 044301; 
Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y., (2005) Phys. Rev. A, 72, p. 022338; 
Li, X.H., Zhou, P., LI, C.Y., Zhou, H.Y., Deng, F.G., (2006) J. Phys. B, 39, p. 1975; 
Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y., (2006) Eur. Phys. J. D, 39, p. 459; 
Zhang, Z.J., (2005) Eur. Phys. J. D, 33, p. 133; 
Zhang, Y.Q., Jin, X.R., Zhang, S., (2006) Chin. Phys., 15, p. 2252; 
Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G., (2005) Chin. Phys. Lett., 22, p. 1049; 
Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y., (2006) Chin. Phys. Lett., 23, p. 2896; 
Lo, H.K., Zhau, H.F., (1999) Science, 283, p. 2050; 
Shor, P.W., Preskill, J., (2000) Phys. Rev. Lett., 85, p. 441; 
. UR  - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34249658443&partnerID=40&rel=R6.5.0
ER  -