/usr/share/VTKData/Data/Infovis/eg1.ris is in vtkdata 5.8.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 | TY - JOUR
T1 - Laser frequency stabilization at 1.5 microns using ultranarrow inhomogeneous absorption profiles in Er3+:LiYF4
JF - Journal of Luminescence
JA - J Lumin
VL - 127
IS - 1
SP - 83
EP - 88
PY - 2007///
SN - 00222313 (ISSN)
AU - Bo?ttger, T.
AU - Pryde, G.J.
AU - Thiel, C.W.
AU - Cone, R.L.
AD - Physics Department, Montana State University, Bozeman, MT 59717, United States
AD - Physics Department, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94117, United States
AD - Centre for Quantum Dynamics, Centre for Quantum Computer Technology, Griffith University, Nathan, Brisbane, 4111, Australia
AB - Single-frequency diode lasers have been frequency stabilized to 1.5 kHz Allan deviation over 0.05-50 s integration times, with laser frequency drift reduced to less than 1.4 kHz/min, using the frequency reference provided by an ultranarrow inhomogeneously broadened Er3+:4I15/2?4I13/2 optical absorption transition at a vacuum wavelength of 1530.40 nm in a low-strain LiYF4 crystal. The 130 MHz full-width at half-maximum (FWHM) inhomogeneous line width of this reference transition is the narrowest reported for a solid at 1.5 ?m. Strain-induced inhomogeneous broadening was reduced by using the single isotope 7Li and by the very similar radii of Er3+ and the Y3+ ions for which it substitutes. To show the practicability of cryogen-free cooling, this laser stability was obtained with the reference crystal at 5 K; moreover, this performance did not require vibrational isolation of either the laser or crystal frequency reference. Stabilization is feasible up to T=25 K where the Er3+ absorption thermally broadens to ?500 MHz. This stabilized laser system provides a tool for interferometry, high-resolution spectroscopy, real-time optical signal processing based on spatial spectral holography and accumulated photon echoes, secondary frequency standards, and other applications such as quantum information science requiring narrow-band light sources or coherent detection. © 2007 Elsevier B.V. All rights reserved.
KW - 1.5 ?m wavelength
KW - Er3+:YLF
KW - Laser stabilization
KW - Rare earth
N1 - Export Date: 3 July 2007
N1 - Source: Scopus
N1 - CODEN: JLUMA
N1 - doi: 10.1016/j.jlumin.2007.02.012
N1 - Language of Original Document: English
N1 - Correspondence Address: Bo?ttger, T.; Physics Department; Montana State University Bozeman, MT 59717, United States; email: tbottger@usfca.edu
N1 - References: Macfarlane, R.M., Cassanho, A., Meltzer, R.S., (1992) Phys. Rev. Lett., 69, p. 542;
Macfarlane, R.M., Meltzer, R.S., Malkin, B.Z., (1998) Phys. Rev. B, 58, p. 5692;
Agladze, N.I., Popova, M.N., Zhizhin, G.N., Egorov, V.J., Petrova, M.A., (1991) Phys. Rev. Lett., 66, p. 477;
Sellin, P.B., Strickland, N.M., Bo?ttger, T., Carlsten, J.L., Cone, R.L., (2001) Phys. Rev. B, 63, p. 155111;
Pryde, G.J., Bo?ttger, T., Cone, R.L., (2002) J. Lumin., 98, p. 309;
Strickland, N.M., Sellin, P.B., Sun, Y., Carlsten, J.L., Cone, R.L., (2000) Phys. Rev. B, 62, p. 1473;
Bo?ttger, T., Pryde, G.J., Cone, R.L., (2003) Opt. Lett., 28, p. 200;
Sellin, P.B., Strickland, N.M., Carlsten, J.L., Cone, R.L., (1999) Opt. Lett., 24, p. 1038;
Pryde, G.J., Bo?ttger, T., Cone, R.L., (2001) J. Lumin., 94-95, p. 587;
Cole, Z., Bo?ttger, T., Krishna Mohan, R., Reibel, R., Babbitt, W.R., Cone, R.L., Merkel, K.D., (2002) Appl. Phys. Lett., 81, p. 3525;
Bo?ttger, T., Thiel, C.W., Sun, Y., Cone, R.L., (2006) Phys. Rev. B, 74, p. 075107;
Longdell, J.J., Sellars, M.J., (2004) Phys. Rev. A, 69, p. 032307;
Fraval, E., Sellars, M.J., Longdell, J.J., (2005) Phys. Rev. Lett., 95, p. 030506;
Shannon, R.D., (1976) Acta Crystallogr. Sect. A, 32, p. 751;
Popova, M.N., Chukalina, E.P., Malkin, B.Z., Saikin, S.K., (2000) Phys. Rev. B, 61, p. 7421;
Harris, T.L., Sun, Y., Babbitt, W.R., Cone, R.L., Ritcey, J.A., Equall, R.W., (2000) Opt. Lett., 25, p. 85;
Supplee, J.M., Whittaker, E.A., Lenth, W., (1994) Appl. Opt., 33, p. 6294;
Drever, R.W.P., Hall, J.L., Kowalski, F.V., Hough, J., Ford, G.M., Munley, A.J., Ward, H., (1983) Appl. Phys. B, 31, p. 97;
Allan, D.W., (1987) IEEE Trans., UFFC-34, p. 647;
Day, T., Gustafson, E.K., Byer, R.L., (1992) IEEE J. Quantum Electron., 28, p. 1106;
Hobbs, P.C.D., (1997) Appl. Opt., 36, p. 903;
Hall, J.L., Taubman, M.S., Ye, J., Laser stabilization (2001) Optics Handbook, , Bass M., Enoch J.M., Van Stryland E.W., and Wolfe W.L. (Eds), Optical Society of America p. 27.1.
UR - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34248547812&partnerID=40&rel=R6.5.0
ER -
TY - JOUR
T1 - Using biharmonic laser pumping for preparation of pure and entangled multiexciton states in clusters of resonantly interacting fluorescent centres
JF - Journal of Luminescence
JA - J Lumin
VL - 127
IS - 1
SP - 48
EP - 54
PY - 2007///
SN - 00222313 (ISSN)
AU - Basieva, I.T.
AU - Basiev, T.T.
AU - Dietler, G.
AU - Pukhov, K.K.
AU - Sekatskii, S.K.
AD - Laser Materials and Technologies Research Center, General Physics Institute RAS, 38 Vavilov Street, Bld. D, Moscow, 119991, Russian Federation
AD - Laboratoire de Physique de la Matie?re Vivante, IPMC, Ecole Polytechnique Fe?de?rale de Lausanne, CH 1015 Lausanne-Dorigny, Switzerland
AB - Use of a biharmonic laser pumping for preparation of pure and entangled multiexciton states in dimers and tetramers of resonantly interacting fluorescent particles is analysed. Special emphasis is given to the preparation of all possible pure exciton states and their maximally entangled Bell states. The general results are illustrated using as an example the pair and quartet centres of neodymium ions in calcium fluoride (M- and N-centres), where all necessary experimental information concerning the interactions and decoherence is available, and experimental preparation of Bell vacuum-single exciton and vacuum-biexciton states has been recently demonstrated. These results can be easily rescaled for the cases of quantum dots and dye molecules. Numerical results are compared with the analytical results obtained for a particular case of the biharmonic excitation of dimers. Excellent agreement between these approaches is demonstrated. © 2007 Elsevier B.V. All rights reserved.
KW - Coherent optical spectroscopy of rare-earth ions
KW - Entangled states
KW - Quantum computer
N1 - Export Date: 3 July 2007
N1 - Source: Scopus
N1 - CODEN: JLUMA
N1 - doi: 10.1016/j.jlumin.2007.02.004
N1 - Language of Original Document: English
N1 - Correspondence Address: Pukhov, K.K.; Laser Materials and Technologies Research Center; General Physics Institute RAS; 38 Vavilov Street, Bld. D Moscow, 119991, Russian Federation; email: pukhov@lst.gpi.ru
N1 - References: Quiroga, L., Johnson, N.F., (1999) Phys. Rev. Lett., 83, p. 2270;
Biolatti, E., (2000) Phys. Rev. Lett., 85, p. 5647;
Reina, J.H., Quiroga, L., Johnson, N.F., (2000) Phys. Rev. A, 62, p. 012305;
Chen, P., Piermarocchi, C., Sham, L.J., (2001) Phys. Rev. Lett., 87, p. 067401;
Chen, G., Bonadeo, N.H., Steel, D.G., Gammon, D., Katzer, D.S., Park, D., Sham, L.J., (2000) Science, 289, p. 1906;
Chen, G., Stievater, T.H., Batteh, E.T., Li, X., Steel, D.G., Gammon, D., Katzer, D.S., Sham, L.J., (2002) Phys. Rev. Lett., 88, p. 117901;
Kawazoe, T., Kobayashi, K., Sangu, S., Ohtsu, M., (2003) Appl. Phys. Lett., 82, p. 2957;
Unold, T., Mueller, K., Lienau, C., Elsaesser, T., Wieck, A.D., (2005) Phys. Rev. Lett., 94, p. 137404;
Hettich, C., Schmitt, C., Zitzmann, J., Kuhn, S., Gerhardt, I., Sandoghdar, V., (2002) Science, 298, p. 385;
Hofmann, C., (2003) Phys. Rev. Lett., 90, p. 013004;
Sekatskii, S.K., Basiev, T.T., Basieva, I.T., Dietler, G., Fedorov, V.V., Karasik, A.Ya., Orlovskii, Yu.V., Pukhov, K.K., (2006) Opt. Commun., 259, p. 298;
Sangu, S., Kobayashi, K., Shojiguchi, A., Ohtsu, M., (2004) Phys. Rev., 69, p. 115334;
Lowett, B.W., Reina, J.H., Nazir, A., (2003) Phys. Rev. B, 68, p. 205319;
Kis, Z., Paspalakis, E., (2004) J. Appl. Phys., 96, p. 3435;
Zhang, P., Chang, C.K., Xue, Q.K., (2003) Phys. Rev. A, 67, p. 012312;
Feng, M., D'Amico, I., Zanardi, P., (2003) Phys. Rev., 67, p. 014306;
Yi, X.X., Jin, G.R., Zhou, D.L., (2001) Phys. Rev. A, 63, p. 062307;
Basieva, I.T., Sekatskii, S.K., Pukhov, K.K., Basiev, T.T., Dietler, G., (2004) Laser Phys., 14, p. 1393;
Sekatskii, S.K., Chergui, M., Dietler, G., (2003) Europhys. Lett., 63, p. 21;
Basieva, I.T., Sekatskii, S.K., Dietler, J., (2005) Chem. Phys. Lett., 51, p. 1919;
Nazir, A., Lowett, B.W., Briggs, G.A.D., (2004) Phys. Rev. A, 70, p. 052301;
Greenberger, D.M., Horne, M., Zeilinger, A., (1989) Bell's Theorem, Quantum Theory, and Conceptions of the Universe, p. 73. , Kafatos M. (Ed), Kluwer, Dordrecht;
Osiko, V.V., Voron'ko, Yu.K., Sobol, A.A., (1984) Crystals 10, , Springer, Berlin;
Basiev, T.T., Fedorov, V.V., Karasik, A.Ya., Pukhov, K.K., (1999) J. Luminescence, 81, p. 189;
Orlovskii, Yu.V., Basiev, T.T., Osiko, V.V., Grass, H., Heber, J., (1999) J. Luminescence, 82, p. 251;
Basiev, T.T., Karasik, A.Ya., Kornienko, A.A., Papashvili, A.G., Pukhov, K.K., (1999) JETP Lett., 78, p. 319;
Basiev, T.T., Karasik, A.Ya., Fedorov, V.V., Ver Steeg, K.W., (1998) Sov. Phys. JETP, 86, p. 156;
Fedorov, V.V., Beck, W., Basiev, T.T., Karasik, A.Ya., Flytzanis, C., (2000) Chem. Phys., 257, p. 275;
Merzbacher, E., (1998) Quantum Mechanics, , Wiley, New York;
Macfarlane, R.M., Shelby, R.M., (1987) Spectroscopy of Solids Containing Rare-Earth Ions, p. 51. , Kaplyanskii A.A., and Macfarlane R.M. (Eds), North Holland, Amsterdam;
. UR - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34248575795&partnerID=40&rel=R6.5.0
ER -
TY - JOUR
T1 - From quantum entanglement to mirror neuron
JF - Chaos, Solitons and Fractals
JA - Chaos Solitons Fractals
VL - 34
IS - 2
SP - 344
EP - 359
PY - 2007///
SN - 09600779 (ISSN)
AU - Zak, M.
AD - Jet Propulsion Laboratory, California Institute of Technology, Advance Computing Algorithms and IVHM Group, 4800 Oak Grove Drive, M/S 126-347, Pasadena, CA 91109, United States
AB - It is proposed that two fundamental phenomena: quantum entanglement in physics, and mirror neuron in biopsychology, can be described by using the same mathematical formalism, namely, the feedback from the Liouville equation to equation of motion. © 2006 Elsevier Ltd. All rights reserved.
N1 - Export Date: 3 July 2007
N1 - Source: Scopus
N1 - CODEN: CSFOE
N1 - doi: 10.1016/j.chaos.2006.03.087
N1 - Language of Original Document: English
N1 - Correspondence Address: Zak, M.; Jet Propulsion Laboratory; California Institute of Technology; Advance Computing Algorithms and IVHM Group; 4800 Oak Grove Drive, M/S 126-347 Pasadena, CA 91109, United States; email: Michail.Zak@jpl.nasa.gov
N1 - References: Takabayasi, T., Remarks on the formulation of quantum mechanics associated with classical picture (1953) Prog Theor Phys, 8;
Zak, M., From reversible thermodynamics to life (2005) Chaos, Solitons & Fractals, 26, pp. 1019-1033;
Berg, H., (1983) Random walks in biology, , University Press, Princeton (NJ);
Prigogine, I., (1961) Thermodynamics of irreversible processes, , John Wiley, NY;
Whitham, G., (1974) Linear and nonlinear waves, , Wily-Interscience Publ;
Zeilinger, A., Physics news update (1997) American Institute of Physics, 10 (December);
Zak, M., Fijany, A., Quantum resonance for simulating combinatorial problems (2005) Phys Lett A, 345, pp. 167-172;
Zak, M., Expectation-based intelligent control (2006) Chaos, Solitons & Fractals, 28, pp. 616-626;
Zak, M., Terminal attractors for associative memory in neural networks (1989) Phys Lett A, 133 (1-2), pp. 18-22;
Zak, M., Terminal model of Newtonian dynamics (1993) Int J Theor Phys, 32, pp. 159-190;
Risken, H., (1989) The Fokker-Planck equation, , Springer, NY;
Zak, M., Postinstability models in dynamics (1994) Int J Theor Phys, 33 (11), pp. 2215-2280;
Zak, M., Incompatible stochastic processes and complex probabilities (1998) Phys Lett A, 238, pp. 1-7;
Zak, M., From collective mind to communications (2003) Complex Syst, 14, pp. 335-361;
Zak, M., Entanglement-based self organization (2002) Chaos, Solitons & Fractals, 14, pp. 745-758;
Zak, M., Entanglement-based communications (2002) Chaos, Solitons & Fractals, 13, pp. 39-41.
UR - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34147162319&partnerID=40&rel=R6.5.0
ER -
TY - JOUR
T1 - Computational study of steric effects on the optical properties of oligomers
JF - Journal of Luminescence
JA - J Lumin
VL - 126
IS - 2
SP - 278
EP - 288
PY - 2007///
SN - 00222313 (ISSN)
AU - Irving, D.L.
AU - Devine, B.D.
AU - Sinnott, S.B.
AD - Department of Materials Science and Engineering, University of Florida, 154 Rhines Hall, Gainesville, FL 32611-6400, United States
AB - The optical properties of a variety of copolymer structures and their derivatives are determined from semi-empirical quantum chemical calculations. Possible candidates are found for organic light emitting diode and thin photovoltaic film applications. The largest blue shifts in the absorption spectrum are seen for derivatives that cause the oligomers under consideration to deviate from their unsubstituted planar configurations. This is primarily predicted to occur in systems with large steric interactions. Optical emissions are also predicted based on time dependent density functional calculations of excited states of these materials optimized with configuration interaction Hartree-Fock methods. © 2006 Elsevier B.V. All rights reserved.
KW - Optical absorption
KW - Optical emission
KW - Semi-empirical quantum calculation
N1 - Export Date: 3 July 2007
N1 - Source: Scopus
N1 - CODEN: JLUMA
N1 - doi: 10.1016/j.jlumin.2006.07.006
N1 - Language of Original Document: English
N1 - Correspondence Address: Sinnott, S.B.; Department of Materials Science and Engineering; University of Florida; 154 Rhines Hall Gainesville, FL 32611-6400, United States; email: sinnott@mse.ufl.edu
N1 - References: Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., Holmes, A.B., (1990) Nature, 347 (6293), p. 539;
Krasovitskii, B.M., Bolotin, B.M., (1988) Organic Luminescent Materials, , VCH, Weinheim, New York, NY;
Cornil, J., Beljonne, D., Shuai, Z., Hagler, T.W., Campbell, I., Bradley, D.D.C., Bredas, J.L., Mullen, K., (1995) Chem. Phys. Lett., 247 (4-6), p. 425;
Reddinger, J.L., Reynolds, J.R., (1999) Adv. Polym. Sci., 145, p. 59;
Friend, R.H., (1999) Nature, 397 (6715), p. 121;
de Souza, M.M., Rumbles, G., Gould, I.R., Amer, H., Samuel, I.D.W., Moratti, S.C., Holmes, A.B., (2000) Synth. Met., 111, p. 539;
Miyata, S.O., Nalwa, H.S., (1997) Organic Electroluminescent Materials and Devices, , Gordon and Breach Publishers, Amsterdam;
(1999) Phosphor Handbook, , Phosphor Research Society, CRC Press, Boca Raton, FL;
Bauerle, P., (1993) Adv. Mater., 5 (12), p. 879;
Braun, D., Heeger, A.J., (1991) Appl. Phys. Lett., 58 (18), p. 1982;
Yang, Y., Pei, Q., Heeger, A.J., (1996) J. Appl. Phys., 79 (2), p. 934;
Bredas, J.L., Cornil, K., Meyers, F., Beljonne, D., (1997) Handbook of Conducting Polymers, 1, p. 1. , Skotheim T., Elsenbaumer R., and Reynolds J. (Eds), Marcel Dekker Inc., New York;
Cirpan, A., Argun, A.A., Grenier, C.R.G., Reeves, B.D., Reynolds, J.R., (2003) J. Mater. Chem., 13 (10), p. 2422;
Argun, A.A., Cirpan, A., Reynolds, J.R., (2003) Adv. Mater., 15 (16), p. 1338;
Argun, A.A., (2004) Chem. Mater., 16 (23), p. 4401;
Stewart, J.J.P., (1989) J. Comput. Chem., 10 (2), p. 209;
Stewart, J.J.P., (1989) J. Comput. Chem., 10 (2), p. 221;
Stewart, J.J.P., (1990) J. Computer-Aided Mol. Des., 4 (1), p. 1;
Thiel, W., (2000) Modern Methods and Algorithms of Quantum Chemistry, p. 1. , Grotendorst J. (Ed), John von Neumann Institute for Computing, Julich;
Thiel, W., (1996) Advances in Chemical Physics, Volume 93, New Methods in Computational Quantum Mechanics, 93, p. 703. , Prigogine I., and Rice S.A. (Eds), Wiley, New York;
Ridley, J., Zerner, M., (1973) Theor. Chim. Acta, 32 (2), p. 111;
Zerner, M.C., (1991) Reviews in Computational Chemistry, 2, p. 313. , Lipkowitz K.B., and Boyd D.B. (Eds);
Stratmann, R., Scuseria, G., Frisch, M., (1998) J. Chem. Phys., 109 (19), p. 8218;
Becke, A.D., (1988) Phys. Rev. A, 38 (6), p. 3098;
Gajdek, P., Becker, R.S., Elisei, F., Mazzucato, U., Spalletti, A., (1996) J. Photochem. Photobiol. A-Chem., 100 (1-3), p. 57;
Mercer, I.P., Gould, I.R., Klug, D.R., (1999) J. Phys. Chem. B, 103 (36), p. 7720;
Mercer, I.P., Gould, I.R., Klug, D.R., (1997) Faraday Discuss., 108, p. 51;
Walker, R.C., de Souza, M.M., Mercer, I.P., Gould, I.R., Klug, D.R., (2002) J. Phys. Chem. B, 106 (44), p. 11658;
Rappoport, D., Furche, F., (2005) J. Chem. Phys., 122 (6);
Furche, F., Ahlrichs, R., (2004) J. Chem. Phys., 121 (24), p. 12772;
Furche, F., Ahlrichs, R., (2002) J. Chem. Phys., 117 (16), p. 7433;
Foresman, J.B., Headgordon, M., Pople, J.A., Frisch, M.J., (1992) J. Phys. Chem., 96 (1), p. 135;
Tretiak, S., Mukamel, S., (2002) Chem. Rev., 102 (9), p. 3171;
Marques, M., Gross, E., (2004) Annu. Rev. Phys. Chem., 55, p. 427;
Hirata, S., Head-Gordon, M., Szczepanski, J., Vala, M., (2003) J. Phys. Chem. A, 107 (24), p. 4940;
Bauernschmitt, R., Ahlrichs, R., (1996) Chem. Phys. Lett., 256 (4-5), p. 454;
Casida, M.E., Jamorski, C., Casida, K.C., Salahub, D.R., (1998) J. Chem. Phys., 108 (11), p. 4439;
Wang, S., Ho, T., (2000) J. Photochem. Photobiol. A: Chem., 135, p. 119;
Perdew, J.P., Burke, K., Wang, Y., (1996) Phys. Rev. B, 54 (23), p. 16533;
Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45 (23), p. 13244;
Hohenberg, P., Kohn, W., (1964) Phys. Rev. B, 136 (3 B), pp. B864;
Vosko, S.H., Wilk, L., Nusair, M., (1980) Can. J. Phys., 58 (8), p. 1200;
Lee, C.T., Yang, W.T., Parr, R.G., (1988) Phys. Rev. B, 37 (2), p. 785;
Karabunarliev, S., Baumgarten, M., Mullen, K., (2000) J. Phys. Chem. A, 104 (35), p. 8236.
UR - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34248549735&partnerID=40&rel=R6.5.0
ER -
TY - JOUR
T1 - Steering of a dissipative qubit by direct inversion
JF - Journal of Computational Electronics
JA - J. Comput. Electron.
VL - 6
IS - 1
SP - 271
EP - 274
PY - 2007///
SN - 15698025 (ISSN)
AU - Wenin, M.
AU - Po?tz, W.
AD - Institut fu?r Physik, Theory Division Karl Franzens Universita?t Graz, Universita?tsplatz 5, 8010 Graz, Austria
AB - We present an analytical investigation of the manipulation of a quantum mechanical two-level system (qubit) with time-dependent fields. The qubit interacts with a phonon-system which acts as a 'heat bath'. It is shown that one can analytically find optimal Hamiltonians to perform state transformations with arbitrarily small loss of purity. © Springer Science+Business Media LLC 2007.
KW - Inversion
KW - Optimal control
KW - Phonons
KW - Two-level quantum systems
N1 - Export Date: 3 July 2007
N1 - Source: Scopus
N1 - doi: 10.1007/s10825-006-0125-3
N1 - Language of Original Document: English
N1 - Correspondence Address: Wenin, M.; Institut fu?r Physik; Theory Division Karl Franzens Universita?t Graz; Universita?tsplatz 5 8010 Graz, Austria; email: Markus.Wenin@uni-graz.at
N1 - References: Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W., (1987) Rev. Mod. Phys., 59, p. 1;
Thorwart, M., Ha?nggi, P., (2001) Phys. Rev. A, 65, p. 012309;
Jacak, L., Krasnyj, J., Jacak, W., Gonczarek, R., Machnikowski, P., (2005) Phys. Rev. B, 72, p. 245309;
Protopopescu, V., Perez, R., D'Helon, C., Schmulen, J., (2003) J. Phys. A: Math. Gen., 36, pp. 2175-2189;
Vitali, D., Tombesi, P., (1999) Phys. Rev. A, 59, p. 6;
DiVincenzo, D.P., Loss, D., (2005) Phys. Rev. B, 71, p. 035318;
Jirari, H., Po?tz, W., (2005) Phys. Rev. A, 72, p. 013409;
Viola, L., Lloyd, S., (1998) Phys. Rev. A, 58, p. 2733;
Lidar, D.A., Chuang, I.L., Whaley, K.B., (1998) Phys. Rev. Lett., 81, p. 12;
Grigorenko, I.A., Khveshchenko, D.V., (2005) Phys. Rev. Lett., 94, p. 040506;
Hohenester, U., Stadler, G., (2004) Phys. Rev. Lett., 92, p. 19;
Stievater, T.H., Li, X., Gammon, D.G., Katzer, D.S., Park, D., Piermarocchi, C., Sham, L.J., (2001) Phys. Rev. Lett., 87, p. 13;
Makhlin, Y., Scho?n, G., Shnirman, A., (2001) Rev. Mod. Phys., 73, p. 357;
Rossi, F., Kuhn, T., (2002) Rev. Mod. Phys., 74;
Wenin, M., (2006) Phys. Rev. A, 74, p. 1.
UR - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34247537652&partnerID=40&rel=R6.5.0
ER -
TY - JOUR
T1 - Boundary condition at the junction
JF - Journal of Computational Electronics
JA - J. Comput. Electron.
VL - 6
IS - 1
SP - 153
EP - 157
PY - 2007///
SN - 15698025 (ISSN)
AU - Harmer, M.
AU - Pavlov, B.
AU - Yafyasov, A.
AD - Inst. of Inf. and Math Sciences, Massey Univ., Albany, New Zealand
AD - Dept. of Math., The University of Auckland, Auckland, New Zealand
AD - Institute for Physics, St-Petersburg University, St-Petersburg, Russian Federation
AB - When modeling a 2-d quantum network by a 1-d quantum graph one usually substitutes the 2-d vertex domains by the point-wise junctions with appropriate boundary conditions imposed on the boundary values ?(a) = (?1(a), ?2(a), ?3(a), ...?n(a)), ?? = ??1 (a), ??2 (a), ??3(a),... ??n(a)) of the wave-function on the leads ?1, ?2,...?n at the junction a. In particular Datta proposed parametrization of the boundary condition, for symmetric T-junction, by some orthogonal 1-d projection P0: Rn ? Rn P0? ?(a) = 0, P0 ??(a) = 0. We consider an arbitrary junction, n ? 3 of 2-d leads attached to a 2-d vertex domain ?int, in case, when there exist a resonance eigenvalue ? = 2m* E? ?-2 of the Schro?dinger operator Lint. We derive, from the first principles, energy-dependent boundary conditions for thin, quasi-1-d, network, and obtain from it, in the limit of zero temperature, Datta-type boundary condition, interpreting the projection P0 in terms of the resonance eigenfunction ?0: Lint?0 = ?0?0 and geometry of the leads. © Springer Science+Business Media LLC 2007.
KW - Eigenfunction
KW - Eigenvalue
KW - Junction
KW - Scattering matrix
N1 - Export Date: 3 July 2007
N1 - Source: Scopus
N1 - doi: 10.1007/s10825-006-0085-7
N1 - Language of Original Document: English
N1 - Correspondence Address: Harmer, M.; Inst. of Inf. and Math Sciences; Massey Univ. Albany, New Zealand; email: m.s.harmer@massey.ac.nz
N1 - References: Datta, S., (1995) Electronic Transport in Mesoscopic Systems, , Cambridge University Press, Cambridge;
Meijer, F., Morpurgo, A., Klapwijk, T., (2002) Phys. Rev. B, 66, p. 033107;
Nitta, J., Meijer, F.E., Takayanagi, H., (1999) Appl. Phys. Lett., 75, pp. 695-697;
Shelykh, I.A., Galkin, N.G., Bagraev, N.T., (2005) Phys. Rev. B, 72, p. 235316;
Splettstoesser, J., Governale, M., Zu?licke, U., (2003) Phys. Rev. B, 68, p. 165341;
Kuchment, P., (2002) Waves in Periodic and Random Media, 12, p. 1;
Kostrykin, V., Schrader, R., (2001) J. Math. Phys., 42, pp. 1563-1598;
Kostrykin, V., Schrader, R., (2003) Commun. Math. Phys., 237, pp. 161-179;
Harmer, M., (2000) J. Phys. A: Mathem. General, 33, pp. 9193-9203;
Taniguchi, T., Bu?ttiker, M., (1999) Phys. Rev. B, 60, p. 13814;
Harmer, M., The rashba ring In preparationSylvester, J., Uhlmann, G., (1990) Proceedings of the Conference "Inverse Problems in Partial Differential Equations (Arcata, 1989),", 101. , In: SIAM, Philadelphia;
Bagraev, N., Mikhailova, A., Pavlov, B.S., Prokhorov, L.V., Yafyasov, A., (2005) Phys. Rev. B, 71, p. 165308;
Pavlov, B., Antoniou, I., (2005) J. Phys. A: Math. Gen., 38, pp. 4811-4823;
Glazman, I., (1966) Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators Translated from the Russian By the IPST Staff (Israel Program for Scientific Translations), , Jerusalem, 1965; Daniel Davey & Co., Inc., New York;
Mittra, R., Lee, S., (1971) Analytical Techniques in the Theory of Guided Waves, p. 323. , The Macmillan Company, NY, Collier-Macmillan Limited, London;
Mikhailova, A., Pavlov, B., Prokhorov, L., (2004) Arxiv Math-ph/031238, p. 69.
UR - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34247340417&partnerID=40&rel=R6.5.0
ER -
TY - JOUR
T1 - Circuit modeling of flux qubits interacting with superconducting waveguides
JF - Journal of Computational Electronics
JA - J. Comput. Electron.
VL - 6
IS - 1
SP - 105
EP - 108
PY - 2007///
SN - 15698025 (ISSN)
AU - Csaba, G.
AU - Fahem, Z.
AU - Peretti, F.
AU - Lugli, P.
AD - Institute for Nanoelectronics, Technical University of Munich, Arcisstrasse 21, D-80333 Munich, Germany
AB - We present an equivalent circuit approach to understand, simulate and design experimental setups, where superconducting coplanar resonators are applied to probe quantum systems. We employ finite-element electromagnetic simulations to construct an equivalent lumped circuit representation of the microwave cavity and we use a circuit model based on the Bloch equations to simulate the behavior of a two-state model quantum system. Interconnection of the two circuit modules gives a semiclassical description of the coupled quantum/classical dynamics and yields predictions that are directly comparable with measurements on realized circuits. © Springer Science+Business Media LLC 2007.
KW - Cavity QED
KW - Circuit modeling
KW - Finite-element electromagnetics
KW - On-chip spectroscopy
N1 - Export Date: 3 July 2007
N1 - Source: Scopus
N1 - doi: 10.1007/s10825-006-0067-9
N1 - Language of Original Document: English
N1 - Correspondence Address: Csaba, G.; Institute for Nanoelectronics; Technical University of Munich; Arcisstrasse 21 D-80333 Munich, Germany; email: csaba@ei.tum.de
N1 - References: Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J., Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation (2004) Phys. Rev, A69, p. 062320;
Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Schoelkopf, R.J., Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics (2004) Nature, 431, p. 9;
Cendes, Z.J., Vector finite elements for electromagnetic field computation (1991) IEEE Trans. Magn., 27 (5);
http://www.ansoft.com/products/hf/hfss/Mariantoni, M., Storcz, M.J., Wilhelm, F.K., Oliver, W.D., Emmert, A., Marx, A., Gross, R., Solano, E., Generation of Microwave Single Photons and Homodyne Tomography on a Chip, , cond-mat/0509737;
http://www.comsol.com/Orlando, T., Delin, K.A., (1991) Foundations of Applied Superconductivity Prentice Hall;
Csurgay, A?., Porod, W., Equivalent circuit representation of arrays composed of Coulomb-coupled nanoscale devices: Modelling, simulation and realizability nt (2001) J. Circ. Theor. Appl., 29 (1), pp. 3-35;
Csaba, G., Csurgay, A., Porod, W., Computing architecture composed of next-neighbor coupled, opticallt pumped nanodevices (2001) Int. J. Circ. Theor. Appl., 29, p. 73;
Orlando, T.P., Mooij, J.E., Tian, L., van der Wal, C.H., Levitov, L.S., Lloyd, S., Mazo, J.J., Superconducting persistent-current qubit (1999) Phys. Rev., B60, p. 22;
Csaba, G., Porod, W., Csurgay, A.I., Computing architecture composed of field-coupled single domain nanomagnets clocked by magnetic field (2003) Int. J. Circ. Theor. Appl., 31, p. 1.
UR - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34247535111&partnerID=40&rel=R6.5.0
ER -
TY - JOUR
T1 - Indirect optimal control of a double quantum dot
JF - Journal of Computational Electronics
JA - J. Comput. Electron.
VL - 6
IS - 1
SP - 171
EP - 174
PY - 2007///
SN - 15698025 (ISSN)
AU - Po?tz, W.
AD - Institut fu?r Physik, Theory Division, Karl-Franzens-Universita?t Graz, Universita?tplatz 5, 8010 Graz, Austria
AB - An indirect optimization method for the dynamic control of non-Markovian open quantum systems is presented. It is demonstrated at the example of a spin-boson model for an electron in a double dot which couples to a bath of phonons. This study reveals strategies for controlling the effective system-bath coupling which become available when the system is addressed in its quantum regime. We give examples for population transfer, trapping and quantum operations. © Springer Science+Business Media LLC 2007.
KW - Dissipation
KW - Open quantum system
KW - Optimal control
KW - Quantum dot
KW - Qubit
N1 - Export Date: 3 July 2007
N1 - Source: Scopus
N1 - doi: 10.1007/s10825-006-0079-5
N1 - Language of Original Document: English
N1 - Correspondence Address: Po?tz, W.; Institut fu?r Physik; Theory Division; Karl-Franzens-Universita?t Graz; Universita?tplatz 5 8010 Graz, Austria; email: walter.poetz@uni-graz.at
N1 - References: Nielsen, M.A., Chuang, I.L., (2002) Quantum Computation and Quantum Information, , (Cambridge Press, Cambridge);
Breuer, H.P., Petruccione, F., (2002) The Theory of Open Quantum Systems, , Oxford University Press;
Jirari, H., Po?tz, W., (2005) Phys. Rev. A, 72, p. 013409;
Jirari, H., Po?tz, W., (2006) Phys. Rev. A, 74, p. 022306;
Greiner, W., (2003) Classical Mechanics Springer, , See, for example New York;
Krotov, V.F., (1996) Global Methods in Optimal Control Theory, , Dekker, New York;
Po?tz, W., Goritschnig, A., Jirari, H., Proc. 5th MATHMOD 2006, 1, p. 87. , ARGESIM Record no. 30 and Vol. 2, Sessions/PHYS/127;
Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W., (1987) Rev. Mod. Phy., 59, p. 1;
Viola, L., Lloyd, S., (1998) Phys. Rev. A, 58 (4), p. 2733.
UR - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34247336327&partnerID=40&rel=R6.5.0
ER -
TY - JOUR
T1 - 3D simulation of a silicon quantum dot in a magnetic field based on current spin density functional theory
JF - Journal of Computational Electronics
JA - J. Comput. Electron.
VL - 6
IS - 1
SP - 191
EP - 194
PY - 2007///
SN - 15698025 (ISSN)
AU - Lisieri, M.
AU - Fiori, G.
AU - Iannaccone, G.
AD - Dipartimento di Ingegneria dell' Informazione, Universita? di Pisa, Via Caruso 16, I-56100 Pisa, Italy
AB - We have developed a code for the simulation of the electrical and magnetic properties of silicon quantum dots in the framework of the TCAD Package NANOTCAD-ViDES. We adopt current spin density functional theory with a local density approximation and with the effective mass approximation. We show that silicon quantum dots exhibit large variations of the total spin as the number of electrons in the dot and the applied magnetic field are varied. Such properties are mainly due to the silicon band structure, and make silicon quantum dots interesting systems for spintronic and quantum computing experiments. © Springer Science+Business Media LLC 2007.
KW - Current spin density functional theory
KW - Silicon quantum dot
KW - Spintronics
N1 - Export Date: 3 July 2007
N1 - Source: Scopus
N1 - doi: 10.1007/s10825-006-0110-x
N1 - Language of Original Document: English
N1 - Correspondence Address: Lisieri, M.; Dipartimento di Ingegneria dell' Informazione; Universita? di Pisa; Via Caruso 16 I-56100 Pisa, Italy; email: michele.lisieri@iet.unipi.it
N1 - References: Friesen, M., Practical design and simulation of silicon-based quantum-dot qubits (2003) Phys. Rev. B, 67, pp. 121301-1-4;
Ladd, T.D., All-silicon quantum computer (2002) Phys. Rev. Lett., 89, pp. 017901-1-4;
Friesen, M., Tahan, C., Joynt, R., Eriksson, M.A., Spin readout and initialization in a semiconductor quantum dot (2004) Phys. Rev. B, 92, pp. 037901-1-4;
Das Sarma, S., Fabian, J., Hu, X., Z?utic?, I., Theoretical perspective on spintronics and spin-polarized transport (2000) IEEE Trans. Magn., 36, p. 2821;
Pala, M.G., Governale, M., Kig, J., Zlicke, U., Iannaccone, G., Two-dimensional hole precession in an all-semiconductor spin field effect transistor (2004) Phys. Rev. B, 69, pp. 045304-1-9;
Rokhinson, L.P., Guo, L.J., Chou, S.Y., Tsui, D.C., Spin transitions in a small Si quantum dot (2000) Phys. Rev. B/, 63, p. 35321;
Reimann, S.M., Manninen, M., Electronic structure of quantum dots (2002) Rev. Mod. Phys., 74, p. 1325;
Koskinen, M., Kolehmainen, J., Reimann, S.M., Toivanen, J., Manninen, M., Quantum dots in magnetic fields: Unrestricted symmetries in the current spin-density functional formalism (1999) The Euro. Phys. J. D, 9, pp. 487-490;
Tanatar, B., Ceperley, D.M., Ground state of the two-dimensional electron gas (1989) Phys. Rev. B, 39, p. 5005;
Pala, M.G., Iannaccone, G., A three-dimensional solver of the Schro?dinger equation in momentum space for the detailed simulation of nanostructures (2002) Nanotechnology, 13, pp. 369-372;
Friesen, M., Practical design and simulation of silicon-based quantum-dot qubits (2003) Phys. Rev. B, 67, pp. 121301-1-4.
UR - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34247344097&partnerID=40&rel=R6.5.0
ER -
TY - JOUR
T1 - Simulation of the entanglement creation for identical particles scattering in a 2D system
JF - Journal of Computational Electronics
JA - J. Comput. Electron.
VL - 6
IS - 1
SP - 89
EP - 92
PY - 2007///
SN - 15698025 (ISSN)
AU - Buscemi, F.
AU - Bordone, P.
AU - Bertoni, A.
AD - S3 Research Center, CNR-INFM, via Campi 213/A, I-41100 Modena, Italy
AD - Dipartimento di Fisica, Universita? di Modena e Reggio Emilia, Modena, Italy
AD - S3 Research Center, CNR-INFM S3, via Campi 213/A, I-41100 Modena, Italy
AB - In recent years the dynamics of entanglement formation between two distinguishable charged particles has been investigated for scattering events in bulk semiconductors. The aim of this work is to overcome the hypothesis of distinguishable carriers. Here we present a quantitative evaluation of the entanglement dynamics for electron-electron collisions in a 2D system applying a method, suitable for indistinguishable particles, based on the Slater rank and the von Neumann entropy of the reduced density matrix. The quantum entanglement of both spatial and spin degrees of freedom is computed for various initial conditions of the system. © Springer Science+Business Media LLC 2007.
KW - Entanglement
KW - Indistinguishability
KW - Parallel diagonalization
N1 - Export Date: 3 July 2007
N1 - Source: Scopus
N1 - doi: 10.1007/s10825-006-0071-0
N1 - Language of Original Document: English
N1 - Correspondence Address: Buscemi, F.; S3 Research Center; CNR-INFM; via Campi 213/A I-41100 Modena, Italy; email: buscemi.fabrizio@unimore.it
N1 - References: Giulini, D., (1996) Decoherence and the Appearance of a Classical World in Quantum Theory Springer, , Berlin;
Bordone, P., Bertoni, A., Simulation of entanglement creation for carrier-impurity scattering in a 2D (to be published on the Proceedings of 14-th International Conference on Non Equilibrium carrier dynamics semiconductors - HCIS 14 - Chicago, July 24-29, 2005)Bordone, P., Bertoni, A., Simulation of the entanglement dynamics for scattering between a free and a bound carrier in a quantum wire (2004) J. Comp. Elec., 3, p. 407;
Schliemann, J., Cirac, J.I., Kus, M., Lewenstein, M., Loss, D., Quantum correlations in two-fermion systems (2001) Phis. Rev. A., 64, p. 022303;
Ghirardi, G., Marinatto, L., General criterion for the entanglement of two indistinguishable particles (2004) Phys. Rev. A., 70, p. 012109;
Buscemi, F., Bordone, P., Bertoni, A., Entanglement dynamics of electron-electron scattering in low dimensional semiconductor system (2006) Phys. Rev. A., 73, p. 052312;
Lama, L., Leon, J., Dynamical generation of spin-spin entanglement via spin-independent scattering of two identical s = 1/2 fermions Phys (2006) Rev. A., 73, p. 052322.
UR - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34247388741&partnerID=40&rel=R6.5.0
ER -
TY - JOUR
T1 - Generalized quantum state sharing of arbitrary unknown two-qubit state
JF - Optics Communications
JA - Opt Commun
VL - 276
IS - 2
SP - 322
EP - 326
PY - 2007///
SN - 00304018 (ISSN)
AU - Wang, Z.-y.
AU - Liu, Y.-m.
AU - Wang, D.
AU - Zhang, Z.-j.
AD - Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education of China, School of Physics and Material Science, Hefei, 230039, China
AD - Department of Physics, Shaoguan University, Shaoguan, 512005, China
AD - Department of Physics, Center for Quantum Information Science, National Cheng Kung University, Tainan, 70101, Taiwan
AB - We present first a three-party scheme for probabilistically implementing quantum state sharing of an arbitrary unknown two-qubit state by using two non-maximally entangled three-qubit states as the quantum channel. We show that, by choosing the appropriate performance, it is indeed possible to share an arbitrary unknown two-qubit state using partially entangled states if the parties collaborate. We then sketch the generation of the three-party scheme to N-party case. © 2007 Elsevier B.V. All rights reserved.
KW - Bell-state measurement
KW - Generalized quantum state sharing
KW - Partially entangled state
KW - Single-qubit projective measurement
N1 - Export Date: 3 July 2007
N1 - Source: Scopus
N1 - CODEN: OPCOB
N1 - doi: 10.1016/j.optcom.2007.03.085
N1 - Language of Original Document: English
N1 - Correspondence Address: Zhang, Z.-j.; Department of Physics; Center for Quantum Information Science; National Cheng Kung University Tainan, 70101, Taiwan; email: zjzhang@ahu.edu.cn
N1 - References: Shamir, A., (1979) Commun. ACM, 22, p. 612;
Hillery, M., Bu?zek, V., Berthiaume, A., (1999) Phys. Rev. A, 59, p. 1829;
Karlsson, A., Koashi, M., Imoto, N., (1999) Phys. Rev. A, 59, p. 162;
Gottesman, D., (2000) Phys. Rev. A, 61, p. 042311;
Tittel, W., Zbinden, H., Gisin, N., (2001) Phys. Rev. A, 63, p. 042301;
Karimipour, V., Bahraminasab, A., Bagherinezhad, S., (2002) Phys. Rev. A, 65, p. 042320;
Chau, H.F., (2002) Phys. Rev. A, 66, p. 060302;
Bagherinezhad, S., Karimipour, V., (2003) Phys. Rev. A, 67, p. 044302;
Guo, G.P., Guo, G.C., (2003) Phys. Lett. A, 310, p. 247;
Xiao, L., Long, G.L., Deng, F.G., Pan, J.W., (2004) Phys. Rev. A, 69, p. 052307;
Singh, S.K., (2005) Phys. Rev. A, 71, p. 012328;
Hsu, L.Y., Li, C.M., (2005) Phys. Rev. A, 71, p. 022321;
Han, L.F., (2005) Phys. Lett. A, 342, p. 60;
Zhang, Z.J., (2007) Phys. Lett. A, 361, p. 24;
Zhang, Z.J., (2005) Phys. Rev. A, 71, p. 044301;
Zhang, Z.J., (2005) Phys. Rev. A, 72, p. 022303;
Zhang, Z.J., (2005) Chin. Phys. Lett., 22, p. 1588;
Zhang, Z.J., (2007) Opt. Commun., 269, p. 418;
Cleve, R., Gottesman, D., Lo, H.K., (1999) Phys. Rev. Lett., 83, p. 648;
Bandyopadhyay, S., (2000) Phys. Rev. A, 62, p. 012308;
Hsu, L.Y., (2003) Phys. Rev. A, 68, p. 022306;
Li, Y.M., Zhang, K.S., Peng, K.C., (2004) Phys. Lett. A, 324, p. 420;
Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K., (2004) Phys. Rev. Lett., 92, p. 177903;
Deng, F.G., (2005) Phys. Lett. A, 337, p. 329;
Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J., (2005) Phys. Rev. A, 72, p. 044302;
Zhang, Z.J., (2006) Opt. Commun., 261, p. 199;
Zhang, Z.J., (2005) Eur. Phys. J. D, 33, p. 133;
Lance, A.M., (2005) Phys. Rev. A, 71, p. 033814;
Deng, F.G., (2005) Phys. Rev. A, 72, p. 044301;
Li, X.H., (2006) J. Phys. B, 39, p. 1975;
Wang, Z.Y., Yuan, H., Shi, S.H., Zhang, Z.J., (2007) Eur. Phys. J. D, 41, p. 371;
Agrawal, P., Pati, A.K., (2002) Phys. Lett. A, 305, p. 12;
Gordon, G., Rigolin, G., (2006) Phys. Rev. A, 73, p. 062316;
Li, W.L., Li, C.F., Guo, G.C., (2000) Phys. Rev. A, 61, p. 034301.
UR - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34250169431&partnerID=40&rel=R6.5.0
ER -
TY - JOUR
T1 - Lorenz's attractor applied to the stream cipher (Ali-Pacha generator)
JF - Chaos, Solitons and Fractals
JA - Chaos Solitons Fractals
VL - 33
IS - 5
SP - 1762
EP - 1766
PY - 2007///
SN - 09600779 (ISSN)
AU - Ali-Pacha, A.
AU - Hadj-Said, N.
AU - M'Hamed, A.
AU - Belgoraf, A.
AD - University of Sciences and Technology of Oran USTO, BP 1505, El M'Naouer, Oran, 31036, Algeria
AD - National Institute of Telecommunications, Evry, Paris, France
AB - The safety of information is primarily founded today on the calculation of algorithms whose confidentiality depends on the number of the necessary bits for the definition of a cryptographic key. If this type of system has proved reliable, then the increasing power of the means of calculation threatens the confidentiality of these methods. The powerful computers are certainly able to quantify and decipher information quickly, but their computing speed allows parallel cryptanalysis, which aims "to break" a code by discovering the key, for example, by testing all the possible keys. The only evocation of the principle of the quantum computer, with the potentially colossal capacities of calculation, has started a shock, even in the most savaged who are convinced of algorithmic cryptography. To mitigate this concern, we will introduce in this article a new cryptographic system based on chaotic concepts. © 2006 Elsevier Ltd. All rights reserved.
N1 - Export Date: 3 July 2007
N1 - Source: Scopus
N1 - CODEN: CSFOE
N1 - doi: 10.1016/j.chaos.2006.03.009
N1 - Language of Original Document: English
N1 - Correspondence Address: Ali-Pacha, A.; University of Sciences and Technology of Oran USTO; BP 1505, El M'Naouer Oran, 31036, Algeria; email: alipacha@yahoo.com
N1 - References: Strogatz, S.H., (1994) Nonlinear systems and chaos, , Perseus Publishing;
Bruce, S., (1996) Applied cryptography-protocols, algorithms and source code in C. second ed., , John Wiley & Sons, Inc., New York;
Ali-Pacha, A., Hadj-Said, N., Belmekki, B., Belgoraf, A., Chaotic behaviour for the secrete key of cryptographic system (2005) Chaos, Solitons & Fractals, 23, pp. 1549-1552.
UR - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-33947170486&partnerID=40&rel=R6.5.0
ER -
TY - JOUR
T1 - Synchronization of free-space quantum key distribution
JF - Optics Communications
JA - Opt Commun
VL - 275
IS - 2
SP - 486
EP - 490
PY - 2007///
SN - 00304018 (ISSN)
AU - Wu, Q.-L.
AU - Han, Z.-F.
AU - Miao, E.-L.
AU - Liu, Y.
AU - Dai, Y.-M.
AU - Guo, G.-C.
AD - Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
AB - In this paper, it is investigated that how the atmosphere effects on the synchronization accuracy in free-space quantum key distribution (QKD). We measured the synchronization error of a free-space QKD in our near-ground platform. According to experimental results and theoretical calculations, we deduce that the intensity fluctuation of synchronization light due to atmosphere disturbance contributes far more to the synchronization accuracy than others. By using the constant fraction discrimination method, the synchronization error of the free-space QKD, passing through the aerosphere, can be limited within 300 ps which meets the synchronization requirement of a satellite-to-ground QKD system. © 2007 Elsevier B.V. All rights reserved.
KW - Free-space quantum key distribution
KW - Synchronization
KW - Synchronization accuracy
N1 - Export Date: 3 July 2007
N1 - Source: Scopus
N1 - CODEN: OPCOB
N1 - doi: 10.1016/j.optcom.2007.03.068
N1 - Language of Original Document: English
N1 - Correspondence Address: Han, Z.-F.; Key Laboratory of Quantum Information; University of Science and Technology of China Hefei, 230026, China; email: zfhan@ustc.edu.cn
N1 - References: Ekert, A.K., (1991) Phys. Rev. Lett., 67, p. 661;
Mo, X.-F., Zhu, B., Han, Z.-F., (2005) Opt. Lett., 30, p. 2632;
Gobby, C., Yuan, Z.L., Shields, A.J., (2004) J. Appl. Phys. Lett., 84, p. 3762;
Hiskett, P.A., Rosenberg, D., Peterson, C.G., (2006) New J. Phys., 8, p. 193;
Hughes, R.J., Nordholt, J.E., Derkacs, D., (2002) New J. Phys., 4, p. 43;
Kurtsiefer, C., Zarda, P., Halder, M., (2002) Nature, 419, p. 450;
Miao, E.-L., Han, Z.-F., Gong, S.-S., (2005) New J. Phys., 7, p. 215;
Rarity, J.G., Tapster, P.R., Gorman, P.M., (2001) J. Mod. Opt., 48, p. 1887;
Su, H.H., Plonus, M.A., (1971) J. Opt. Soc. Am., 61, p. 2;
Liu, C.H., (1993) Wave Propagation in Random Media (Scintillation), , Tatarskii V.I. (Ed), Taylor & Francis;
Majumdar, A.K., Ricklin, J.C., (2005) Proc. SPIE, 5892, pp. 58920K;
Mironov, V.L., (1981) Laser Beam Propagation in Turbulence Atmosphere, , Nauka, Moscow;
Young, C.Y., Andrews, L.C., Ishimaru, A., (1998) Appl. Opt., 37, p. 7655;
Nicholson, P.W., (1974) Nuclear Electronics, , John Wiley & Sons.
UR - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34249340426&partnerID=40&rel=R6.5.0
ER -
TY - JOUR
T1 - Multiparty quantum secret sharing with pure entangled states and decoy photons
JF - Physica A: Statistical Mechanics and its Applications
JA - Phys A Stat Mech Appl
VL - 381
IS - 1-2
SP - 164
EP - 169
PY - 2007///
SN - 03784371 (ISSN)
AU - Zhou, P.
AU - Li, X.-H.
AU - Liang, Y.-J.
AU - Deng, F.-G.
AU - Zhou, H.-Y.
AD - Key Laboratory of Beam Technology and Material Modification, Ministry of Education, Beijing Normal University, Beijing, 100875, China
AD - Institute of Low Energy Nuclear Physics, Department of Material Science and Engineering, Beijing Normal University, Beijing, 100875, China
AD - Beijing Radiation Center, Beijing, 100875, China
AB - We present a scheme for multiparty quantum secret sharing of a private key with pure entangled states and decoy photons. The boss, say Alice uses the decoy photons, which are randomly in one of the four nonorthogonal single-photon states, to prevent a potentially dishonest agent from eavesdropping freely. This scheme requires the parties of communication to have neither an ideal single-photon quantum source nor a maximally entangled one, which makes this scheme more convenient than others in a practical application. Moreover, it has the advantage of having high intrinsic efficiency for qubits and exchanging less classical information in principle. © 2007 Elsevier B.V. All rights reserved.
KW - Decoy photons
KW - Pure entangled states
KW - Quantum communication
KW - Quantum secret sharing
N1 - Export Date: 3 July 2007
N1 - Source: Scopus
N1 - CODEN: PHYAD
N1 - doi: 10.1016/j.physa.2007.04.018
N1 - Language of Original Document: English
N1 - Correspondence Address: Deng, F.-G.; Key Laboratory of Beam Technology and Material Modification; Ministry of Education; Beijing Normal University Beijing, 100875, China; email: fgdeng@bnu.edu.cn
N1 - References: Gisin, N., Ribordy, G., Tittel, W., Zbinden, H., (2002) Rev. Mod. Phys., 74, p. 145;
Ekert, A.K., (1991) Phys. Rev. Lett., 67, p. 661;
Bennett, C.H., Brassard, G., Mermin, N.D., (1992) Phys. Rev. Lett., 68, p. 557;
Deng, F.G., Long, G.L., (2003) Phys. Rev. A, 68, p. 042315;
Deng, F.G., Long, G.L., (2004) Phys. Rev. A, 70, p. 012311;
Long, G.L., Liu, X.S., (2002) Phys. Rev. A, 65, p. 032302;
Lo, H.K., Chau, H.F., Ardehali, M., (2005) J. Cryptology, 18, p. 122;
Deng, F.G., Long, G.L., Liu, X.S., (2003) Phys. Rev. A, 68, p. 042317;
Deng, F.G., Long, G.L., (2004) Phys. Rev. A, 69, p. 052319;
Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L., (2005) Phys. Rev. A, 71, p. 044305;
Wang, C., Deng, F.G., Long, G.L., (2005) Opt. Commun., 253, p. 15;
Li, X.H., Deng, F.G., Li, C.Y., Liang, Y.J., Zhou, P., Zhou, H.Y., (2006) J. Korean Phys. Soc., 49, p. 1354;
Li, X.H., Deng, F.G., Zhou, H.Y., (2006) Phys. Rev. A, 74, p. 054302;
Man, Z.X., Zhang, Z.J., Li, Y., (2005) Chin. Phys. Lett., 22, p. 18;
Yan, F.L., Zhang, X., (2004) Euro. Phys. J. B, 41, p. 75;
Gao, T., Yan, F.L., Wang, Z.X., (2005) Chin. Phys., 14, p. 893;
Cai, Q.Y., (2004) B.W. Li Chin. Phys. Lett., 21, p. 601;
Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S., (2006) Phys. Rev. A, 73, p. 022338;
Wang, J., Zhang, Q., Tang, C.J., (2006) Phys. Lett. A, 358, p. 256;
Cao, H.J., Song, H.S., (2006) Chin. Phys. Lett., 23, p. 290;
Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Liang, Y.J., Zhou, H.Y., (2006) Chin. Phys. Lett., 23, p. 1676;
Li, X.H., Li, C.Y., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y., (2007) Chin. Phys. Lett., 24, p. 23;
Nguyen, B.A., (2004) Phys. Lett. A, 328;
Hillery, M., Buz?ek, V., Berthiaume, A., (1999) Phys. Rev. A, 59, p. 1829;
Karlsson, A., Koashi, M., Imoto, N., (1999) Phys. Rev. A, 59, p. 162;
Xiao, L., Long, G.L., Deng, F.G., Pan, J.W., (2004) Phys. Rev. A, 69, p. 052307;
Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y., (2006) Chin. Phys. Lett., 23, p. 1084;
Karimipour, V., Bahraminasab, A., Bagherinezhad, S., (2002) Phys. Rev. A, 65, p. 042320;
Yang, C.P., Gea-Banacloche, J., (2001) J. Opt. B: Qantum Semiclass. Opt., 3, p. 407;
Bandyopadhyay, S., (2000) Phys. Rev. A, 62, p. 012308;
Deng, F.G., Long, G.L., Zhou, H.Y., (2005) Phys. Lett. A, 340, p. 43;
Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y., (2005) Phys. Lett. A, 354, p. 190;
Chen, P., Deng, F.G., Long, G.L., (2006) Chin. Phys., 15, p. 2228;
Zhang, Z.J., (2006) Physica A, 361, p. 233;
Guo, G.P., Guo, G.C., (2003) Phys. Lett. A, 310, p. 247;
Deng, F.G., Zhou, H.Y., Long, G.L., (2005) Phys. Lett. A, 337, p. 329;
Deng, F.G., Zhou, H.Y., Long, G.L., (2006) J. Phys. A, 39, p. 14089;
Yan, F.L., Gao, T., (2005) Phys. Rev. A, 72, p. 012304;
Zhang, Z.J., Li, Y., Man, Z.X., (2005) Phys. Rev. A, 71, p. 044301;
Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J., (2005) Phys. Rev. A, 72, p. 044302;
Li, Y.M., Zhang, K.S., Peng, K.C., (2004) Phys. Lett. A, 324, p. 420;
Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y., (2005) Phys. Rev. A, 72, p. 044301;
Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y., (2005) Phys. Rev. A, 72, p. 022338;
Li, X.H., Zhou, P., LI, C.Y., Zhou, H.Y., Deng, F.G., (2006) J. Phys. B, 39, p. 1975;
Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y., (2006) Eur. Phys. J. D, 39, p. 459;
Zhang, Z.J., (2005) Eur. Phys. J. D, 33, p. 133;
Zhang, Y.Q., Jin, X.R., Zhang, S., (2006) Chin. Phys., 15, p. 2252;
Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G., (2005) Chin. Phys. Lett., 22, p. 1049;
Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y., (2006) Chin. Phys. Lett., 23, p. 2896;
Lo, H.K., Zhau, H.F., (1999) Science, 283, p. 2050;
Shor, P.W., Preskill, J., (2000) Phys. Rev. Lett., 85, p. 441;
. UR - http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-34249658443&partnerID=40&rel=R6.5.0
ER -
|