This file is indexed.

/usr/share/systemtap/runtime/time.c is in systemtap-common 2.3-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/* -*- linux-c -*- 
 * time-estimation with minimal dependency on xtime
 * Copyright (C) 2006 Intel Corporation.
 *
 * This file is part of systemtap, and is free software.  You can
 * redistribute it and/or modify it under the terms of the GNU General
 * Public License (GPL); either version 2, or (at your option) any
 * later version.
 */
#if defined (__i386__) || defined (__x86_64__)
#include <asm/cpufeature.h>
#endif
#if defined (STAPCONF_TSC_KHZ) && \
    !(defined (__x86_64__) && LINUX_VERSION_CODE < KERNEL_VERSION(2,6,21))
// x86_64 didn't need a specific header until 2.6.21.  Otherwise:
#include <asm/tsc.h>
#endif
#ifdef STAPCONF_KTIME_GET_REAL
#include <linux/ktime.h>
#endif

#include <linux/cpufreq.h>

#ifndef NSEC_PER_MSEC
#define NSEC_PER_MSEC	1000000L
#endif

typedef struct __stp_time_t {
    /* 
     * A write lock is taken by __stp_time_timer_callback() and
     * __stp_time_cpufreq_callback().  Neither writer is in interrupt context,
     * and both disable interrupts before taking the lock, so there should be
     * no opportunity for deadlock.
     *
     * A read lock is taken by _stp_gettimeofday_us().  There is the potential
     * for this to occur at any time, so there is a slim chance that this will
     * happen while the write lock is held, and it will be impossible to get a
     * read lock.  However, we can limit how long we try to get the lock to
     * avoid a deadlock.
     *
     * Note that seqlock is chosen so that readers don't block writers.  It's
     * also important that readers can attempt a lock from _any_ context (e.g.,
     * NMI), and some kernels don't have read_trylock.
     */
    seqlock_t lock;

    /* These provide a reference time to correlate cycles to real time */
    int64_t base_ns;
    cycles_t base_cycles;

    /* The frequency in kHz of this CPU's time stamp counter, for interpolating
     * cycle counts from the base time. */
    unsigned int freq;

    /* Callback used to schedule updates of the base time */
    struct timer_list timer;
} stp_time_t;

static void *stp_time = NULL;
#ifdef CONFIG_CPU_FREQ
static int __stp_cpufreq_notifier_registered = 0;
#endif

/* Try to estimate the number of CPU cycles in a millisecond - i.e. kHz.  This
 * relies heavily on the accuracy of udelay.  By calling udelay twice, we
 * attempt to account for overhead in the call.
 * 
 * NB: interrupts should be disabled when calling this.
 *
 * FIXME: This not very accurate on Xen kernels!
 */
static unsigned int
__stp_get_freq(void)
{
    // If we can get the actual frequency of HW counter, we use it.
#if defined (__ia64__)
    return local_cpu_data->itc_freq / 1000;
#elif defined (__s390__) || defined (__s390x__) || defined (__arm__)
    // We don't need to find the cpu freq on s390 as the 
    // TOD clock is always a fix freq. (see: POO pg 4-36.)
    return 0;
#elif (defined (__i386__) || defined (__x86_64__)) && defined(STAPCONF_TSC_KHZ)
    return tsc_khz;
#elif (defined (__i386__) || defined (__x86_64__)) && defined(STAPCONF_CPU_KHZ)
    return cpu_khz;
#else /* __i386__ || __x86_64__ || __ia64__ || __s390__ || __s390x__ || __arm__*/
    // If we don't know the actual frequency, we estimate it.
    cycles_t beg, mid, end;
    beg = get_cycles(); barrier();
    udelay(1); barrier();
    mid = get_cycles(); barrier();
    udelay(1001); barrier();
    end = get_cycles(); barrier();
    return (beg - 2*mid + end);
#endif
}

static void
__stp_ktime_get_real_ts(struct timespec *ts)
{
#ifdef STAPCONF_KTIME_GET_REAL
    ktime_get_real_ts(ts);
#else /* STAPCONF_KTIME_GET_REAL */
    struct timeval tv;
    do_gettimeofday(&tv);
    ts->tv_sec = tv.tv_sec;
    ts->tv_nsec = tv.tv_usec * NSEC_PER_USEC;
#endif
}

/* The timer callback is in a softIRQ -- interrupts enabled. */
static void
__stp_time_timer_callback(unsigned long val)
{
    unsigned long flags;
    stp_time_t *time;
    struct timespec ts;
    int64_t ns;
    cycles_t cycles;

    local_irq_save(flags);

    __stp_ktime_get_real_ts(&ts);
    cycles = get_cycles();

    ns = (NSEC_PER_SEC * (int64_t)ts.tv_sec) + ts.tv_nsec;

    time = per_cpu_ptr(stp_time, smp_processor_id());
    write_seqlock(&time->lock);
    time->base_ns = ns;
    time->base_cycles = cycles;
    write_sequnlock(&time->lock);

    local_irq_restore(flags);
    /* PR6481: reenable IRQs before resetting the timer.
       XXX: The worst that can probably happen is that we get
	    two consecutive timer resets.  */

    if (likely(atomic_read(session_state()) != STAP_SESSION_STOPPED))
        mod_timer(&time->timer, jiffies + 1);
}

/* This is called as an IPI, with interrupts disabled. */
static void
__stp_init_time(void *info)
{
    struct timespec ts;
    stp_time_t *time = per_cpu_ptr(stp_time, smp_processor_id());

    seqlock_init(&time->lock);
    __stp_ktime_get_real_ts(&ts);
    time->base_cycles = get_cycles();
    time->base_ns = (NSEC_PER_SEC * (int64_t)ts.tv_sec) + ts.tv_nsec;
    time->freq = __stp_get_freq();

    init_timer(&time->timer);
    time->timer.expires = jiffies + 1;
    time->timer.function = __stp_time_timer_callback;

#ifndef STAPCONF_ADD_TIMER_ON
    add_timer(&time->timer);
#endif
}

#ifdef CONFIG_CPU_FREQ
/* The cpufreq callback is not in interrupt context -- interrupts enabled */
static int
__stp_time_cpufreq_callback(struct notifier_block *self,
        unsigned long state, void *vfreqs)
{
    unsigned long flags;
    struct cpufreq_freqs *freqs;
    int freq_khz;
    stp_time_t *time;

    switch (state) {
        case CPUFREQ_POSTCHANGE:
        case CPUFREQ_RESUMECHANGE:
            freqs = (struct cpufreq_freqs *)vfreqs;
            freq_khz = freqs->new;
            time = per_cpu_ptr(stp_time, freqs->cpu);
            write_seqlock_irqsave(&time->lock, flags);
            time->freq = freq_khz;
            write_sequnlock_irqrestore(&time->lock, flags);
            break;
    }

    return NOTIFY_OK;
}

static struct notifier_block __stp_time_notifier = {
    .notifier_call = __stp_time_cpufreq_callback,
};

static int
__stp_constant_freq(void)
{
#ifdef STAPCONF_CONSTANT_TSC
    // If the CPU has constant tsc, we don't need to use cpufreq.
    return boot_cpu_has(X86_FEATURE_CONSTANT_TSC);
#elif defined (__ia64__) || defined (__s390__) || defined (__s390x__) || defined (__arm__)
    // these architectures have constant time counter.
    return 1;
#else
    return 0;
#endif
}
#endif /* CONFIG_CPU_FREQ */

/* This function is called during module unloading. */
static void
_stp_kill_time(void)
{
    if (stp_time) {
        int cpu;
        for_each_online_cpu(cpu) {
            stp_time_t *time = per_cpu_ptr(stp_time, cpu);
            del_timer_sync(&time->timer);
        }
#ifdef CONFIG_CPU_FREQ
        if (!__stp_constant_freq() && __stp_cpufreq_notifier_registered) {
            cpufreq_unregister_notifier(&__stp_time_notifier,
                                        CPUFREQ_TRANSITION_NOTIFIER);
        }
#endif

        _stp_free_percpu(stp_time);
        stp_time = NULL;
    }
}

/* This function is called during module loading. */
static int
_stp_init_time(void)
{
    int cpu, ret = 0;

    _stp_kill_time();

    stp_time = _stp_alloc_percpu(sizeof(stp_time_t));
    if (unlikely(stp_time == 0))
	    return -1;

#ifdef STAPCONF_ONEACHCPU_RETRY
    ret = on_each_cpu(__stp_init_time, NULL, 0, 1);
#else
    ret = on_each_cpu(__stp_init_time, NULL, 1);
#endif

#ifdef STAPCONF_ADD_TIMER_ON
    for_each_online_cpu(cpu) {
        stp_time_t *time = per_cpu_ptr(stp_time, cpu);
        add_timer_on(&time->timer, cpu);
    }
#endif

#ifdef CONFIG_CPU_FREQ
    if (!ret && !__stp_constant_freq()) {
	if (!cpufreq_register_notifier(&__stp_time_notifier,
				       CPUFREQ_TRANSITION_NOTIFIER)) {
	    __stp_cpufreq_notifier_registered = 1;
            for_each_online_cpu(cpu) {
                unsigned long flags;
                int freq_khz = cpufreq_get(cpu);
                if (freq_khz > 0) {
                    stp_time_t *time = per_cpu_ptr(stp_time, cpu);
                    write_seqlock_irqsave(&time->lock, flags);
                    time->freq = freq_khz;
                    write_sequnlock_irqrestore(&time->lock, flags);
                }
            }
        }
    }
#endif
    if (ret)
        _stp_kill_time();
    return ret;
}


#ifndef STP_TIMELOCKDELAY
#define STP_TIMELOCKDELAY 100 /* ns */
#endif
#ifndef STP_TIMELOCKTRIES
#define STP_TIMELOCKTRIES 10 /* total 1 us */
#endif

static int64_t
_stp_gettimeofday_ns(void)
{
    int64_t base;
    cycles_t last;
    uint64_t delta;
    unsigned int freq;
    unsigned int seq;
    stp_time_t *time;
    int i = 0;

    if (!stp_time)
        return -1;

    preempt_disable(); /* XXX: why?  Isn't this is only run from probe handlers? */
    time = per_cpu_ptr(stp_time, smp_processor_id());

    seq = read_seqbegin(&time->lock);
    base = time->base_ns;
    last = time->base_cycles;
    freq = time->freq;
    while (unlikely(read_seqretry(&time->lock, seq))) { 
            if (/* very */ unlikely(++i >= STP_TIMELOCKTRIES)) {
                    preempt_enable_no_resched();
                    _stp_warn ("_stp_gettimofday_ns seqlock timeout; see STP_TIMELOCK*");
                    return 0;
            }
        ndelay(STP_TIMELOCKDELAY);
        seq = read_seqbegin(&time->lock);
        base = time->base_ns;
        last = time->base_cycles;
        freq = time->freq;
    }

    delta = get_cycles() - last;
    preempt_enable_no_resched();

#if defined (__s390__) || defined (__s390x__)
    // The TOD clock on the s390 (read by get_cycles() ) 
    // is converted to a nano-second value using the following:
    // (get_cycles() * 125) >> 7;  

    delta = (delta * 125) >> 7;

#elif defined (__arm__)

    /* arm always returns 0 for get_cycles() */
    /* so this is just a fake value until we get a real fix. */
    delta = 1000;

#else /* __s390__ || __s390x__ */

    // Verify units:
    //   (D cycles) * (1E6 ns/ms) / (F cycles/ms [kHz]) = ns
    delta *= NSEC_PER_MSEC;
    if (freq == 0)
      return 0;
    do_div(delta, freq);
#endif

    return base + delta;
}