/usr/share/systemtap/runtime/stp_utrace.c is in systemtap-common 2.3-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 | /*
* utrace infrastructure interface for debugging user processes
*
* Copyright (C) 2006-2012 Red Hat, Inc. All rights reserved.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU General Public License v.2.
*
* Heavily based on the original utrace code by Roland McGrath.
*/
#ifndef _STP_UTRACE_C
#define _STP_UTRACE_C
#if (!defined(STAPCONF_UTRACE_VIA_TRACEPOINTS))
#error "STAPCONF_UTRACE_VIA_TRACEPOINTS must be defined."
#endif
#include "stp_utrace.h"
#include <linux/list.h>
#include <linux/sched.h>
#include <linux/freezer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <trace/events/sched.h>
#include <trace/events/syscalls.h>
#include "stp_task_work.c"
/*
* Per-thread structure private to utrace implementation.
* If task_struct.utrace_flags is nonzero, task_struct.utrace
* has always been allocated first. Once allocated, it is
* never freed until free_task().
*
* The common event reporting loops are done by the task making the
* report without ever taking any locks. To facilitate this, the two
* lists @attached and @attaching work together for smooth asynchronous
* attaching with low overhead. Modifying either list requires @lock.
* The @attaching list can be modified any time while holding @lock.
* New engines being attached always go on this list.
*
* The @attached list is what the task itself uses for its reporting
* loops. When the task itself is not quiescent, it can use the
* @attached list without taking any lock. Nobody may modify the list
* when the task is not quiescent. When it is quiescent, that means
* that it won't run again without taking @lock itself before using
* the list.
*
* At each place where we know the task is quiescent (or it's current),
* while holding @lock, we call splice_attaching(), below. This moves
* the @attaching list members on to the end of the @attached list.
* Since this happens at the start of any reporting pass, any new
* engines attached asynchronously go on the stable @attached list
* in time to have their callbacks seen.
*/
struct utrace {
spinlock_t lock;
struct list_head attached, attaching;
struct utrace_engine *reporting;
enum utrace_resume_action resume:UTRACE_RESUME_BITS;
unsigned int vfork_stop:1; /* need utrace_stop() before vfork wait */
unsigned int death:1; /* in utrace_report_death() now */
unsigned int reap:1; /* release_task() has run */
unsigned int pending_attach:1; /* need splice_attaching() */
unsigned int task_work_added:1; /* called task_work_add() */
unsigned long utrace_flags;
struct hlist_node hlist; /* task_utrace_table linkage */
struct task_struct *task;
struct task_work work;
};
#define TASK_UTRACE_HASH_BITS 5
#define TASK_UTRACE_TABLE_SIZE (1 << TASK_UTRACE_HASH_BITS)
static struct hlist_head task_utrace_table[TASK_UTRACE_TABLE_SIZE];
//DEFINE_MUTEX(task_utrace_mutex); /* Protects task_utrace_table */
static DEFINE_SPINLOCK(task_utrace_lock); /* Protects task_utrace_table */
static struct kmem_cache *utrace_cachep;
static struct kmem_cache *utrace_engine_cachep;
static const struct utrace_engine_ops utrace_detached_ops; /* forward decl */
static void utrace_report_clone(void *cb_data __attribute__ ((unused)),
struct task_struct *task,
struct task_struct *child);
static void utrace_report_death(void *cb_data __attribute__ ((unused)),
struct task_struct *task);
static void utrace_report_syscall_entry(void *cb_data __attribute__ ((unused)),
struct pt_regs *regs, long id);
static void utrace_report_syscall_exit(void *cb_data __attribute__ ((unused)),
struct pt_regs *regs, long ret);
static void utrace_report_exec(void *cb_data __attribute__ ((unused)),
struct task_struct *task,
pid_t old_pid __attribute__((unused)),
struct linux_binprm *bprm __attribute__ ((unused)));
#define __UTRACE_UNREGISTERED 0
#define __UTRACE_REGISTERED 1
static atomic_t utrace_state = ATOMIC_INIT(__UTRACE_UNREGISTERED);
#if !defined(STAPCONF_SIGNAL_WAKE_UP_STATE_EXPORTED)
// Sigh. On kernel's without signal_wake_up_state(), there is no
// declaration to use in 'typeof(&signal_wake_up_state)'. So, we'll
// provide one here.
void signal_wake_up_state(struct task_struct *t, unsigned int state);
// First typedef from the original decl, then #define as typecasted call.
typedef typeof(&signal_wake_up_state) signal_wake_up_state_fn;
#define signal_wake_up_state (* (signal_wake_up_state_fn)kallsyms_signal_wake_up_state)
#endif
#if !defined(STAPCONF_SIGNAL_WAKE_UP_EXPORTED)
// First typedef from the original decl, then #define as typecasted call.
typedef typeof(&signal_wake_up) signal_wake_up_fn;
#define signal_wake_up (* (signal_wake_up_fn)kallsyms_signal_wake_up)
#endif
#if !defined(STAPCONF___LOCK_TASK_SIGHAND_EXPORTED)
// First typedef from the original decl, then #define as typecasted call.
typedef typeof(&__lock_task_sighand) __lock_task_sighand_fn;
#define __lock_task_sighand (* (__lock_task_sighand_fn)kallsyms___lock_task_sighand)
/*
* __lock_task_sighand() is called from the inline function
* 'lock_task_sighand'. Since the real inline function won't know
* anything about our '#define' above, we have to have our own version
* of the inline function. Sigh.
*/
static inline struct sighand_struct *
stp_lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
{
struct sighand_struct *ret;
ret = __lock_task_sighand(tsk, flags);
(void)__cond_lock(&tsk->sighand->siglock, ret);
return ret;
}
#else
#define stp_lock_task_sighand lock_task_sighand
#endif
/*
* Our internal version of signal_wake_up()/signal_wake_up_state()
* that handles the functions existing and being exported.
*/
static inline void
stp_signal_wake_up(struct task_struct *t, bool resume)
{
#if defined(STAPCONF_SIGNAL_WAKE_UP_STATE_EXPORTED)
signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
#elif defined(STAPCONF_SIGNAL_WAKE_UP_EXPORTED)
signal_wake_up(t, resume);
#else
if (kallsyms_signal_wake_up_state) {
signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
}
else if (kallsyms_signal_wake_up) {
signal_wake_up(t, resume);
}
#endif
}
static int utrace_init(void)
{
int i;
int rc = -1;
static char kmem_cache1_name[50];
static char kmem_cache2_name[50];
if (unlikely(stp_task_work_init() != 0))
goto error;
/* initialize the list heads */
for (i = 0; i < TASK_UTRACE_TABLE_SIZE; i++) {
INIT_HLIST_HEAD(&task_utrace_table[i]);
}
#if !defined(STAPCONF_SIGNAL_WAKE_UP_STATE_EXPORTED)
/* The signal_wake_up_state() function (which replaces
* signal_wake_up() in newer kernels) isn't exported. Look up
* that function address. */
kallsyms_signal_wake_up_state = (void *)kallsyms_lookup_name("signal_wake_up_state");
#endif
#if !defined(STAPCONF_SIGNAL_WAKE_UP_EXPORTED)
/* The signal_wake_up() function isn't exported. Look up that
* function address. */
kallsyms_signal_wake_up = (void *)kallsyms_lookup_name("signal_wake_up");
#endif
#if (!defined(STAPCONF_SIGNAL_WAKE_UP_STATE_EXPORTED) \
&& !defined(STAPCONF_SIGNAL_WAKE_UP_EXPORTED))
if (kallsyms_signal_wake_up_state == NULL
&& kallsyms_signal_wake_up == NULL) {
_stp_error("Can't resolve signal_wake_up_state or signal_wake_up!");
goto error;
}
#endif
#if !defined(STAPCONF___LOCK_TASK_SIGHAND_EXPORTED)
/* The __lock_task_sighand() function isn't exported. Look up
* that function address. */
kallsyms___lock_task_sighand = (void *)kallsyms_lookup_name("__lock_task_sighand");
if (kallsyms___lock_task_sighand == NULL) {
_stp_error("Can't resolve __lock_task_sighand!");
goto error;
}
#endif
/* PR14781: avoid kmem_cache naming collisions (detected by CONFIG_DEBUG_VM)
by plopping a non-conflicting token - in this case the address of a
locally relevant variable - into the names. */
snprintf(kmem_cache1_name, sizeof(kmem_cache1_name),
"utrace_%lx", (unsigned long) (& utrace_cachep));
utrace_cachep = kmem_cache_create(kmem_cache1_name,
sizeof(struct utrace),
0, 0, NULL);
if (unlikely(!utrace_cachep))
goto error;
snprintf(kmem_cache2_name, sizeof(kmem_cache2_name),
"utrace_engine_%lx", (unsigned long) (& utrace_engine_cachep));
utrace_engine_cachep = kmem_cache_create(kmem_cache2_name,
sizeof(struct utrace_engine),
0, 0, NULL);
if (unlikely(!utrace_engine_cachep))
goto error;
rc = register_trace_sched_process_fork(utrace_report_clone, NULL);
if (unlikely(rc != 0)) {
_stp_error("register_trace_sched_process_fork failed: %d", rc);
goto error;
}
rc = register_trace_sched_process_exit(utrace_report_death, NULL);
if (unlikely(rc != 0)) {
_stp_error("register_trace_sched_process_exit failed: %d", rc);
goto error2;
}
rc = register_trace_sys_enter(utrace_report_syscall_entry, NULL);
if (unlikely(rc != 0)) {
_stp_error("register_trace_sys_enter failed: %d", rc);
goto error3;
}
rc = register_trace_sys_exit(utrace_report_syscall_exit, NULL);
if (unlikely(rc != 0)) {
_stp_error("register_trace_sys_exit failed: %d", rc);
goto error4;
}
rc = register_trace_sched_process_exec(utrace_report_exec, NULL);
if (unlikely(rc != 0)) {
_stp_error("register_sched_process_exec failed: %d", rc);
goto error5;
}
atomic_set(&utrace_state, __UTRACE_REGISTERED);
return 0;
error5:
unregister_trace_sys_exit(utrace_report_syscall_exit, NULL);
error4:
unregister_trace_sys_enter(utrace_report_syscall_entry, NULL);
error3:
unregister_trace_sched_process_exit(utrace_report_death, NULL);
error2:
unregister_trace_sched_process_fork(utrace_report_clone, NULL);
tracepoint_synchronize_unregister();
error:
if (utrace_cachep)
kmem_cache_destroy(utrace_cachep);
if (utrace_engine_cachep)
kmem_cache_destroy(utrace_engine_cachep);
return rc;
}
static int utrace_exit(void)
{
utrace_shutdown();
if (utrace_cachep)
kmem_cache_destroy(utrace_cachep);
if (utrace_engine_cachep)
kmem_cache_destroy(utrace_engine_cachep);
stp_task_work_exit();
return 0;
}
static void utrace_resume(struct task_work *work);
/*
* Clean up everything associated with @task.utrace.
*
* This routine must be called under the task_utrace_lock.
*/
static void utrace_cleanup(struct utrace *utrace)
{
struct utrace_engine *engine, *next;
lockdep_assert_held(&task_utrace_lock);
/* Free engines associated with the struct utrace, starting
* with the 'attached' list then doing the 'attaching' list. */
spin_lock(&utrace->lock);
list_for_each_entry_safe(engine, next, &utrace->attached, entry) {
#ifdef STP_TF_DEBUG
printk(KERN_ERR "%s:%d - removing engine\n",
__FUNCTION__, __LINE__);
#endif
list_del_init(&engine->entry);
/* FIXME: hmm, should this be utrace_engine_put()? */
kmem_cache_free(utrace_engine_cachep, engine);
}
list_for_each_entry_safe(engine, next, &utrace->attaching, entry) {
list_del(&engine->entry);
kmem_cache_free(utrace_engine_cachep, engine);
}
if (utrace->task_work_added) {
if (stp_task_work_cancel(utrace->task, &utrace_resume) == NULL)
printk(KERN_ERR "%s:%d - task_work_cancel() failed? task %p, %d, %s\n",
__FUNCTION__, __LINE__, utrace->task,
utrace->task->tgid,
(utrace->task->comm ? utrace->task->comm
: "UNKNOWN"));
utrace->task_work_added = 0;
}
spin_unlock(&utrace->lock);
/* Free the struct utrace itself. */
kmem_cache_free(utrace_cachep, utrace);
#ifdef STP_TF_DEBUG
printk(KERN_ERR "%s:%d exit\n", __FUNCTION__, __LINE__);
#endif
}
static void utrace_shutdown(void)
{
int i;
struct utrace *utrace;
struct hlist_head *head;
struct hlist_node *node, *node2;
if (atomic_dec_and_test(&utrace_state) != __UTRACE_UNREGISTERED)
return;
#ifdef STP_TF_DEBUG
printk(KERN_ERR "%s:%d entry\n", __FUNCTION__, __LINE__);
#endif
unregister_trace_sched_process_exec(utrace_report_exec, NULL);
unregister_trace_sched_process_fork(utrace_report_clone, NULL);
unregister_trace_sched_process_exit(utrace_report_death, NULL);
unregister_trace_sys_enter(utrace_report_syscall_entry, NULL);
unregister_trace_sys_exit(utrace_report_syscall_exit, NULL);
tracepoint_synchronize_unregister();
/* After calling tracepoint_synchronize_unregister(), we're
* sure there are no outstanding tracepoint probes being
* called. So, now would be a great time to free everything. */
#ifdef STP_TF_DEBUG
printk(KERN_ERR "%s:%d - freeing task-specific\n", __FUNCTION__, __LINE__);
#endif
spin_lock(&task_utrace_lock);
for (i = 0; i < TASK_UTRACE_TABLE_SIZE; i++) {
head = &task_utrace_table[i];
stap_hlist_for_each_entry_safe(utrace, node, node2, head, hlist) {
hlist_del(&utrace->hlist);
utrace_cleanup(utrace);
}
}
spin_unlock(&task_utrace_lock);
}
/*
* This routine must be called under the task_utrace_lock.
*/
static struct utrace *__task_utrace_struct(struct task_struct *task)
{
struct hlist_head *head;
struct hlist_node *node;
struct utrace *utrace;
lockdep_assert_held(&task_utrace_lock);
head = &task_utrace_table[hash_ptr(task, TASK_UTRACE_HASH_BITS)];
stap_hlist_for_each_entry(utrace, node, head, hlist) {
if (utrace->task == task)
return utrace;
}
return NULL;
}
/*
* Set up @task.utrace for the first time. We can have races
* between two utrace_attach_task() calls here. The task_lock()
* governs installing the new pointer. If another one got in first,
* we just punt the new one we allocated.
*
* This returns false only in case of a memory allocation failure.
*/
static bool utrace_task_alloc(struct task_struct *task)
{
struct utrace *utrace = kmem_cache_zalloc(utrace_cachep, GFP_IOFS);
struct utrace *u;
if (unlikely(!utrace))
return false;
spin_lock_init(&utrace->lock);
INIT_LIST_HEAD(&utrace->attached);
INIT_LIST_HEAD(&utrace->attaching);
utrace->resume = UTRACE_RESUME;
utrace->task = task;
stp_init_task_work(&utrace->work, &utrace_resume);
spin_lock(&task_utrace_lock);
u = __task_utrace_struct(task);
if (u == NULL) {
hlist_add_head(&utrace->hlist,
&task_utrace_table[hash_ptr(task, TASK_UTRACE_HASH_BITS)]);
}
else {
kmem_cache_free(utrace_cachep, utrace);
}
spin_unlock(&task_utrace_lock);
return true;
}
/*
* Correctly free a @utrace structure.
*
* Originally, this function was called via tracehook_free_task() from
* free_task() when @task is being deallocated. But free_task() has no
* tracepoint we can easily hook.
*/
static void utrace_free(struct utrace *utrace)
{
if (unlikely(!utrace))
return;
/* Remove this utrace from the mapping list of tasks to
* struct utrace. */
spin_lock(&task_utrace_lock);
hlist_del(&utrace->hlist);
spin_unlock(&task_utrace_lock);
/* Free the utrace struct. */
#ifdef STP_TF_DEBUG
if (unlikely(utrace->reporting)
|| unlikely(!list_empty(&utrace->attached))
|| unlikely(!list_empty(&utrace->attaching)))
printk(KERN_ERR "%s:%d - reporting? %p, attached empty %d, attaching empty %d\n",
__FUNCTION__, __LINE__, utrace->reporting,
list_empty(&utrace->attached),
list_empty(&utrace->attaching));
#endif
if (utrace->task_work_added) {
if (stp_task_work_cancel(utrace->task, &utrace_resume) == NULL)
printk(KERN_ERR "%s:%d - task_work_cancel() failed? task %p, %d, %s\n",
__FUNCTION__, __LINE__, utrace->task,
utrace->task->tgid,
(utrace->task->comm ? utrace->task->comm
: "UNKNOWN"));
utrace->task_work_added = 0;
}
kmem_cache_free(utrace_cachep, utrace);
}
static struct utrace *task_utrace_struct(struct task_struct *task)
{
struct utrace *utrace;
spin_lock(&task_utrace_lock);
utrace = __task_utrace_struct(task);
spin_unlock(&task_utrace_lock);
return utrace;
}
/*
* This is called when the task is safely quiescent, i.e. it won't consult
* utrace->attached without the lock. Move any engines attached
* asynchronously from @utrace->attaching onto the @utrace->attached list.
*/
static void splice_attaching(struct utrace *utrace)
{
lockdep_assert_held(&utrace->lock);
list_splice_tail_init(&utrace->attaching, &utrace->attached);
utrace->pending_attach = 0;
}
/*
* This is the exported function used by the utrace_engine_put() inline.
*/
static void __utrace_engine_release(struct kref *kref)
{
struct utrace_engine *engine = container_of(kref, struct utrace_engine,
kref);
BUG_ON(!list_empty(&engine->entry));
if (engine->release)
(*engine->release)(engine->data);
kmem_cache_free(utrace_engine_cachep, engine);
}
static bool engine_matches(struct utrace_engine *engine, int flags,
const struct utrace_engine_ops *ops, void *data)
{
if ((flags & UTRACE_ATTACH_MATCH_OPS) && engine->ops != ops)
return false;
if ((flags & UTRACE_ATTACH_MATCH_DATA) && engine->data != data)
return false;
return engine->ops && engine->ops != &utrace_detached_ops;
}
static struct utrace_engine *find_matching_engine(
struct utrace *utrace, int flags,
const struct utrace_engine_ops *ops, void *data)
{
struct utrace_engine *engine;
list_for_each_entry(engine, &utrace->attached, entry)
if (engine_matches(engine, flags, ops, data))
return engine;
list_for_each_entry(engine, &utrace->attaching, entry)
if (engine_matches(engine, flags, ops, data))
return engine;
return NULL;
}
/*
* Enqueue @engine, or maybe don't if UTRACE_ATTACH_EXCLUSIVE.
*/
static int utrace_add_engine(struct task_struct *target,
struct utrace *utrace,
struct utrace_engine *engine,
int flags,
const struct utrace_engine_ops *ops,
void *data)
{
int ret;
spin_lock(&utrace->lock);
ret = -EEXIST;
if ((flags & UTRACE_ATTACH_EXCLUSIVE) &&
unlikely(find_matching_engine(utrace, flags, ops, data)))
goto unlock;
/*
* In case we had no engines before, make sure that
* utrace_flags is not zero. Since we did unlock+lock
* at least once after utrace_task_alloc() installed
* ->utrace, we have the necessary barrier which pairs
* with rmb() in task_utrace_struct().
*/
ret = -ESRCH;
/* FIXME: Hmm, no reap in the brave new world... */
if (!utrace->utrace_flags) {
utrace->utrace_flags = UTRACE_EVENT(REAP);
/*
* If we race with tracehook_prepare_release_task()
* make sure that either it sees utrace_flags != 0
* or we see exit_state == EXIT_DEAD.
*/
smp_mb();
if (unlikely(target->exit_state == EXIT_DEAD)) {
utrace->utrace_flags = 0;
goto unlock;
}
}
/*
* Put the new engine on the pending ->attaching list.
* Make sure it gets onto the ->attached list by the next
* time it's examined. Setting ->pending_attach ensures
* that start_report() takes the lock and splices the lists
* before the next new reporting pass.
*
* When target == current, it would be safe just to call
* splice_attaching() right here. But if we're inside a
* callback, that would mean the new engine also gets
* notified about the event that precipitated its own
* creation. This is not what the user wants.
*/
list_add_tail(&engine->entry, &utrace->attaching);
utrace->pending_attach = 1;
utrace_engine_get(engine);
ret = 0;
unlock:
spin_unlock(&utrace->lock);
return ret;
}
/**
* utrace_attach_task - attach new engine, or look up an attached engine
* @target: thread to attach to
* @flags: flag bits combined with OR, see below
* @ops: callback table for new engine
* @data: engine private data pointer
*
* The caller must ensure that the @target thread does not get freed,
* i.e. hold a ref or be its parent. It is always safe to call this
* on @current, or on the @child pointer in a @report_clone callback.
*
* UTRACE_ATTACH_CREATE:
* Create a new engine. If %UTRACE_ATTACH_CREATE is not specified, you
* only look up an existing engine already attached to the thread.
*
* *** FIXME: needed??? ***
* UTRACE_ATTACH_EXCLUSIVE:
* Attempting to attach a second (matching) engine fails with -%EEXIST.
*
* UTRACE_ATTACH_MATCH_OPS: Only consider engines matching @ops.
* UTRACE_ATTACH_MATCH_DATA: Only consider engines matching @data.
*
* *** FIXME: need exclusive processing??? ***
* Calls with neither %UTRACE_ATTACH_MATCH_OPS nor %UTRACE_ATTACH_MATCH_DATA
* match the first among any engines attached to @target. That means that
* %UTRACE_ATTACH_EXCLUSIVE in such a call fails with -%EEXIST if there
* are any engines on @target at all.
*/
static struct utrace_engine *utrace_attach_task(
struct task_struct *target, int flags,
const struct utrace_engine_ops *ops, void *data)
{
struct utrace *utrace = task_utrace_struct(target);
struct utrace_engine *engine;
int ret;
#ifdef STP_TF_DEBUG
printk(KERN_ERR "%s:%d - target %p, utrace %p\n", __FUNCTION__, __LINE__,
target, utrace);
#endif
if (!(flags & UTRACE_ATTACH_CREATE)) {
if (unlikely(!utrace))
return ERR_PTR(-ENOENT);
spin_lock(&utrace->lock);
engine = find_matching_engine(utrace, flags, ops, data);
if (engine)
utrace_engine_get(engine);
spin_unlock(&utrace->lock);
return engine ?: ERR_PTR(-ENOENT);
}
if (unlikely(!ops) || unlikely(ops == &utrace_detached_ops))
return ERR_PTR(-EINVAL);
if (unlikely(target->flags & PF_KTHREAD))
/*
* Silly kernel, utrace is for users!
*/
return ERR_PTR(-EPERM);
if (!utrace) {
if (unlikely(!utrace_task_alloc(target)))
return ERR_PTR(-ENOMEM);
utrace = task_utrace_struct(target);
}
engine = kmem_cache_alloc(utrace_engine_cachep, GFP_IOFS);
if (unlikely(!engine))
return ERR_PTR(-ENOMEM);
/*
* Initialize the new engine structure. It starts out with one ref
* to return. utrace_add_engine() adds another for being attached.
*/
kref_init(&engine->kref);
engine->flags = 0;
engine->ops = ops;
engine->data = data;
engine->release = ops->release;
ret = utrace_add_engine(target, utrace, engine, flags, ops, data);
if (unlikely(ret)) {
kmem_cache_free(utrace_engine_cachep, engine);
engine = ERR_PTR(ret);
}
return engine;
}
/*
* When an engine is detached, the target thread may still see it and
* make callbacks until it quiesces. We install a special ops vector
* with these two callbacks. When the target thread quiesces, it can
* safely free the engine itself. For any event we will always get
* the report_quiesce() callback first, so we only need this one
* pointer to be set. The only exception is report_reap(), so we
* supply that callback too.
*/
static u32 utrace_detached_quiesce(u32 action, struct utrace_engine *engine,
unsigned long event)
{
return UTRACE_DETACH;
}
static void utrace_detached_reap(struct utrace_engine *engine,
struct task_struct *task)
{
}
static const struct utrace_engine_ops utrace_detached_ops = {
.report_quiesce = &utrace_detached_quiesce,
.report_reap = &utrace_detached_reap
};
/*
* The caller has to hold a ref on the engine. If the attached flag is
* true (all but utrace_barrier() calls), the engine is supposed to be
* attached. If the attached flag is false (utrace_barrier() only),
* then return -ERESTARTSYS for an engine marked for detach but not yet
* fully detached. The task pointer can be invalid if the engine is
* detached.
*
* Get the utrace lock for the target task.
* Returns the struct if locked, or ERR_PTR(-errno).
*
* This has to be robust against races with:
* utrace_control(target, UTRACE_DETACH) calls
* UTRACE_DETACH after reports
* utrace_report_death
* utrace_release_task
*/
static struct utrace *get_utrace_lock(struct task_struct *target,
struct utrace_engine *engine,
bool attached)
__acquires(utrace->lock)
{
struct utrace *utrace;
rcu_read_lock();
/*
* If this engine was already detached, bail out before we look at
* the task_struct pointer at all. If it's detached after this
* check, then RCU is still keeping this task_struct pointer valid.
*
* The ops pointer is NULL when the engine is fully detached.
* It's &utrace_detached_ops when it's marked detached but still
* on the list. In the latter case, utrace_barrier() still works,
* since the target might be in the middle of an old callback.
*/
if (unlikely(!engine->ops)) {
rcu_read_unlock();
return ERR_PTR(-ESRCH);
}
if (unlikely(engine->ops == &utrace_detached_ops)) {
rcu_read_unlock();
return attached ? ERR_PTR(-ESRCH) : ERR_PTR(-ERESTARTSYS);
}
utrace = task_utrace_struct(target);
spin_lock(&utrace->lock);
if (unlikely(utrace->reap) || unlikely(!engine->ops) ||
unlikely(engine->ops == &utrace_detached_ops)) {
/*
* By the time we got the utrace lock,
* it had been reaped or detached already.
*/
spin_unlock(&utrace->lock);
utrace = ERR_PTR(-ESRCH);
if (!attached && engine->ops == &utrace_detached_ops)
utrace = ERR_PTR(-ERESTARTSYS);
}
rcu_read_unlock();
return utrace;
}
/*
* Now that we don't hold any locks, run through any
* detached engines and free their references. Each
* engine had one implicit ref while it was attached.
*/
static void put_detached_list(struct list_head *list)
{
struct utrace_engine *engine, *next;
list_for_each_entry_safe(engine, next, list, entry) {
list_del_init(&engine->entry);
utrace_engine_put(engine);
}
}
/*
* We use an extra bit in utrace_engine.flags past the event bits,
* to record whether the engine is keeping the target thread stopped.
*
* This bit is set in task_struct.utrace_flags whenever it is set in any
* engine's flags. Only utrace_reset() resets it in utrace_flags.
*/
#define ENGINE_STOP (1UL << _UTRACE_NEVENTS)
static void mark_engine_wants_stop(struct utrace *utrace,
struct utrace_engine *engine)
{
engine->flags |= ENGINE_STOP;
utrace->utrace_flags |= ENGINE_STOP;
}
static void clear_engine_wants_stop(struct utrace_engine *engine)
{
engine->flags &= ~ENGINE_STOP;
}
static bool engine_wants_stop(struct utrace_engine *engine)
{
return (engine->flags & ENGINE_STOP) != 0;
}
/**
* utrace_set_events - choose which event reports a tracing engine gets
* @target: thread to affect
* @engine: attached engine to affect
* @events: new event mask
*
* This changes the set of events for which @engine wants callbacks made.
*
* This fails with -%EALREADY and does nothing if you try to clear
* %UTRACE_EVENT(%DEATH) when the @report_death callback may already have
* begun, or if you try to newly set %UTRACE_EVENT(%DEATH) or
* %UTRACE_EVENT(%QUIESCE) when @target is already dead or dying.
*
* This fails with -%ESRCH if you try to clear %UTRACE_EVENT(%REAP) when
* the @report_reap callback may already have begun, or when @target has
* already been detached, including forcible detach on reaping.
*
* If @target was stopped before the call, then after a successful call,
* no event callbacks not requested in @events will be made; if
* %UTRACE_EVENT(%QUIESCE) is included in @events, then a
* @report_quiesce callback will be made when @target resumes.
*
* If @target was not stopped and @events excludes some bits that were
* set before, this can return -%EINPROGRESS to indicate that @target
* may have been making some callback to @engine. When this returns
* zero, you can be sure that no event callbacks you've disabled in
* @events can be made. If @events only sets new bits that were not set
* before on @engine, then -%EINPROGRESS will never be returned.
*
* To synchronize after an -%EINPROGRESS return, see utrace_barrier().
*
* When @target is @current, -%EINPROGRESS is not returned. But note
* that a newly-created engine will not receive any callbacks related to
* an event notification already in progress. This call enables @events
* callbacks to be made as soon as @engine becomes eligible for any
* callbacks, see utrace_attach_task().
*
* These rules provide for coherent synchronization based on %UTRACE_STOP,
* even when %SIGKILL is breaking its normal simple rules.
*/
static int utrace_set_events(struct task_struct *target,
struct utrace_engine *engine,
unsigned long events)
{
struct utrace *utrace;
unsigned long old_flags, old_utrace_flags;
int ret = -EALREADY;
/*
* We just ignore the internal bit, so callers can use
* engine->flags to seed bitwise ops for our argument.
*/
events &= ~ENGINE_STOP;
utrace = get_utrace_lock(target, engine, true);
if (unlikely(IS_ERR(utrace)))
return PTR_ERR(utrace);
old_utrace_flags = utrace->utrace_flags;
old_flags = engine->flags & ~ENGINE_STOP;
/*
* If utrace_report_death() is already progress now,
* it's too late to clear the death event bits.
*/
if (((old_flags & ~events) & _UTRACE_DEATH_EVENTS) && utrace->death)
goto unlock;
/*
* When setting these flags, it's essential that we really
* synchronize with exit_notify(). They cannot be set after
* exit_notify() takes the tasklist_lock. By holding the read
* lock here while setting the flags, we ensure that the calls
* to tracehook_notify_death() and tracehook_report_death() will
* see the new flags. This ensures that utrace_release_task()
* knows positively that utrace_report_death() will be called or
* that it won't.
*/
if ((events & ~old_flags) & _UTRACE_DEATH_EVENTS) {
/* FIXME: we can't get the tasklist_lock (since it
* isn't exported). Plus, there is no more tracehook
* in exit_notify(). So, we'll ignore this for now
* and just assume that the lock on utrace is
* enough. */
//read_lock(&tasklist_lock);
if (unlikely(target->exit_state)) {
//read_unlock(&tasklist_lock);
goto unlock;
}
utrace->utrace_flags |= events;
//read_unlock(&tasklist_lock);
}
engine->flags = events | (engine->flags & ENGINE_STOP);
utrace->utrace_flags |= events;
ret = 0;
if ((old_flags & ~events) && target != current &&
!task_is_stopped_or_traced(target) && !target->exit_state) {
/*
* This barrier ensures that our engine->flags changes
* have hit before we examine utrace->reporting,
* pairing with the barrier in start_callback(). If
* @target has not yet hit finish_callback() to clear
* utrace->reporting, we might be in the middle of a
* callback to @engine.
*/
smp_mb();
if (utrace->reporting == engine)
ret = -EINPROGRESS;
}
unlock:
spin_unlock(&utrace->lock);
return ret;
}
/*
* Asynchronously mark an engine as being detached.
*
* This must work while the target thread races with us doing
* start_callback(), defined below. It uses smp_rmb() between checking
* @engine->flags and using @engine->ops. Here we change @engine->ops
* first, then use smp_wmb() before changing @engine->flags. This ensures
* it can check the old flags before using the old ops, or check the old
* flags before using the new ops, or check the new flags before using the
* new ops, but can never check the new flags before using the old ops.
* Hence, utrace_detached_ops might be used with any old flags in place.
* It has report_quiesce() and report_reap() callbacks to handle all cases.
*/
static void mark_engine_detached(struct utrace_engine *engine)
{
engine->ops = &utrace_detached_ops;
smp_wmb();
engine->flags = UTRACE_EVENT(QUIESCE);
}
/*
* Get @target to stop and return true if it is already stopped now.
* If we return false, it will make some event callback soonish.
* Called with @utrace locked.
*/
static bool utrace_do_stop(struct task_struct *target, struct utrace *utrace)
{
if (task_is_stopped(target)) {
/*
* Stopped is considered quiescent; when it wakes up, it will
* go through utrace_finish_stop() before doing anything else.
*/
spin_lock_irq(&target->sighand->siglock);
if (likely(task_is_stopped(target)))
__set_task_state(target, TASK_TRACED);
spin_unlock_irq(&target->sighand->siglock);
} else if (utrace->resume > UTRACE_REPORT) {
utrace->resume = UTRACE_REPORT;
if (! utrace->task_work_added) {
int rc = stp_task_work_add(target, &utrace->work);
if (rc == 0) {
utrace->task_work_added = 1;
}
/* stp_task_work_add() returns -ESRCH if the task
* has already passed exit_task_work(). Just
* ignore this error. */
else if (rc != -ESRCH) {
printk(KERN_ERR
"%s:%d - task_work_add() returned %d\n",
__FUNCTION__, __LINE__, rc);
}
}
}
return task_is_traced(target);
}
/*
* If the target is not dead it should not be in tracing
* stop any more. Wake it unless it's in job control stop.
*/
static void utrace_wakeup(struct task_struct *target, struct utrace *utrace)
{
lockdep_assert_held(&utrace->lock);
spin_lock_irq(&target->sighand->siglock);
if (target->signal->flags & SIGNAL_STOP_STOPPED ||
target->signal->group_stop_count)
target->state = TASK_STOPPED;
else
/* FIXME: Had to change wake_up_state() to
* wake_up_process() here (since wake_up_state() isn't
* exported). Reasonable? */
wake_up_process(target);
spin_unlock_irq(&target->sighand->siglock);
}
/*
* This is called when there might be some detached engines on the list or
* some stale bits in @task->utrace_flags. Clean them up and recompute the
* flags. Returns true if we're now fully detached.
*
* Called with @utrace->lock held, returns with it released.
* After this returns, @utrace might be freed if everything detached.
*/
static bool utrace_reset(struct task_struct *task, struct utrace *utrace)
__releases(utrace->lock)
{
struct utrace_engine *engine, *next;
unsigned long flags = 0;
LIST_HEAD(detached);
splice_attaching(utrace);
/*
* Update the set of events of interest from the union
* of the interests of the remaining tracing engines.
* For any engine marked detached, remove it from the list.
* We'll collect them on the detached list.
*/
list_for_each_entry_safe(engine, next, &utrace->attached, entry) {
if (engine->ops == &utrace_detached_ops) {
engine->ops = NULL;
list_move(&engine->entry, &detached);
} else {
flags |= engine->flags | UTRACE_EVENT(REAP);
}
}
if (task->exit_state) {
/*
* Once it's already dead, we never install any flags
* except REAP. When ->exit_state is set and events
* like DEATH are not set, then they never can be set.
* This ensures that utrace_release_task() knows
* positively that utrace_report_death() can never run.
*/
BUG_ON(utrace->death);
flags &= UTRACE_EVENT(REAP);
}
if (!flags) {
/*
* No more engines, cleared out the utrace.
*/
utrace->resume = UTRACE_RESUME;
}
/*
* If no more engines want it stopped, wake it up.
*/
if (task_is_traced(task) && !(flags & ENGINE_STOP))
utrace_wakeup(task, utrace);
/*
* In theory spin_lock() doesn't imply rcu_read_lock().
* Once we clear ->utrace_flags this task_struct can go away
* because tracehook_prepare_release_task() path does not take
* utrace->lock when ->utrace_flags == 0.
*/
rcu_read_lock();
utrace->utrace_flags = flags;
spin_unlock(&utrace->lock);
rcu_read_unlock();
put_detached_list(&detached);
return !flags;
}
static void utrace_finish_stop(void)
{
/*
* If we were task_is_traced() and then SIGKILL'ed, make
* sure we do nothing until the tracer drops utrace->lock.
*/
if (unlikely(__fatal_signal_pending(current))) {
struct utrace *utrace = task_utrace_struct(current);
spin_unlock_wait(&utrace->lock);
}
}
/*
* Perform %UTRACE_STOP, i.e. block in TASK_TRACED until woken up.
* @task == current, @utrace == current->utrace, which is not locked.
* Return true if we were woken up by SIGKILL even though some utrace
* engine may still want us to stay stopped.
*/
static void utrace_stop(struct task_struct *task, struct utrace *utrace,
enum utrace_resume_action action)
{
relock:
spin_lock(&utrace->lock);
if (action < utrace->resume) {
/*
* Ensure a reporting pass when we're resumed.
*/
utrace->resume = action;
if (! utrace->task_work_added) {
int rc = stp_task_work_add(task, &utrace->work);
if (rc == 0) {
utrace->task_work_added = 1;
}
/* stp_task_work_add() returns -ESRCH if the task
* has already passed exit_task_work(). Just
* ignore this error. */
else if (rc != -ESRCH) {
printk(KERN_ERR
"%s:%d - stp_task_work_add() returned %d\n",
__FUNCTION__, __LINE__, rc);
}
}
}
/*
* If the ENGINE_STOP bit is clear in utrace_flags, that means
* utrace_reset() ran after we processed some UTRACE_STOP return
* values from callbacks to get here. If all engines have detached
* or resumed us, we don't stop. This check doesn't require
* siglock, but it should follow the interrupt/report bookkeeping
* steps (this can matter for UTRACE_RESUME but not UTRACE_DETACH).
*/
if (unlikely(!(utrace->utrace_flags & ENGINE_STOP))) {
utrace_reset(task, utrace);
if (utrace->utrace_flags & ENGINE_STOP)
goto relock;
return;
}
/*
* The siglock protects us against signals. As well as SIGKILL
* waking us up, we must synchronize with the signal bookkeeping
* for stop signals and SIGCONT.
*/
spin_lock_irq(&task->sighand->siglock);
if (unlikely(__fatal_signal_pending(task))) {
spin_unlock_irq(&task->sighand->siglock);
spin_unlock(&utrace->lock);
return;
}
__set_current_state(TASK_TRACED);
/*
* If there is a group stop in progress,
* we must participate in the bookkeeping.
*/
if (unlikely(task->signal->group_stop_count) &&
!--task->signal->group_stop_count)
task->signal->flags = SIGNAL_STOP_STOPPED;
spin_unlock_irq(&task->sighand->siglock);
spin_unlock(&utrace->lock);
schedule();
utrace_finish_stop();
/*
* While in TASK_TRACED, we were considered "frozen enough".
* Now that we woke up, it's crucial if we're supposed to be
* frozen that we freeze now before running anything substantial.
*/
try_to_freeze();
/*
* While we were in TASK_TRACED, complete_signal() considered
* us "uninterested" in signal wakeups. Now make sure our
* TIF_SIGPENDING state is correct for normal running.
*/
spin_lock_irq(&task->sighand->siglock);
recalc_sigpending();
spin_unlock_irq(&task->sighand->siglock);
}
/*
* Called by release_task() with @reap set to true.
* Called by utrace_report_death() with @reap set to false.
* On reap, make report_reap callbacks and clean out @utrace
* unless still making callbacks. On death, update bookkeeping
* and handle the reap work if release_task() came in first.
*/
static void utrace_maybe_reap(struct task_struct *target, struct utrace *utrace,
bool reap)
{
struct utrace_engine *engine, *next;
struct list_head attached;
spin_lock(&utrace->lock);
if (reap) {
/*
* If the target will do some final callbacks but hasn't
* finished them yet, we know because it clears these event
* bits after it's done. Instead of cleaning up here and
* requiring utrace_report_death() to cope with it, we
* delay the REAP report and the teardown until after the
* target finishes its death reports.
*/
utrace->reap = 1;
if (utrace->utrace_flags & _UTRACE_DEATH_EVENTS) {
spin_unlock(&utrace->lock);
return;
}
} else {
/*
* After we unlock with this flag clear, any competing
* utrace_control/utrace_set_events calls know that we've
* finished our callbacks and any detach bookkeeping.
*/
utrace->death = 0;
if (!utrace->reap) {
/*
* We're just dead, not reaped yet. This will
* reset @target->utrace_flags so the later call
* with @reap set won't hit the check above.
*/
utrace_reset(target, utrace);
return;
}
}
/*
* utrace_add_engine() checks ->utrace_flags != 0. Since
* @utrace->reap is set, nobody can set or clear UTRACE_EVENT(REAP)
* in @engine->flags or change @engine->ops and nobody can change
* @utrace->attached after we drop the lock.
*/
utrace->utrace_flags = 0;
/*
* We clear out @utrace->attached before we drop the lock so
* that find_matching_engine() can't come across any old engine
* while we are busy tearing it down.
*/
list_replace_init(&utrace->attached, &attached);
list_splice_tail_init(&utrace->attaching, &attached);
spin_unlock(&utrace->lock);
list_for_each_entry_safe(engine, next, &attached, entry) {
if (engine->flags & UTRACE_EVENT(REAP))
engine->ops->report_reap(engine, target);
engine->ops = NULL;
engine->flags = 0;
list_del_init(&engine->entry);
utrace_engine_put(engine);
}
}
/*
* You can't do anything to a dead task but detach it.
* If release_task() has been called, you can't do that.
*
* On the exit path, DEATH and QUIESCE event bits are set only
* before utrace_report_death() has taken the lock. At that point,
* the death report will come soon, so disallow detach until it's
* done. This prevents us from racing with it detaching itself.
*
* Called only when @target->exit_state is nonzero.
*/
static inline int utrace_control_dead(struct task_struct *target,
struct utrace *utrace,
enum utrace_resume_action action)
{
lockdep_assert_held(&utrace->lock);
if (action != UTRACE_DETACH || unlikely(utrace->reap))
return -ESRCH;
if (unlikely(utrace->death))
/*
* We have already started the death report. We can't
* prevent the report_death and report_reap callbacks,
* so tell the caller they will happen.
*/
return -EALREADY;
return 0;
}
/**
* utrace_control - control a thread being traced by a tracing engine
* @target: thread to affect
* @engine: attached engine to affect
* @action: &enum utrace_resume_action for thread to do
*
* This is how a tracing engine asks a traced thread to do something.
* This call is controlled by the @action argument, which has the
* same meaning as the &enum utrace_resume_action value returned by
* event reporting callbacks.
*
* If @target is already dead (@target->exit_state nonzero),
* all actions except %UTRACE_DETACH fail with -%ESRCH.
*
* The following sections describe each option for the @action argument.
*
* UTRACE_DETACH:
*
* After this, the @engine data structure is no longer accessible,
* and the thread might be reaped. The thread will start running
* again if it was stopped and no longer has any attached engines
* that want it stopped.
*
* If the @report_reap callback may already have begun, this fails
* with -%ESRCH. If the @report_death callback may already have
* begun, this fails with -%EALREADY.
*
* If @target is not already stopped, then a callback to this engine
* might be in progress or about to start on another CPU. If so,
* then this returns -%EINPROGRESS; the detach happens as soon as
* the pending callback is finished. To synchronize after an
* -%EINPROGRESS return, see utrace_barrier().
*
* If @target is properly stopped before utrace_control() is called,
* then after successful return it's guaranteed that no more callbacks
* to the @engine->ops vector will be made.
*
* The only exception is %SIGKILL (and exec or group-exit by another
* thread in the group), which can cause asynchronous @report_death
* and/or @report_reap callbacks even when %UTRACE_STOP was used.
* (In that event, this fails with -%ESRCH or -%EALREADY, see above.)
*
* UTRACE_STOP:
*
* This asks that @target stop running. This returns 0 only if
* @target is already stopped, either for tracing or for job
* control. Then @target will remain stopped until another
* utrace_control() call is made on @engine; @target can be woken
* only by %SIGKILL (or equivalent, such as exec or termination by
* another thread in the same thread group).
*
* This returns -%EINPROGRESS if @target is not already stopped.
* Then the effect is like %UTRACE_REPORT. A @report_quiesce
* callback will be made soon. Your callback can
* then return %UTRACE_STOP to keep @target stopped.
*
* This does not interrupt system calls in progress, including ones
* that sleep for a long time.
*
* UTRACE_RESUME:
*
* Just let @target continue running normally, reversing the effect
* of a previous %UTRACE_STOP. If another engine is keeping @target
* stopped, then it remains stopped until all engines let it resume.
* If @target was not stopped, this has no effect.
*
* UTRACE_REPORT:
*
* This is like %UTRACE_RESUME, but also ensures that there will be
* a @report_quiesce callback made soon. If
* @target had been stopped, then there will be a callback before it
* resumes running normally. If another engine is keeping @target
* stopped, then there might be no callbacks until all engines let
* it resume.
*
* Since this is meaningless unless @report_quiesce callbacks will
* be made, it returns -%EINVAL if @engine lacks %UTRACE_EVENT(%QUIESCE).
*
* UTRACE_INTERRUPT:
*
* This is like %UTRACE_REPORT, but ensures that @target will make a
* callback before it resumes or delivers signals. If @target was in
* a system call or about to enter one, work in progress will be
* interrupted as if by %SIGSTOP. If another engine is keeping
* @target stopped, then there might be no callbacks until all engines
* let it resume.
*/
static int utrace_control(struct task_struct *target,
struct utrace_engine *engine,
enum utrace_resume_action action)
{
struct utrace *utrace;
bool reset;
int ret;
if (unlikely(action >= UTRACE_RESUME_MAX)) {
WARN(1, "invalid action argument to utrace_control()!");
return -EINVAL;
}
/*
* This is a sanity check for a programming error in the caller.
* Their request can only work properly in all cases by relying on
* a follow-up callback, but they didn't set one up! This check
* doesn't do locking, but it shouldn't matter. The caller has to
* be synchronously sure the callback is set up to be operating the
* interface properly.
*/
if (action >= UTRACE_REPORT && action < UTRACE_RESUME &&
unlikely(!(engine->flags & UTRACE_EVENT(QUIESCE)))) {
WARN(1, "utrace_control() with no QUIESCE callback in place!");
return -EINVAL;
}
utrace = get_utrace_lock(target, engine, true);
if (unlikely(IS_ERR(utrace)))
return PTR_ERR(utrace);
reset = task_is_traced(target);
ret = 0;
/*
* ->exit_state can change under us, this doesn't matter.
* We do not care about ->exit_state in fact, but we do
* care about ->reap and ->death. If either flag is set,
* we must also see ->exit_state != 0.
*/
if (unlikely(target->exit_state)) {
ret = utrace_control_dead(target, utrace, action);
if (ret) {
spin_unlock(&utrace->lock);
return ret;
}
reset = true;
}
switch (action) {
case UTRACE_STOP:
mark_engine_wants_stop(utrace, engine);
if (!reset && !utrace_do_stop(target, utrace))
ret = -EINPROGRESS;
reset = false;
break;
case UTRACE_DETACH:
if (engine_wants_stop(engine))
utrace->utrace_flags &= ~ENGINE_STOP;
mark_engine_detached(engine);
reset = reset || utrace_do_stop(target, utrace);
if (!reset) {
/*
* As in utrace_set_events(), this barrier ensures
* that our engine->flags changes have hit before we
* examine utrace->reporting, pairing with the barrier
* in start_callback(). If @target has not yet hit
* finish_callback() to clear utrace->reporting, we
* might be in the middle of a callback to @engine.
*/
smp_mb();
if (utrace->reporting == engine)
ret = -EINPROGRESS;
}
break;
case UTRACE_RESUME:
clear_engine_wants_stop(engine);
break;
case UTRACE_REPORT:
/*
* Make the thread call tracehook_notify_resume() soon.
* But don't bother if it's already been interrupted.
* In that case, utrace_get_signal() will be reporting soon.
*/
clear_engine_wants_stop(engine);
if (action < utrace->resume) {
utrace->resume = action;
if (! utrace->task_work_added) {
ret = stp_task_work_add(target, &utrace->work);
if (ret == 0) {
utrace->task_work_added = 1;
}
/* stp_task_work_add() returns -ESRCH if
* the task has already passed
* exit_task_work(). Just ignore this
* error. */
else if (ret != -ESRCH) {
printk(KERN_ERR
"%s:%d - stp_task_work_add() returned %d\n",
__FUNCTION__, __LINE__, ret);
}
}
}
break;
case UTRACE_INTERRUPT:
/*
* Make the thread call tracehook_get_signal() soon.
*/
clear_engine_wants_stop(engine);
if (utrace->resume == UTRACE_INTERRUPT)
break;
utrace->resume = UTRACE_INTERRUPT;
/*
* If it's not already stopped, interrupt it now. We need
* the siglock here in case it calls recalc_sigpending()
* and clears its own TIF_SIGPENDING. By taking the lock,
* we've serialized any later recalc_sigpending() after our
* setting of utrace->resume to force it on.
*/
if (reset) {
/*
* This is really just to keep the invariant that
* TIF_SIGPENDING is set with UTRACE_INTERRUPT.
* When it's stopped, we know it's always going
* through utrace_get_signal() and will recalculate.
*/
set_tsk_thread_flag(target, TIF_SIGPENDING);
} else {
int rc = 0;
if (! utrace->task_work_added) {
rc = stp_task_work_add(target, &utrace->work);
/* stp_task_work_add() returns -ESRCH
* if the task has already passed
* exit_task_work(). Just ignore this
* error. */
if (rc == 0 || rc == -ESRCH) {
utrace->task_work_added = 1;
rc = 0;
}
else {
printk(KERN_ERR
"%s:%d - task_work_add() returned %d\n",
__FUNCTION__, __LINE__, rc);
}
}
if (likely(rc == 0)) {
struct sighand_struct *sighand;
unsigned long irqflags;
sighand = stp_lock_task_sighand(target,
&irqflags);
if (likely(sighand)) {
stp_signal_wake_up(target, 0);
unlock_task_sighand(target, &irqflags);
}
}
}
break;
default:
BUG(); /* We checked it on entry. */
}
/*
* Let the thread resume running. If it's not stopped now,
* there is nothing more we need to do.
*/
if (reset)
utrace_reset(target, utrace);
else
spin_unlock(&utrace->lock);
return ret;
}
/**
* utrace_barrier - synchronize with simultaneous tracing callbacks
* @target: thread to affect
* @engine: engine to affect (can be detached)
*
* This blocks while @target might be in the midst of making a callback to
* @engine. It can be interrupted by signals and will return -%ERESTARTSYS.
* A return value of zero means no callback from @target to @engine was
* in progress. Any effect of its return value (such as %UTRACE_STOP) has
* already been applied to @engine.
*
* It's not necessary to keep the @target pointer alive for this call.
* It's only necessary to hold a ref on @engine. This will return
* safely even if @target has been reaped and has no task refs.
*
* A successful return from utrace_barrier() guarantees its ordering
* with respect to utrace_set_events() and utrace_control() calls. If
* @target was not properly stopped, event callbacks just disabled might
* still be in progress; utrace_barrier() waits until there is no chance
* an unwanted callback can be in progress.
*/
static int utrace_barrier(struct task_struct *target,
struct utrace_engine *engine)
{
struct utrace *utrace;
int ret = -ERESTARTSYS;
if (unlikely(target == current))
return 0;
/* If we get here, we might call
* schedule_timeout_interruptible(), which sleeps. */
might_sleep();
do {
utrace = get_utrace_lock(target, engine, false);
if (unlikely(IS_ERR(utrace))) {
ret = PTR_ERR(utrace);
if (ret != -ERESTARTSYS)
break;
} else {
/*
* All engine state changes are done while
* holding the lock, i.e. before we get here.
* Since we have the lock, we only need to
* worry about @target making a callback.
* When it has entered start_callback() but
* not yet gotten to finish_callback(), we
* will see utrace->reporting == @engine.
* When @target doesn't take the lock, it uses
* barriers to order setting utrace->reporting
* before it examines the engine state.
*/
if (utrace->reporting != engine)
ret = 0;
spin_unlock(&utrace->lock);
if (!ret)
break;
}
schedule_timeout_interruptible(1);
} while (!signal_pending(current));
return ret;
}
/*
* This is local state used for reporting loops, perhaps optimized away.
*/
struct utrace_report {
u32 result;
enum utrace_resume_action action;
enum utrace_resume_action resume_action;
bool detaches;
bool spurious;
};
#define INIT_REPORT(var) \
struct utrace_report var = { \
.action = UTRACE_RESUME, \
.resume_action = UTRACE_RESUME, \
.spurious = true \
}
/*
* We are now making the report, so clear the flag saying we need one.
* When there is a new attach, ->pending_attach is set just so we will
* know to do splice_attaching() here before the callback loop.
*/
static enum utrace_resume_action start_report(struct utrace *utrace)
{
enum utrace_resume_action resume = utrace->resume;
if (utrace->pending_attach ||
(resume > UTRACE_STOP && resume < UTRACE_RESUME)) {
spin_lock(&utrace->lock);
splice_attaching(utrace);
resume = utrace->resume;
if (resume > UTRACE_STOP)
utrace->resume = UTRACE_RESUME;
spin_unlock(&utrace->lock);
}
return resume;
}
static inline void finish_report_reset(struct task_struct *task,
struct utrace *utrace,
struct utrace_report *report)
{
if (unlikely(report->spurious || report->detaches)) {
spin_lock(&utrace->lock);
if (utrace_reset(task, utrace))
report->action = UTRACE_RESUME;
}
}
/*
* Complete a normal reporting pass, pairing with a start_report()
* call. This handles any UTRACE_DETACH or UTRACE_REPORT returns from
* engine callbacks. If @will_not_stop is true and any engine's last
* callback used UTRACE_STOP, we do UTRACE_REPORT here to ensure we
* stop before user mode. If there were no callbacks made, it will
* recompute @task->utrace_flags to avoid another false-positive.
*/
static void finish_report(struct task_struct *task, struct utrace *utrace,
struct utrace_report *report, bool will_not_stop)
{
enum utrace_resume_action resume = report->action;
if (resume == UTRACE_STOP)
resume = will_not_stop ? UTRACE_REPORT : UTRACE_RESUME;
if (resume < utrace->resume) {
spin_lock(&utrace->lock);
utrace->resume = resume;
if (! utrace->task_work_added) {
int rc = stp_task_work_add(task, &utrace->work);
if (rc == 0) {
utrace->task_work_added = 1;
}
/* stp_task_work_add() returns -ESRCH if the task
* has already passed exit_task_work(). Just
* ignore this error. */
else if (rc != -ESRCH) {
printk(KERN_ERR
"%s:%d - task_work_add() returned %d\n",
__FUNCTION__, __LINE__, rc);
}
}
spin_unlock(&utrace->lock);
}
finish_report_reset(task, utrace, report);
}
static void finish_callback_report(struct task_struct *task,
struct utrace *utrace,
struct utrace_report *report,
struct utrace_engine *engine,
enum utrace_resume_action action)
{
if (action == UTRACE_DETACH) {
/*
* By holding the lock here, we make sure that
* utrace_barrier() (really get_utrace_lock()) sees the
* effect of this detach. Otherwise utrace_barrier() could
* return 0 after this callback had returned UTRACE_DETACH.
* This way, a 0 return is an unambiguous indicator that any
* callback returning UTRACE_DETACH has indeed caused detach.
*/
spin_lock(&utrace->lock);
engine->ops = &utrace_detached_ops;
spin_unlock(&utrace->lock);
}
/*
* If utrace_control() was used, treat that like UTRACE_DETACH here.
*/
if (engine->ops == &utrace_detached_ops) {
report->detaches = true;
return;
}
if (action < report->action)
report->action = action;
if (action != UTRACE_STOP) {
if (action < report->resume_action)
report->resume_action = action;
if (engine_wants_stop(engine)) {
spin_lock(&utrace->lock);
clear_engine_wants_stop(engine);
spin_unlock(&utrace->lock);
}
return;
}
if (!engine_wants_stop(engine)) {
spin_lock(&utrace->lock);
/*
* If utrace_control() came in and detached us
* before we got the lock, we must not stop now.
*/
if (unlikely(engine->ops == &utrace_detached_ops))
report->detaches = true;
else
mark_engine_wants_stop(utrace, engine);
spin_unlock(&utrace->lock);
}
}
/*
* Apply the return value of one engine callback to @report.
* Returns true if @engine detached and should not get any more callbacks.
*/
static bool finish_callback(struct task_struct *task, struct utrace *utrace,
struct utrace_report *report,
struct utrace_engine *engine,
u32 ret)
{
report->result = ret & ~UTRACE_RESUME_MASK;
finish_callback_report(task, utrace, report, engine,
utrace_resume_action(ret));
/*
* Now that we have applied the effect of the return value,
* clear this so that utrace_barrier() can stop waiting.
* A subsequent utrace_control() can stop or resume @engine
* and know this was ordered after its callback's action.
*
* We don't need any barriers here because utrace_barrier()
* takes utrace->lock. If we touched engine->flags above,
* the lock guaranteed this change was before utrace_barrier()
* examined utrace->reporting.
*/
utrace->reporting = NULL;
/*
* We've just done an engine callback. These are *not*
* allowed to sleep, unlike the original utrace (since
* tracepiont handlers aren't allowed to sleep).
*/
return engine->ops == &utrace_detached_ops;
}
/*
* Start the callbacks for @engine to consider @event (a bit mask).
* This makes the report_quiesce() callback first. If @engine wants
* a specific callback for @event, we return the ops vector to use.
* If not, we return NULL. The return value from the ops->callback
* function called should be passed to finish_callback().
*/
static const struct utrace_engine_ops *start_callback(
struct utrace *utrace, struct utrace_report *report,
struct utrace_engine *engine, struct task_struct *task,
unsigned long event)
{
const struct utrace_engine_ops *ops;
unsigned long want;
#ifdef STP_TF_DEBUG
printk(KERN_ERR "%s:%d - utrace %p, report %p, engine %p, task %p, event %ld\n",
__FUNCTION__, __LINE__, utrace, report, engine, task, event);
#endif
/*
* This barrier ensures that we've set utrace->reporting before
* we examine engine->flags or engine->ops. utrace_barrier()
* relies on this ordering to indicate that the effect of any
* utrace_control() and utrace_set_events() calls is in place
* by the time utrace->reporting can be seen to be NULL.
*/
utrace->reporting = engine;
smp_mb();
/*
* This pairs with the barrier in mark_engine_detached().
* It makes sure that we never see the old ops vector with
* the new flags, in case the original vector had no report_quiesce.
*/
want = engine->flags;
smp_rmb();
ops = engine->ops;
if ((want & UTRACE_EVENT(QUIESCE)) || ops == &utrace_detached_ops) {
#ifdef STP_TF_DEBUG
printk(KERN_ERR "%s:%d - quiescing, ops %p, ops->report_quiesce %p\n",
__FUNCTION__, __LINE__, ops,
(ops == NULL ? 0 : ops->report_quiesce));
#endif
if (finish_callback(task, utrace, report, engine,
(*ops->report_quiesce)(report->action,
engine, event)))
return NULL;
if (!event) {
/* We only got here to report QUIESCE */
report->spurious = false;
return NULL;
}
#ifdef STP_TF_DEBUG
printk(KERN_ERR "%s:%d\n", __FUNCTION__, __LINE__);
#endif
/*
* finish_callback() reset utrace->reporting after the
* quiesce callback. Now we set it again (as above)
* before re-examining engine->flags, which could have
* been changed synchronously by ->report_quiesce or
* asynchronously by utrace_control() or utrace_set_events().
*/
utrace->reporting = engine;
smp_mb();
want = engine->flags;
#ifdef STP_TF_DEBUG
printk(KERN_ERR "%s:%d\n", __FUNCTION__, __LINE__);
#endif
}
if (want & ENGINE_STOP)
report->action = UTRACE_STOP;
#ifdef STP_TF_DEBUG
printk(KERN_ERR "%s:%d\n", __FUNCTION__, __LINE__);
#endif
if (want & event) {
report->spurious = false;
return ops;
}
utrace->reporting = NULL;
return NULL;
}
/*
* Do a normal reporting pass for engines interested in @event.
* @callback is the name of the member in the ops vector, and remaining
* args are the extras it takes after the standard three args.
*/
#define REPORT_CALLBACKS(rev, task, utrace, report, event, callback, ...) \
do { \
struct utrace_engine *engine; \
const struct utrace_engine_ops *ops; \
list_for_each_entry##rev(engine, &utrace->attached, entry) { \
ops = start_callback(utrace, report, engine, task, \
event); \
if (!ops) \
continue; \
finish_callback(task, utrace, report, engine, \
(*ops->callback)(__VA_ARGS__)); \
} \
} while (0)
#define REPORT(task, utrace, report, event, callback, ...) \
do { \
start_report(utrace); \
REPORT_CALLBACKS(, task, utrace, report, event, callback, \
(report)->action, engine, ## __VA_ARGS__); \
finish_report(task, utrace, report, true); \
} while (0)
/*
* Called iff UTRACE_EVENT(EXEC) flag is set.
*/
static void utrace_report_exec(void *cb_data __attribute__ ((unused)),
struct task_struct *task,
pid_t old_pid __attribute__((unused)),
struct linux_binprm *bprm __attribute__ ((unused)))
{
struct utrace *utrace = task_utrace_struct(task);
if (utrace && utrace->utrace_flags & UTRACE_EVENT(EXEC)) {
INIT_REPORT(report);
/* FIXME: Hmm, can we get regs another way? */
REPORT(task, utrace, &report, UTRACE_EVENT(EXEC),
report_exec, NULL, NULL, NULL /* regs */);
}
}
#if 0
static u32 do_report_syscall_entry(struct pt_regs *regs,
struct task_struct *task,
struct utrace *utrace,
struct utrace_report *report,
u32 resume_report)
{
start_report(utrace);
REPORT_CALLBACKS(_reverse, task, utrace, report,
UTRACE_EVENT(SYSCALL_ENTRY), report_syscall_entry,
resume_report | report->result | report->action,
engine, regs);
finish_report(task, utrace, report, false);
if (report->action != UTRACE_STOP)
return 0;
utrace_stop(task, utrace, report->resume_action);
if (fatal_signal_pending(task)) {
/*
* We are continuing despite UTRACE_STOP because of a
* SIGKILL. Don't let the system call actually proceed.
*/
report->result = UTRACE_SYSCALL_ABORT;
} else if (utrace->resume <= UTRACE_REPORT) {
/*
* If we've been asked for another report after our stop,
* go back to report (and maybe stop) again before we run
* the system call. The second (and later) reports are
* marked with the UTRACE_SYSCALL_RESUMED flag so that
* engines know this is a second report at the same
* entry. This gives them the chance to examine the
* registers anew after they might have been changed
* while we were stopped.
*/
report->detaches = false;
report->spurious = true;
report->action = report->resume_action = UTRACE_RESUME;
return UTRACE_SYSCALL_RESUMED;
}
return 0;
}
#endif
/*
* Called iff UTRACE_EVENT(SYSCALL_ENTRY) flag is set.
* Return true to prevent the system call.
*/
static void utrace_report_syscall_entry(void *cb_data __attribute__ ((unused)),
struct pt_regs *regs, long id)
{
struct task_struct *task = current;
struct utrace *utrace = task_utrace_struct(task);
/* FIXME: Is this 100% correct? */
if (utrace
&& utrace->utrace_flags & (UTRACE_EVENT(SYSCALL_ENTRY)|ENGINE_STOP)) {
INIT_REPORT(report);
/* FIXME: Hmm, original utrace called probes in reverse
* order. Needed here? */
REPORT(task, utrace, &report, UTRACE_EVENT(SYSCALL_ENTRY),
report_syscall_entry, regs);
}
#if 0
INIT_REPORT(report);
u32 resume_report = 0;
do {
resume_report = do_report_syscall_entry(regs, task, utrace,
&report, resume_report);
} while (resume_report);
return utrace_syscall_action(report.result) == UTRACE_SYSCALL_ABORT;
#endif
}
/*
* Called iff UTRACE_EVENT(SYSCALL_EXIT) flag is set.
*/
static void utrace_report_syscall_exit(void *cb_data __attribute__ ((unused)),
struct pt_regs *regs, long ret)
{
struct task_struct *task = current;
struct utrace *utrace = task_utrace_struct(task);
/* FIXME: Is this 100% correct? */
if (utrace
&& utrace->utrace_flags & (UTRACE_EVENT(SYSCALL_EXIT)|ENGINE_STOP)) {
INIT_REPORT(report);
#ifdef STP_TF_DEBUG
printk(KERN_ERR "%s:%d - task %p, utrace %p, utrace_flags 0x%lx\n",
__FUNCTION__, __LINE__, task, utrace,
utrace->utrace_flags);
#endif
REPORT(task, utrace, &report, UTRACE_EVENT(SYSCALL_EXIT),
report_syscall_exit, regs);
}
}
/*
* Called iff UTRACE_EVENT(CLONE) flag is set.
* This notification call blocks the wake_up_new_task call on the child.
* So we must not quiesce here. tracehook_report_clone_complete will do
* a quiescence check momentarily.
*/
static void utrace_report_clone(void *cb_data __attribute__ ((unused)),
struct task_struct *task,
struct task_struct *child)
{
struct utrace *utrace = task_utrace_struct(task);
#ifdef STP_TF_DEBUG
printk(KERN_ERR "%s:%d - parent %p, child %p, current %p\n",
__FUNCTION__, __LINE__, task, child, current);
#endif
if (utrace && utrace->utrace_flags & UTRACE_EVENT(CLONE)) {
unsigned long clone_flags = 0;
INIT_REPORT(report);
/* FIXME: Figure out what the clone_flags were. For
* task_finder's purposes, all we need is CLONE_THREAD. */
if (task->mm == child->mm)
clone_flags |= CLONE_VM;
if (task->fs == child->fs)
clone_flags |= CLONE_FS;
if (task->files == child->files)
clone_flags |= CLONE_FILES;
if (task->sighand == child->sighand)
clone_flags |= CLONE_SIGHAND;
#if 0
#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
#endif
if (! thread_group_leader(child)) /* Same thread group? */
clone_flags |= CLONE_THREAD;
#if 0
#define CLONE_NEWNS 0x00020000 /* New namespace group? */
#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
#define CLONE_DETACHED 0x00400000 /* Unused, ignored */
#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
/* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
and is now available for re-use. */
#define CLONE_NEWUTS 0x04000000 /* New utsname group? */
#define CLONE_NEWIPC 0x08000000 /* New ipcs */
#define CLONE_NEWUSER 0x10000000 /* New user namespace */
#define CLONE_NEWPID 0x20000000 /* New pid namespace */
#define CLONE_NEWNET 0x40000000 /* New network namespace */
#define CLONE_IO 0x80000000 /* Clone io context */
#endif
REPORT(task, utrace, &report, UTRACE_EVENT(CLONE),
report_clone, clone_flags, child);
#if 0
/*
* For a vfork, we will go into an uninterruptible
* block waiting for the child. We need UTRACE_STOP
* to happen before this, not after. For CLONE_VFORK,
* utrace_finish_vfork() will be called.
*/
if (report.action == UTRACE_STOP
&& (clone_flags & CLONE_VFORK)) {
spin_lock(&utrace->lock);
utrace->vfork_stop = 1;
spin_unlock(&utrace->lock);
}
#endif
}
}
/*
* We're called after utrace_report_clone() for a CLONE_VFORK.
* If UTRACE_STOP was left from the clone report, we stop here.
* After this, we'll enter the uninterruptible wait_for_completion()
* waiting for the child.
*/
static void utrace_finish_vfork(struct task_struct *task)
{
struct utrace *utrace = task_utrace_struct(task);
if (utrace->vfork_stop) {
spin_lock(&utrace->lock);
utrace->vfork_stop = 0;
spin_unlock(&utrace->lock);
utrace_stop(task, utrace, UTRACE_RESUME); /* XXX */
}
}
/*
* Called iff UTRACE_EVENT(DEATH) or UTRACE_EVENT(QUIESCE) flag is set.
*
* It is always possible that we are racing with utrace_release_task here.
* For this reason, utrace_release_task checks for the event bits that get
* us here, and delays its cleanup for us to do.
*/
static void utrace_report_death(void *cb_data __attribute__ ((unused)),
struct task_struct *task)
{
struct utrace *utrace = task_utrace_struct(task);
INIT_REPORT(report);
#ifdef STP_TF_DEBUG
printk(KERN_ERR "%s:%d - task %p, utrace %p, flags %lx\n", __FUNCTION__, __LINE__, task, utrace, utrace ? utrace->utrace_flags : 0);
#endif
if (!utrace || !(utrace->utrace_flags & UTRACE_EVENT(DEATH)))
return;
/* This code is called from the 'sched_process_exit'
* tracepoint, which really corresponds more to UTRACE_EXIT
* (thread exit in progress) than to UTRACE_DEATH (thread has
* died). But utrace_report_death() calls
* utrace_maybe_reap(), which does cleanup that we need.
*
* Because of this, 'exit_state' won't be set yet (as it would
* have been when the original utrace hit this code).
*
* BUG_ON(!task->exit_state);
*/
/*
* We are presently considered "quiescent"--which is accurate
* inasmuch as we won't run any more user instructions ever again.
* But for utrace_control and utrace_set_events to be robust, they
* must be sure whether or not we will run any more callbacks. If
* a call comes in before we do, taking the lock here synchronizes
* us so we don't run any callbacks just disabled. Calls that come
* in while we're running the callbacks will see the exit.death
* flag and know that we are not yet fully quiescent for purposes
* of detach bookkeeping.
*/
spin_lock(&utrace->lock);
BUG_ON(utrace->death);
utrace->death = 1;
utrace->resume = UTRACE_RESUME;
splice_attaching(utrace);
spin_unlock(&utrace->lock);
REPORT_CALLBACKS(, task, utrace, &report, UTRACE_EVENT(DEATH),
report_death, engine, -1/*group_dead*/, -1/*signal*/);
utrace_maybe_reap(task, utrace, false);
utrace_free(utrace);
}
/*
* Finish the last reporting pass before returning to user mode.
*/
static void finish_resume_report(struct task_struct *task,
struct utrace *utrace,
struct utrace_report *report)
{
finish_report_reset(task, utrace, report);
switch (report->action) {
case UTRACE_STOP:
utrace_stop(task, utrace, report->resume_action);
break;
case UTRACE_REPORT:
case UTRACE_RESUME:
default:
#if 0
user_disable_single_step(task);
#endif
break;
}
}
/*
* This is called when TIF_NOTIFY_RESUME had been set (and is now clear).
* We are close to user mode, and this is the place to report or stop.
* When we return, we're going to user mode or into the signals code.
*/
static void utrace_resume(struct task_work *work)
{
/*
* We could also do 'task_utrace_struct()' here to find the
* task's 'struct utrace', but 'container_of()' should be
* instantaneous (where 'task_utrace_struct()' has to do a
* hash lookup).
*/
struct utrace *utrace = container_of(work, struct utrace, work);
struct task_struct *task = current;
INIT_REPORT(report);
struct utrace_engine *engine;
might_sleep();
utrace->task_work_added = 0;
/* Make sure the task isn't exiting. */
if (task->flags & PF_EXITING) {
/* Remember that this task_work_func is finished. */
stp_task_work_func_done();
return;
}
/*
* Some machines get here with interrupts disabled. The same arch
* code path leads to calling into get_signal_to_deliver(), which
* implicitly reenables them by virtue of spin_unlock_irq.
*/
local_irq_enable();
/*
* Update our bookkeeping even if there are no callbacks made here.
*/
report.action = start_report(utrace);
switch (report.action) {
case UTRACE_RESUME:
/*
* Anything we might have done was already handled by
* utrace_get_signal(), or this is an entirely spurious
* call. (The arch might use TIF_NOTIFY_RESUME for other
* purposes as well as calling us.)
*/
/* Remember that this task_work_func is finished. */
stp_task_work_func_done();
return;
case UTRACE_REPORT:
if (unlikely(!(utrace->utrace_flags & UTRACE_EVENT(QUIESCE))))
break;
/*
* Do a simple reporting pass, with no specific
* callback after report_quiesce.
*/
report.action = UTRACE_RESUME;
list_for_each_entry(engine, &utrace->attached, entry)
start_callback(utrace, &report, engine, task, 0);
break;
default:
/*
* Even if this report was truly spurious, there is no need
* for utrace_reset() now. TIF_NOTIFY_RESUME was already
* cleared--it doesn't stay spuriously set.
*/
report.spurious = false;
break;
}
/*
* Finish the report and either stop or get ready to resume.
* If utrace->resume was not UTRACE_REPORT, this applies its
* effect now (i.e. step or interrupt).
*/
finish_resume_report(task, utrace, &report);
/* Remember that this task_work_func is finished. */
stp_task_work_func_done();
}
#endif /* _STP_UTRACE_C */
|