This file is indexed.

/usr/share/systemtap/runtime/loc2c-runtime.h is in systemtap-common 2.3-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/* target operations
 * Copyright (C) 2005-2012 Red Hat Inc.
 * Copyright (C) 2005-2007 Intel Corporation.
 * Copyright (C) 2007 Quentin Barnes.
 *
 * This file is part of systemtap, and is free software.  You can
 * redistribute it and/or modify it under the terms of the GNU General
 * Public License (GPL); either version 2, or (at your option) any
 * later version.
 */

#ifndef _LOC2C_RUNTIME_H_
#define _LOC2C_RUNTIME_H_

/* See also the linux/ and dyninst/ runtime specializations. */


/* These three macro definitions are generic, just shorthands
   used by the generated code.  */

#define op_abs(x)	(x < 0 ? -x : x)

#define fetch_bitfield(target, base, higherbits, nbits)			      \
  target = (((base) >> (sizeof (base) * 8 - (higherbits) - (nbits)))	      \
	    & (((__typeof (base)) 1 << (nbits)) - 1))

#define store_bitfield(target, base, higherbits, nbits)			      \
  target = ((target							      \
	     &~ ((((__typeof (target)) 1 << (nbits)) - 1)		      \
		 << (sizeof (target) * 8 - (higherbits) - (nbits))))	      \
	    | ((((__typeof (target)) (base))				      \
		& (((__typeof (target)) 1 << (nbits)) - 1))		      \
	       << (sizeof (target) * 8 - (higherbits) - (nbits))))


/* dwarf_div_op and dwarf_mod_op do division and modulo operations catching any
   divide by zero issues.  When they detect div_by_zero they "fault"
   by jumping to the (slightly misnamed) deref_fault label.  */
#define dwarf_div_op(a,b) ({							\
    if (b == 0) {							\
	snprintf(c->error_buffer, sizeof(c->error_buffer),		\
		 STAP_MSG_LOC2C_03, "DW_OP_div");			\
	c->last_error = c->error_buffer;				\
	goto deref_fault;						\
    }									\
    a / b;								\
})
#define dwarf_mod_op(a,b) ({							\
    if (b == 0) {							\
	snprintf(c->error_buffer, sizeof(c->error_buffer),		\
		 STAP_MSG_LOC2C_03, "DW_OP_mod");			\
	c->last_error = c->error_buffer;				\
	goto deref_fault;						\
    }									\
    a % b;								\
})


/* Given a DWARF register number, fetch its intptr_t (long) value from the
   probe context, or store a new value into the probe context.

   The register number argument is always a canonical decimal number, so it
   can be pasted into an identifier name.  These definitions turn it into a
   per-register macro, defined below for machines with individually-named
   registers.  */
#define pt_regs_fetch_register(pt_regs, regno) \
  ((intptr_t) pt_dwarf_register_##regno (pt_regs))
#define pt_regs_store_register(pt_regs, regno, value) \
  (pt_dwarf_register_##regno (pt_regs) = (value))


#if defined (STAPCONF_X86_UNIREGS) && defined (__i386__)

#define pt_dwarf_register_0(regs)  regs->ax
#define pt_dwarf_register_1(regs)  regs->cx
#define pt_dwarf_register_2(regs)  regs->dx
#define pt_dwarf_register_3(regs)  regs->bx
#define pt_dwarf_register_4(regs)  ((long) &regs->sp)
#define pt_dwarf_register_5(regs)  regs->bp
#define pt_dwarf_register_6(regs)  regs->si
#define pt_dwarf_register_7(regs)  regs->di

#elif defined (STAPCONF_X86_UNIREGS) && defined (__x86_64__)

#define pt_dwarf_register_0(regs)  regs->ax
#define pt_dwarf_register_1(regs)  regs->dx
#define pt_dwarf_register_2(regs)  regs->cx
#define pt_dwarf_register_3(regs)  regs->bx
#define pt_dwarf_register_4(regs)  regs->si
#define pt_dwarf_register_5(regs)  regs->di
#define pt_dwarf_register_6(regs)  regs->bp
#define pt_dwarf_register_7(regs)  regs->sp
#define pt_dwarf_register_8(regs)  regs->r8
#define pt_dwarf_register_9(regs)  regs->r9
#define pt_dwarf_register_10(regs) regs->r10
#define pt_dwarf_register_11(regs) regs->r11
#define pt_dwarf_register_12(regs) regs->r12
#define pt_dwarf_register_13(regs) regs->r13
#define pt_dwarf_register_14(regs) regs->r14
#define pt_dwarf_register_15(regs) regs->r15

#elif defined __i386__

/* The stack pointer is unlike other registers.  When a trap happens in
   kernel mode, it is not saved in the trap frame (struct pt_regs).
   The `esp' (and `xss') fields are valid only for a user-mode trap.
   For a kernel mode trap, the interrupted state's esp is actually an
   address inside where the `struct pt_regs' on the kernel trap stack points. */

#define pt_dwarf_register_0(regs)	regs->eax
#define pt_dwarf_register_1(regs)	regs->ecx
#define pt_dwarf_register_2(regs)	regs->edx
#define pt_dwarf_register_3(regs)	regs->ebx
#define pt_dwarf_register_4(regs)	(user_mode(regs) ? regs->esp : (long)&regs->esp)
#define pt_dwarf_register_5(regs)	regs->ebp
#define pt_dwarf_register_6(regs)	regs->esi
#define pt_dwarf_register_7(regs)	regs->edi

#elif defined __ia64__

#undef pt_regs_fetch_register
#undef pt_regs_store_register

#define pt_regs_fetch_register(pt_regs,regno)	\
  ia64_fetch_register(regno, pt_regs, &c->unwaddr)
#define pt_regs_store_register(pt_regs,regno,value) \
  ia64_store_register(regno, pt_regs, value)

#elif defined __x86_64__

#define pt_dwarf_register_0(regs)	regs->rax
#define pt_dwarf_register_1(regs)	regs->rdx
#define pt_dwarf_register_2(regs)	regs->rcx
#define pt_dwarf_register_3(regs)	regs->rbx
#define pt_dwarf_register_4(regs)	regs->rsi
#define pt_dwarf_register_5(regs)	regs->rdi
#define pt_dwarf_register_6(regs)	regs->rbp
#define pt_dwarf_register_7(regs)	regs->rsp
#define pt_dwarf_register_8(regs)	regs->r8
#define pt_dwarf_register_9(regs)	regs->r9
#define pt_dwarf_register_10(regs)	regs->r10
#define pt_dwarf_register_11(regs)	regs->r11
#define pt_dwarf_register_12(regs)	regs->r12
#define pt_dwarf_register_13(regs)	regs->r13
#define pt_dwarf_register_14(regs)	regs->r14
#define pt_dwarf_register_15(regs)	regs->r15

#elif defined __powerpc__

#undef pt_regs_fetch_register
#undef pt_regs_store_register
#define pt_regs_fetch_register(pt_regs,regno) \
  ((intptr_t) pt_regs->gpr[regno])
#define pt_regs_store_register(pt_regs,regno,value) \
  (pt_regs->gpr[regno] = (value))

#elif defined (__arm__)

#undef pt_regs_fetch_register
#undef pt_regs_store_register
#define pt_regs_fetch_register(pt_regs,regno) \
  ((long) pt_regs->uregs[regno])
#define pt_regs_store_register(pt_regs,regno,value) \
  (pt_regs->uregs[regno] = (value))

#elif defined (__s390__) || defined (__s390x__)

#undef pt_regs_fetch_register
#undef pt_regs_store_register
#define pt_regs_fetch_register(pt_regs,regno) \
  ((intptr_t) pt_regs->gprs[regno])
#define pt_regs_store_register(pt_regs,regno,value) \
  (pt_regs->gprs[regno] = (value))

#endif


#if STP_SKIP_BADVARS
#define DEREF_FAULT(addr) ({0; })
#define STORE_DEREF_FAULT(addr) ({0; })
#define CATCH_DEREF_FAULT() ({0; })
#else
#define DEREF_FAULT(addr) ({						    \
    snprintf(c->error_buffer, sizeof(c->error_buffer),			    \
      STAP_MSG_LOC2C_01, (void *)(intptr_t)(addr), #addr);   \
    c->last_error = c->error_buffer;					    \
    goto deref_fault;							    \
    })

#define STORE_DEREF_FAULT(addr) ({					    \
    snprintf(c->error_buffer, sizeof(c->error_buffer),			    \
      STAP_MSG_LOC2C_02, (void *)(intptr_t)(addr), #addr);  \
    c->last_error = c->error_buffer;					    \
    goto deref_fault;							    \
    })

#define CATCH_DEREF_FAULT()				\
  if (0) {						\
deref_fault: ;						\
  }
#endif

#endif /* _LOC2C_RUNTIME_H_ */