This file is indexed.

/usr/share/SuperCollider/HelpSource/Guides/Randomness.schelp is in supercollider-common 1:3.6.3~repack-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
title:: Randomness
categories:: Random
summary:: Randomness in SC
related:: Reference/randomSeed

As in any computer program, there are no "truly random" number generators in SC.
They are pseudo-random, meaning they use very complex, but deterministic
algorithms to generate sequences of numbers that are long enough and complicated enough
to seem "random" for human beings. (i.e. the patterns are too complex for us to detect.)

If you start a random number generator algorithm with the same "seed" number
several times, you get the same sequence of random numbers.
(See example below, randomSeed)

section:: Create single random numbers

subsection:: Between zero and <number>
code::
5.rand          // evenly distributed.

1.0.linrand     // probability decreases linearly from 0 to <number>.
::

subsection:: Between -<number> and <number>
code::
5.0.rand2       // evenly distributed.

10.bilinrand    // probability is highest around 0,
                // decreases linearly toward +-<number>.

1.0.sum3rand    // quasi-gaussian, bell-shaped distribution.
::

subsection:: Within a given range
code::
rrand(24, 48)       // linear distribution in the given range.

exprand(0.01, 1)    // exponential distribution;
                    // both numbers must have the same sign.
                    // (Note that the distribution of numbers is not exactly an exponential distribution, 
                    // since that would be unbounded: we might call it a logarithmic uniform distribution.)
::

subsection:: Test them multiple times with a do loop
code::
20.do({ 5.rand.postln; });			// evenly distributed

20.do({ 1.0.linrand.postln; });		// probability decreases linearly from 0 to 1.0

20.do({ 5.0.rand2.postln; });		// even

20.do({ 10.bilinrand.postln; });		// probability is highest around 0,
							// decreases linearly toward +-<number>.

20.do({ 1.0.sum3rand.postln; });	// quasi-gaussian, bell-shaped.
::

subsection:: Collect the results in an array
code::
Array.fill(10, { 1000.linrand }).postln;

// or more compact:

{ 1.0.sum3rand }.dup(100)

// or:

({ 1.0.sum3rand } ! 100)
::

subsection:: Seeding
You can seed a random generator in order to repeat
the same sequence of random numbers:
code::
(
5.do({
	thisThread.randSeed = 4;
	Array.fill(10, { 1000.linrand}).postln;
});
)

// Just to check, no seeding:

(
5.do({ Array.fill(10, { 1000.linrand }).postln; });
)
::
See also link::Reference/randomSeed::.


subsection:: Histograms
Demonstrate the various statistical distributions visually, with histograms:

code::
Array.fill(500, {  1.0.rand }).plot("Sequence of 500x 1.0.rand");

Array.fill(500, {  1.0.linrand }).plot("Sequence of 500x 1.0.linrand");

Array.fill(500, {  1.0.sum3rand }).plot("Sequence of 500x 1.0.sum3rand");
::

Use a histogram to display how often each (integer)
occurs in a collection of random numbers, :
code::
(
var randomNumbers, histogram, maxValue = 500, numVals = 10000, numBins = 500;

randomNumbers = Array.fill(numVals, { maxValue.rand; });
histogram = randomNumbers.histo(numBins, 0, maxValue);
histogram.plot("histogram for rand 0 - " ++ maxValue);
)
::

A histogram for linrand:
code::
(
var randomNumbers, histogram, maxValue = 500.0, numVals = 10000, numBins = 500;

randomNumbers = Array.fill(numVals, { maxValue.linrand; });
histogram = randomNumbers.histo(numBins, 0, maxValue);
histogram.plot("histogram for linrand 0 - " ++ maxValue);
)
::
A histogram for bilinrand:
code::
(
var randomNumbers, histogram, minValue = -250, maxValue = 250, numVals = 10000, numBins = 500;

randomNumbers = Array.fill(numVals, { maxValue.bilinrand; });
histogram = randomNumbers.histo(numBins, minValue, maxValue);
histogram.plot("histogram for bilinrand" + minValue + "to" + maxValue);
)
::

A histogram for exprand:
code::
(
var randomNumbers, histogram, minValue = 5.0, maxValue = 500, numVals = 10000, numBins = 500;

randomNumbers = Array.fill(numVals, { exprand(minValue, maxValue); });
histogram = randomNumbers.histo(numBins, minValue, maxValue);
histogram.plot("histogram for exprand: " ++ minValue ++ " to " ++ maxValue);
)
::

And for sum3rand (cheap quasi-gaussian):
code::
(
var randomNumbers, histogram, minValue = -250, maxValue = 250, numVals = 10000, numBins = 500;

randomNumbers = Array.fill(numVals, { maxValue.sum3rand; });
histogram = randomNumbers.histo(numBins, minValue, maxValue);
histogram.plot("histogram for sum3rand " ++ minValue ++ " to " ++ maxValue);
)
::


subsection:: on Collections
All of the single-number methods also work for (Sequenceable)Collections,
simply by applying the given random message to each element of the collection:
code::
[ 1.0, 10, 100.0, \aSymbol ].rand.postln;		// note: Symbols are left as they are.
List[ 10, -3.0, \aSymbol ].sum3rand.postln;
::

subsection:: Arbitrary random distributions

An integral table can be used to create an arbitrary random distribution quite efficiently. The table
building is expensive though. The more points there are in the random table, the more accurate the
distribution.
code::
(
var randomNumbers, histogram, distribution, randomTable, randTableSize=200;
var minValue = -250, maxValue = 250, numVals = 10000, numBins = 500;

// create some random distribution with values between 0 and 1
distribution = Array.fill(randTableSize,
	{ arg i; (i/ randTableSize * 35).sin.max(0) * (i / randTableSize) }
);

// render a randomTable
randomTable = distribution.asRandomTable;

// get random numbers, scale them

randomNumbers = Array.fill(numVals, { randomTable.tableRand * (maxValue - minValue) + minValue; });
histogram = randomNumbers.histo(numBins, minValue, maxValue);


histogram.plot("this is the histogram we got");
distribution.plot("this was the histogram we wanted");
)
::

section:: Random decisions

code:: coin :: simulates a coin toss and results in true or false.
1.0 is always true, 0.0 is always false, 0.5 is 50:50 chance.
code::
20.do({ 0.5.coin.postln });
::
biased random decision can be simulated bygenerating a single value
and check against a threshhold:
code::
20.do({ (1.0.linrand > 0.5).postln });
20.do({ (exprand(0.05, 1.0) > 0.5).postln });
::

section:: Generating Collections of random numbers
code::
		// size, minVal, maxVal
Array.rand(7, 0.0, 1.0).postln;

// is short for:

Array.fill(7, { rrand(0.0, 1.0) }).postln;
::
code::
		// size, minVal, maxVal
List.linrand(7, 10.0, 15.0).postln;

// is short for:

List.fill(7, { 10 + 5.0.linrand }).postln;
::

code::
Signal.exprand(10, 0.1, 1);

Signal.rand2(10, 1.0);
::

section:: Random choice from Collections

code::choose:: : equal chance for each element.
code::
10.do({ [ 1, 2, 3 ].choose.postln });
::

Weighted choice:

code::wchoose(weights):: : An array of weights sets the chance for each element.
code::
10.do({ [ 1, 2, 3 ].wchoose([0.1, 0.2, 0.7]).postln });
::

section:: Randomize the order of a Collection

code::
List[ 1, 2, 3, 4, 5 ].scramble.postln;
::

section:: Generate random numbers without duplicates
code::
f = { |n=8, min=0, max=7| (min..max).scramble.keep(n) };
f.value(8, 0, 7)
::

section:: Randomly group a Collection
code::
curdle(probability)
::
The probability argument sets the chance that two adjacent elements will be separated.
code::
[ 1, 2, 3, 4, 5, 6, 7, 8 ].curdle(0.2).postln;	// big groups

[ 1, 2, 3, 4, 5, 6, 7, 8 ].curdle(0.75).postln;	// small groups
::

section:: Random signal generators, i.e. UGens
list::
## link::Classes/PinkNoise::
## link::Classes/WhiteNoise::
## link::Classes/GrayNoise::
## link::Classes/BrownNoise::
## link::Classes/ClipNoise::
## link::Classes/LFNoise0::
## link::Classes/LFNoise1::
## link::Classes/LFNoise2::
## link::Classes/LFClipNoise::
## link::Classes/LFDNoise0::
## link::Classes/LFDNoise1::
## link::Classes/LFDNoise3::
## link::Classes/LFDClipNoise::
## link::Classes/Dust::
## link::Classes/Dust2::
## link::Classes/Crackle::
## link::Classes/TWChoose::
::

Also see UGens>Generators>Stochastic in the link::Browse#UGens>Generators>Stochastic:: page.

subsection:: UGens that generate random numbers once, or on trigger:

definitionlist::
## link::Classes/Rand:: || uniform distribution of float between (lo, hi), as for numbers.
## link::Classes/IRand:: || uniform distribution of integer numbers.
## link::Classes/TRand:: || uniform distribution of float numbers, triggered
## link::Classes/TIRand:: || uniform distribution of integer numbers, triggered
## link::Classes/LinRand:: || skewed distribution of float numbers, triggered
## link::Classes/NRand:: || sum of n uniform distributions, approximates gaussian distr. with higher n.
## link::Classes/ExpRand:: || exponential distribution
## link::Classes/TExpRand:: || exponential distribution, triggered
## link::Classes/CoinGate:: || statistical gate for a trigger
## link::Classes/TWindex:: || triggered weighted choice between a list.
::

subsection:: Seeding
Like using randSeed to set the random generatorsfor each thread in sclang,
you can choose which of several random generators on the server to use,
and you can reset (seed) these random generators:
list::
## link::Classes/RandID::
## link::Classes/RandSeed::
::

subsection:: UGens that generate random numbers on demand
("Demand UGens")
list::
## link::Classes/Dwhite::
## link::Classes/Dbrown::
## link::Classes/Diwhite::
## link::Classes/Dibrown::
## link::Classes/Drand::
## link::Classes/Dxrand::
::

see random patterns with analogous names

section:: Random Patterns
definitionlist::
## link::Classes/Prand:: || choose randomly one from a list ( list, numRepeats)
## link::Classes/Pxrand:: || choose one element from a list, no repeat of previous choice
## link::Classes/Pwhite:: || within range [<hi>, <lo>], choose a random value.
## link::Classes/Pbrown:: || within range [<hi>, <lo>], do a random walk with a maximum <step> to the next value.
## link::Classes/Pgbrown:: || geometric brownian motion

## link::Classes/Plprand::
## link::Classes/Phprand::
## link::Classes/Pmeanrand::
## link::Classes/Pbeta::
## link::Classes/Pcauchy::
## link::Classes/Pgauss::
## link::Classes/Ppoisson::
## link::Classes/Pexprand::

## link::Classes/Pwrand:: || choose from a list, probabilities by weights
code::
Pwrand([ 1, 2, 3 ], [0.1, 0.3, 0.6], 20);
::

## link::Classes/Pshuf:: || scramble the list, then repeat that order <repeats> times.

## link::Classes/Pwalk:: || code::Pwalk( (0 .. 10), Prand([ -2,-1, 1, 2], inf));:: random walk.

## link::Classes/Pfsm:: || random finite state machine pattern, see its help file. see also MarkovSet in MathLib quark

## link::Classes/Pseed:: || sets the random seed for that stream.
::

some basic examples
code::
(
Pbind(\note, Prand([ 0, 2, 4 ], inf),
	\dur, 0.2
).play;
)

(
Pbind(
	\note, Pxrand([ 0, 2, 4 ], inf),
	\dur, 0.2
).play;
)

(
Pbind(
	\note, Pwrand([ 0, 2, 4 ], [0.1, 0.3, 0.6], inf),
	\dur, 0.2
).play;
)

(
Pbind(
	\midinote, Pwhite(48, 72, inf),
	\dur, 0.2
).play;
)

(
Pbind(
	\midinote, Pbrown(48, 72, 5, inf),
	\dur, 0.2
).play;
)

(
Pbind(
	\midinote, Pgbrown(48, 72, 0.5, inf).round,
	\dur, 0.2
).play;
)
::