This file is indexed.

/usr/share/SuperCollider/HelpSource/Classes/TGrains.schelp is in supercollider-common 1:3.6.3~repack-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
class:: TGrains
summary:: Buffer granulator.
categories::  UGens>Buffer, UGens>Generators>Granular

Description::
Triggers generate grains from a buffer. Each grain has a Hanning envelope
code::
(sin2(x) for x from 0 to π)
::
and is panned between two channels of multiple outputs.

classmethods::

method::ar

argument::numChannels
Number of output channels.

argument::trigger
At each trigger, the following arguments are sampled and used as
the arguments of a new grain. A trigger occurs when a signal
changes from non-positive to positive value.

If the trigger is audio rate then the grains will start with
sample accuracy.

argument::bufnum
The index of the buffer to use. It must be a one channel (mono)
buffer.

argument::rate
1.0 is normal, 2.0 is one octave up, 0.5 is one octave down -1.0
is backwards normal rate… etc.

argument::centerPos
The position in the buffer in seconds at which the grain envelope
will reach maximum amplitude.

argument::dur
Duration of the grain in seconds.

argument::pan
A value from -1 to 1. Determines where to pan the output in the
same manner as
link::Classes/PanAz:: .

argument::amp
Amplitude of the grain.

argument::interp
1, 2, or 4. Determines whether the grain uses (1) no
interpolation, (2) linear interpolation, or (4) cubic
interpolation.


Examples::

code::

s.boot;
b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav");

(
{
	var trate, dur, rate;
	trate = MouseY.kr(2,200,1);
	dur = 4 / trate;
	rate = Dseq([10, 1, 1, 0.5, 0.5, 0.2, 0.1], inf);
	TGrains.ar(2, Impulse.ar(trate), b, rate, MouseX.kr(0,BufDur.kr(b)), dur, Dseq([-1, 1], inf), 0.1, 2);
}.scope(zoom: 4);
)

(
{
	var trate, dur, clk, pos, pan;
	trate = MouseY.kr(8,120,1);
	dur = 12 / trate;
	clk = Impulse.kr(trate);
	pos = MouseX.kr(0,BufDur.kr(b)) + TRand.kr(0, 0.01, clk);
	pan = WhiteNoise.kr(0.6);
	TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)

// 4 channels
(
{
	var trate, dur, clk, pos, pan;
	trate = MouseY.kr(8,120,1);
	dur = 12 / trate;
	clk = Impulse.kr(trate);
	pos = MouseX.kr(0,BufDur.kr(b)) + TRand.kr(0, 0.01, clk);
	pan = WhiteNoise.kr(0.6);
	TGrains.ar(4, clk, b, 1, pos, dur, pan, 0.1);
}.scope(4, zoom: 4);
)

(
{
	var trate, dur, clk, pos, pan;
	trate = MouseY.kr(8,120,1);
	dur = 4 / trate;
	clk = Dust.kr(trate);
	pos = MouseX.kr(0,BufDur.kr(b)) + TRand.kr(0, 0.01, clk);
	pan = WhiteNoise.kr(0.6);
	TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)



(
{
	var trate, dur, clk, pos, pan;
	trate = LinExp.kr(LFTri.kr(MouseY.kr(0.1,2,1)),-1,1,8,120);
	dur = 12 / trate;
	clk = Impulse.ar(trate);
	pos = MouseX.kr(0,BufDur.kr(b));
	pan = WhiteNoise.kr(0.6);
	TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)


(
{
	var trate, dur, clk, pos, pan;
	trate = 12;
	dur = MouseY.kr(0.2,24,1) / trate;
	clk = Impulse.kr(trate);
	pos = MouseX.kr(0,BufDur.kr(b)) + TRand.kr(0, 0.01, clk);
	pan = WhiteNoise.kr(0.6);
	TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)

(
{
	var trate, dur, clk, pos, pan;
	trate = 100;
	dur = 8 / trate;
	clk = Impulse.kr(trate);
	pos = Integrator.kr(BrownNoise.kr(0.001));
	pan = WhiteNoise.kr(0.6);
	TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)

(
{
	var trate, dur, clk, pos, pan;
	trate = MouseY.kr(1,400,1);
	dur = 8 / trate;
	clk = Impulse.kr(trate);
	pos = MouseX.kr(0,BufDur.kr(b));
	pan = WhiteNoise.kr(0.8);
	TGrains.ar(2, clk, b, 2 ** WhiteNoise.kr(2), pos, dur, pan, 0.1);
}.scope(zoom: 4);
)


(
{
	var trate, dur;
	trate = MouseY.kr(2,120,1);
	dur = 1.2 / trate;
	TGrains.ar(2, Impulse.ar(trate), b, (1.2 ** WhiteNoise.kr(3).round(1)), MouseX.kr(0,BufDur.kr(b)), dur, WhiteNoise.kr(0.6), 0.1);
}.scope(zoom: 4);
)


// demand ugens as inputs
(
{
	var trate, dur, z, d;
	trate = MouseX.kr(1, 100, 1);
	d = { Dwhite(0.1, 0.2, 1) };
	z = {
		Drand([Dgeom(0.1, 1 + d.value, Diwhite(20, 40)), Dgeom(1, 1 - d.value, Diwhite(20, 40))])
	};
	TGrains.ar(2,
		Impulse.ar(trate),
		bufnum: 10,
		rate: Dseq([1, 1, z.value, 0.5, 0.5, 0.2, 0.1, 0.1, 0.1, 0.1], inf) * 2 + 1,
		centerPos: Dseq(z.dup(8), inf),
		dur: Dseq([1, d.value, 1, z.value, 0.5, 0.5, 0.1, z.value] * 2, inf) / trate,
		pan: Dseq([1, 1, 1, 0.5, 0.2, 0.1, 0, 0, 0], inf) * 2 - 1,
		amp: Dseq([1, 0, z.value, 0, 2, 1.0, 1, 0.1, 0.1], inf)
	);
}.scope(zoom: 4);
)

b.free

::