/usr/share/SuperCollider/HelpSource/Classes/TGrains.schelp is in supercollider-common 1:3.6.3~repack-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | class:: TGrains
summary:: Buffer granulator.
categories:: UGens>Buffer, UGens>Generators>Granular
Description::
Triggers generate grains from a buffer. Each grain has a Hanning envelope
code::
(sin2(x) for x from 0 to π)
::
and is panned between two channels of multiple outputs.
classmethods::
method::ar
argument::numChannels
Number of output channels.
argument::trigger
At each trigger, the following arguments are sampled and used as
the arguments of a new grain. A trigger occurs when a signal
changes from non-positive to positive value.
If the trigger is audio rate then the grains will start with
sample accuracy.
argument::bufnum
The index of the buffer to use. It must be a one channel (mono)
buffer.
argument::rate
1.0 is normal, 2.0 is one octave up, 0.5 is one octave down -1.0
is backwards normal rate… etc.
argument::centerPos
The position in the buffer in seconds at which the grain envelope
will reach maximum amplitude.
argument::dur
Duration of the grain in seconds.
argument::pan
A value from -1 to 1. Determines where to pan the output in the
same manner as
link::Classes/PanAz:: .
argument::amp
Amplitude of the grain.
argument::interp
1, 2, or 4. Determines whether the grain uses (1) no
interpolation, (2) linear interpolation, or (4) cubic
interpolation.
Examples::
code::
s.boot;
b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav");
(
{
var trate, dur, rate;
trate = MouseY.kr(2,200,1);
dur = 4 / trate;
rate = Dseq([10, 1, 1, 0.5, 0.5, 0.2, 0.1], inf);
TGrains.ar(2, Impulse.ar(trate), b, rate, MouseX.kr(0,BufDur.kr(b)), dur, Dseq([-1, 1], inf), 0.1, 2);
}.scope(zoom: 4);
)
(
{
var trate, dur, clk, pos, pan;
trate = MouseY.kr(8,120,1);
dur = 12 / trate;
clk = Impulse.kr(trate);
pos = MouseX.kr(0,BufDur.kr(b)) + TRand.kr(0, 0.01, clk);
pan = WhiteNoise.kr(0.6);
TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)
// 4 channels
(
{
var trate, dur, clk, pos, pan;
trate = MouseY.kr(8,120,1);
dur = 12 / trate;
clk = Impulse.kr(trate);
pos = MouseX.kr(0,BufDur.kr(b)) + TRand.kr(0, 0.01, clk);
pan = WhiteNoise.kr(0.6);
TGrains.ar(4, clk, b, 1, pos, dur, pan, 0.1);
}.scope(4, zoom: 4);
)
(
{
var trate, dur, clk, pos, pan;
trate = MouseY.kr(8,120,1);
dur = 4 / trate;
clk = Dust.kr(trate);
pos = MouseX.kr(0,BufDur.kr(b)) + TRand.kr(0, 0.01, clk);
pan = WhiteNoise.kr(0.6);
TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)
(
{
var trate, dur, clk, pos, pan;
trate = LinExp.kr(LFTri.kr(MouseY.kr(0.1,2,1)),-1,1,8,120);
dur = 12 / trate;
clk = Impulse.ar(trate);
pos = MouseX.kr(0,BufDur.kr(b));
pan = WhiteNoise.kr(0.6);
TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)
(
{
var trate, dur, clk, pos, pan;
trate = 12;
dur = MouseY.kr(0.2,24,1) / trate;
clk = Impulse.kr(trate);
pos = MouseX.kr(0,BufDur.kr(b)) + TRand.kr(0, 0.01, clk);
pan = WhiteNoise.kr(0.6);
TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)
(
{
var trate, dur, clk, pos, pan;
trate = 100;
dur = 8 / trate;
clk = Impulse.kr(trate);
pos = Integrator.kr(BrownNoise.kr(0.001));
pan = WhiteNoise.kr(0.6);
TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)
(
{
var trate, dur, clk, pos, pan;
trate = MouseY.kr(1,400,1);
dur = 8 / trate;
clk = Impulse.kr(trate);
pos = MouseX.kr(0,BufDur.kr(b));
pan = WhiteNoise.kr(0.8);
TGrains.ar(2, clk, b, 2 ** WhiteNoise.kr(2), pos, dur, pan, 0.1);
}.scope(zoom: 4);
)
(
{
var trate, dur;
trate = MouseY.kr(2,120,1);
dur = 1.2 / trate;
TGrains.ar(2, Impulse.ar(trate), b, (1.2 ** WhiteNoise.kr(3).round(1)), MouseX.kr(0,BufDur.kr(b)), dur, WhiteNoise.kr(0.6), 0.1);
}.scope(zoom: 4);
)
// demand ugens as inputs
(
{
var trate, dur, z, d;
trate = MouseX.kr(1, 100, 1);
d = { Dwhite(0.1, 0.2, 1) };
z = {
Drand([Dgeom(0.1, 1 + d.value, Diwhite(20, 40)), Dgeom(1, 1 - d.value, Diwhite(20, 40))])
};
TGrains.ar(2,
Impulse.ar(trate),
bufnum: 10,
rate: Dseq([1, 1, z.value, 0.5, 0.5, 0.2, 0.1, 0.1, 0.1, 0.1], inf) * 2 + 1,
centerPos: Dseq(z.dup(8), inf),
dur: Dseq([1, d.value, 1, z.value, 0.5, 0.5, 0.1, z.value] * 2, inf) / trate,
pan: Dseq([1, 1, 1, 0.5, 0.2, 0.1, 0, 0, 0], inf) * 2 - 1,
amp: Dseq([1, 0, z.value, 0, 2, 1.0, 1, 0.1, 0.1], inf)
);
}.scope(zoom: 4);
)
b.free
::
|