/usr/share/SuperCollider/HelpSource/Classes/Shaper.schelp is in supercollider-common 1:3.6.3~repack-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 | class:: Shaper
summary:: Wave shaper.
related:: Classes/Index, Classes/WrapIndex
categories:: UGens>Buffer
Description::
Performs waveshaping on the input signal by indexing into the table.
classmethods::
method::ar, kr
argument::bufnum
The number of a buffer filled in wavetable format containing the
transfer function.
argument::in
The input signal.
Examples::
code::
s.boot;
b = Buffer.alloc(s, 512, 1, { |buf| buf.chebyMsg([1,0,1,1,0,1])});
(
{
Shaper.ar(
b,
SinOsc.ar(300, 0, Line.kr(0,1,6)),
0.5
)
}.scope;
)
b.free;
::
image::chebyshevpolynomials.png::
Wave shaping transfer functions are typically designed by using Chebyshev polynomials to control which harmonics are generated when a cosine wave is passed in. The implementation in SuperCollider compensates for the DC offset due to even polynomial terms, making sure that when 0 is put into the transfer function, you get 0 out. By default, normalization is set to true, which avoids output overload. If you want to construct a transfer function without this, you need to be careful with the final output scaling, since it could easily overload the -1 to 1 range for audio.
code::
// I want the first harmonic at 0.25 amplitude, second at 0.5, third at 0.25
b = Buffer.alloc(s, 512, 1, {arg buf; buf.chebyMsg([0.25,0.5,0.25], false)});
(
{
Shaper.ar(
b,
SinOsc.ar(440, 0.5pi, Line.kr(0,1,6)), //input cosine wave
0.5 //scale output down because otherwise it goes between -1.05 and 0.5, distorting...
)
}.scope;
)
b.free;
::
For those who like to make their own wavetables for arbitrary shapers, your buffer must be in wavetable format to have a valid transfer function. Wavetable format is a special representation to make linear interpolation faster (see at the bottom of this file). You don't have to worry about this directly, because there are two straight forward ways to get wavetables into a server buffer. First, the server can generate them (see the Buffer help file for the methods sine1, sine2, sine3 and cheby):
code::
b = Buffer.alloc(s, 1024, 1);
b.cheby([1, 0.5, 1, 0.125]);
(
{ var sig = Shaper.ar(b, SinOsc.ar(440, 0, 0.4));
sig ! 2
}.scope;
)
b.free;
::
Or, you can calculate the transfer function in a client-side array (Signal class) then convert it to a wavetable and send the data over.
code::
b = Buffer.alloc(s, 1024, 1);
//size must be power of two plus 1
t = Signal.chebyFill(513,[1, 0.5, 1, 0.125]);
// linear function
t.plot
// t.asWavetableNoWrap will convert it to the official Wavetable format at next power of two size
b.sendCollection(t.asWavetableNoWrap); // may also use loadCollection here
b.plot
(
{ var sig = Shaper.ar(b, SinOsc.ar(440, 0, 0.4));
sig ! 2
}.scope;
)
b.free;
::
This way of working then allows you to get creative with your transfer functions!
code::
b = Buffer.alloc(s, 1024, 1);
// or, for an arbitrary transfer function, create the data at 1/2 buffer size + 1
t = Signal.fill(513, { |i| i.linlin(0.0, 512.0, -1.0, 1.0) });
// linear function
t.plot
// t.asWavetable will convert it to the official Wavetable format at twice the size
b.sendCollection(t.asWavetableNoWrap); // may also use loadCollection here
// shaper has no effect because of the linear transfer function
(
{ var sig = Shaper.ar(b, SinOsc.ar(440, 0, 0.4));
sig ! 2
}.scope;
)
// now for a twist
(
a = Signal.fill(256, { |i|
var t = i/255.0;
t + (0.1 * (max(t, 0.1) - 0.1) * sin(2pi * t * 80 + sin(2pi * 25.6 * t)))
})
);
a.plot
d = (a.copy.reverse.neg) ++(Signal[0])++ a;
d.plot
d.size //must be buffer size/2 + 1, so 513 is fine
b.sendCollection(d.asWavetableNoWrap); // may also use loadCollection here
b.plot // wavetable format!
// test shaper
(
{
Shaper.ar(
b,
SinOsc.ar(440, 0.5, Line.kr(0,0.9,6))
)
}.scope
)
::
subsection:: Advanced notes: wavetable format
code::
Signal: [a0, a1, a2...]
Wavetable: [2*a0-a1, a1-a0, 2*a1-a2, a2-a1, 2*a2-a3, a3-a2...]
::
This strange format is not a standard linear interpolation (integer + frac), but for (integer part -1) and (1+frac)) due to some efficient maths for integer to float conversion in the underlying C code.
|