This file is indexed.

/usr/share/SuperCollider/HelpSource/Classes/Pproto.schelp is in supercollider-common 1:3.6.3~repack-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
class:: Pproto
summary:: provide a proto event for an event stream
related:: Classes/Pattern
categories:: Streams-Patterns-Events>Patterns>Server Control

description::

Pproto uses the strong::makeFunction:: to allocate resources (buffers, buses, groups) and create a protoEvent that makes those resources available to a pattern. It is fully compatible with non-realtime synthesis using strong::render::.

The strong::makeFunction:: "makes" the protoEvent (i.e. protoEvent is code::currentEnvironment::). Typically, it defines and yields a sequence of events that create the needed resources using the following eventTypes:

definitionList::
## \allocRead || load a file from ~path, starting at ~firstFileFrame, reading ~numFrames sample frames
## \cue || cue a file for DiskIn, with ~bufferSize frames
## \table || load ~amps directly into a buffer
## \sine1 || generate a buffer from ~amps
## \sine2 || generate a buffer from ~freqs, ~amps
## \sine3 || generate a buffer from ~freqs, ~amps, ~pahses
## \cheby || generate a waveshape buffer from ~amps
## \audioBus || allocate ~channels consecutive audio buses
## \controlBus || allocate ~channels consecutive control buses
## \on || create a synth
::

note::
These eventTypes will allocate their own buffers and buses unless they are specified. To support this, the key code::\bufNum:: is used rather than code::\bufnum:: which has a default value assigned.
::

When Pproto ends, these eventTypes will respond to the strong::cleanup:: call by strong::deallocating any resources they have allocated::. Do not assume your buffers, buses etc. will exist after Pproto stops!

The function yields each event. That event is then performed with possible modifications by enclosing patterns and the player (either an link::Classes/EventStreamPlayer:: or a link::Classes/ScoreStreamPlayer::). The resultant event is returned to the function where it can be assigned to a key within the protoEvent.

The patternarray is played using Pfpar, a variant of Ppar that ends when any of its subpatterns end. In this way,
you can use Pproto to create effects that can be controlled by a pattern that runs in parallel with the note generating pattern and ends together with that note generating pattern (see example 0 below).

A strong::cleanupFunction:: that deallocates resources when the pattern ends or is stopped is automatically created. It can be replaced with a user defined cleanup if needed. This function receives two arguments: strong::proto::, the prototype event, and strong::flag::, which is set false if all nodes have been freed already by link::Classes/CmdPeriod::.

Examples::

subsection::Example 0, using an effect with parallel control.

code::
(
SynthDef(\echo, { arg out=0, maxdtime=0.2, dtime=0.2, decay=2, gate=1;
	var env, in;
	env = Linen.kr(gate, 0.05, 1, 5, 2);
	in = In.ar(out, 2);
	XOut.ar(out, env, CombL.ar(in * env, maxdtime, Lag.kr(dtime, 4), decay, 1, in));
}, [\ir, \ir, 0.1, 0.1, 0]).add;

SynthDef(\fm, { arg out=0, freq, index, decay=2, gate=1;
	var env, in;
	env = Linen.kr(gate, 0.05, 1, 5, 2);
	in = In.ar(out, 2);
	XOut.ar(out, env, SinOsc.ar(freq, in * index));
}).add;

Pproto({
	~fsynth = ( type: \on, instrument: \fm, freq: 4, index: 1, addAction: 1, db: -30).yield;
	~fControl = [\set, ~fsynth[\id], ~fsynth[\msgFunc] ];

	~synth = ( type: \on, instrument: \echo, addAction: 1).yield;
	~sControl = [\set, ~synth[\id], ~synth[\msgFunc] ];

	}, [
	Pbind(*[
		#[type, id, msgFunc],	Pkey(\fControl),

		freq:	Pseg([0,1], 10).linexp(0,1, 0.1, 1000),
		index:	Pseg([0,1], 10).linexp(0,1, 0.1, 100),
		dur:	0.1
	]),
	Pbind(*[
		#[type, id, msgFunc],	Pkey(\sControl),

		dtime:	Pwhite(0,0.2),
		decay:	Pwhite(0.1,2),
		dur:	1
	]),
	Pbind(*[
		instrument: \default,
		freq: Pwhite(1,16) * 100,
		dur: 0.2,
		db:	0
	])
	]
).play
)
::

subsection::Example 1, loading and granulating a sound file.

code::
(
SynthDef(\help_playbuf, { | out=0, bufnum = 0, rate = 1, startPos = 0, amp = 0.1, sustain = 1, pan = 0, loop = 1|
	var audio;
	rate = rate * BufRateScale.kr(bufnum);
	startPos = startPos * BufFrames.kr(bufnum);

	audio = BufRd.ar(1, bufnum, Phasor.ar(0, rate, startPos, BufFrames.ir(bufnum)), 1, 1);
	audio = EnvGen.ar(Env.sine, 1, timeScale: sustain, doneAction: 2) * audio;
	audio = Pan2.ar(audio, pan, amp);
	OffsetOut.ar(out, audio);
}).add;

a = Pproto({
	~newgroup = (type: \group).yield;
	~sf1 = SoundFile(Platform.resourceDir +/+ "sounds/a11wlk01-44_1.aiff").asEvent.yield;
//	(type: \on).yield
},
	Pbind(*[
		instrument:	\help_playbuf,
		dur:		Pseg([0,0,0.25,0.5, 0.75, 1],10).linexp(0,1,0.01,2),
		legato:		4,
		startPos:	Pn(Pseg([0,1], 20), inf),
		rate:		Pwhite(1, 1).midiratio,
		loop:		0,
		group:		Pkey(\newgroup),
		bufnum:		Pkey(\sf1)
	])
);
a.play;
)

//a.render("sounds/test.aif", 40)
//SoundFile.openRead("sounds/test.aif").play
::

subsection::Example 2, loading a waveform buffer and modifying it in performance.

code::
(
SynthDef(\osc,{ arg out=0, bufnum=0, numbufs = 8, sustain = 1, freq = 500, amp = 0.1, pan = 0;
	var audio;
	audio = Osc.ar(bufnum, freq);
	audio = EnvGen.ar(Env.linen(0.01, 0.90,0.9), 1, timeScale: sustain, doneAction: 2) * audio;
	audio = Pan2.ar(audio, pan, amp);
	OffsetOut.ar(out, audio);
}).add;

b = Pproto({
	~bufnum = (type: \sine1, amps: 1.0/[1,2,3,4,5,6] ).yield;
	},
	Ppar([
		Pbind(*[
			instrument: 	\osc,
			freq:		Pwhite(1, 16) * 100,
			detune:		Pfunc { Array.fill(3.rand + 1, {3.0.rand}) },
			dur:		Prand([2,2,2.5,1],10),
			db:		Pn(Pstep([-10, -20, -20, -15, -20, -20, -20], 0.5) ),
			legato:		Pwhite(0.0,1).linexp(0,1,0.1, 3)
		]),
		Pbind(*[
			type:		\sine1,
			amps:		Pseg(Pfunc{ | ev | Array.fill(10, {1.0.rand}) }, 1),
			numOvertones:	Pseg(Pwhite(0, 9), 10).asInteger,
			amps:		Pfunc{ | ev | ev[\amps].copyRange(0, ev[\numOvertones]) },
			dur: 		0.05,
			bufNum:		Pkey(\bufnum)
		])
	])
);
b.play
)

//b.render("sounds/test.aif", 40)
//SoundFile.openRead("sounds/test.aif").play
::

subsection::Example 3, loading a waveshaper buffer and modifying it in performance.

code::
(
SynthDef(\shaper,{ arg out=0, bufnum=0, numbufs = 8, sustain = 1, freq = 500, amp = 0.1, pan = 0;
	var audio;
	audio = SinOsc.ar(freq);
	audio = EnvGen.ar(Env.linen(0.4, 0.50,0.9), 1, timeScale: sustain, doneAction: 2) * audio;
	audio = Shaper.ar(bufnum, audio);
	audio = Pan2.ar(audio, pan, amp);
	OffsetOut.ar(out, LeakDC.ar(audio));
}).add;

c = Pproto({
	~bufnum = (type: \cheby, amps: 1.0/[1,2,3,4,5,6] ).yield;
	},
	Ppar([
		Pbind(*[
			instrument: 	\shaper,
			freq:		Pwhite(1, 16) * 100,
			detune:		Pfunc { Array.fill(3.rand + 1, {3.0.rand}) },
			dur:		Prand([2,2,2.5,1],inf),
			db:		Pn(Pstep([-10, -20, -20, -15, -20, -20, -20], 0.5) ),
			legato:		Pwhite(0.0,1).linexp(0,1,1.1, 5)
		]),
		Pbind(*[
			type:		\cheby,
			amps:		Pseg(Pfunc{ | ev | Array.fill(10, {1.0.rand}) }, 4),
			dur: 		0.05
		])
	])
);
c.play
)
//c.render("sounds/test.aif", 40)
//SoundFile("sounds/test.aif").play
//
::