/usr/share/SuperCollider/HelpSource/Classes/Pattern.schelp is in supercollider-common 1:3.6.3~repack-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 | class:: Pattern
summary:: abstract class that holds a list
related:: Classes/Stream, Classes/FilterPattern, Classes/ListPattern
categories:: Streams-Patterns-Events>Patterns
description::
subsection::Patterns versus Streams
strong::Pattern:: is an abstract class that is the base for the Patterns library. These classes form a rich and concise score language for music. The series of help files entitled link::Tutorials/Streams-Patterns-Events1:: gives a detailed introduction. This attemps a briefer characterization.
A strong::Stream:: is an object that responds to code::next::, code::reset::, and code::embedInStream::. Streams represent sequences of values that are obtained one at a time by with message code::next::. A code::reset:: message will cause the stream to restart (many but not all streams actually repeat themselves.) If a stream runs out of values it returns code::nil:: in response to code::next::. The message code::embedInStream:: allows a stream definition to allow another stream to "take over control" of the stream.
All objects respond to code::next:: and code::reset::, most by returning themselves in response to next. Thus, the number 7 defines a Stream that produces an infinite sequence of 7's. Most objects respond to code::embedInStream:: with a singleton Stream that returns the object once.
A strong::Pattern:: is an object that responds to code::asStream:: and code::embedInStream::. A Pattern defines the behavior of a Stream and creates such streams in response to the messages code::asStream::.
The difference between a Pattern and a Stream is similar to the difference between a score and a performance of that score or a class and an instance of that class. All objects respond to this interface, most by returning themselves. So most objects are patterns that define streams that are an infinite sequence of the object and embed as singleton streams of that object returned once.
Patterns are defined in terms of other Patterns rather than in terms of specific values. This allows a Pattern of arbitrary complexity to be substituted for a single value anywhere within a Pattern definition. A comparison between a Stream definition and a Pattern will help illustrate the usefulness of Patterns.
subsection::example 1 - Pseq vs. Routine
The Pattern class strong::Pseq(array, repetitions):: defines a Pattern that will create a Stream that iterates an array. The class strong::Routine(func, stackSize):: defines a single Stream, the function that runs within that stream is defined to perform the array iteration.
Below a stream is created with link::Classes/Pseq:: and an code::asStream:: message and an identical stream is created directly using Routine.
code::
// a Routine vs a Pattern
(
a = [-100, 00, 300, 400]; // the array to iterate
p = Pseq(a); // make the Pattern
q = p.asStream; // have the Pattern make a Stream
r = Routine({ a.do({ arg v; v.yield}) }) ; // make the Stream directly
5.do({ Post << Char.tab << r.next << " " << q.next << Char.nl; });
)
::
subsection::example 2 - Nesting patterns
In example 1, there is little difference between using link::Classes/Pseq:: and link::Classes/Routine::. But Pseq actually iterates its array as a collection of emphasis::patterns to be embedded::, allowing another Pseq to replace any of the values in the array. The Routine, on the other hand, needs to be completely redefined.
code::
(
var routinesA;
a = [3, Pseq([-100, 00, 300, 400]), Pseq([-100, 00, 300, 400].reverse) ];
routinesA = [[3], [-100, 00, 300, 400], [-100, 00, 300, 400].reverse];
p = Pseq(a);
q = p.asStream;
r = Routine({
routinesA.do({ arg v;
v.do({ arg i; i.yield})
}) ;
});
10.do({ Post << Char.tab << r.next << " " << q.next << Char.nl; });
)
::
subsection::example 3 - Stream-embedInStream
The message code::embedInStream:: is what allows Patterns to do this kind of nesting. Most objects
(such as the number 3 below) respond to code::embedInStream:: by yielding themselves once and returning. Streams respond to embedInStream by iterating themselves to completion, effectively "taking over" the calling stream for that time.
A Routine can perform a pattern simply by replacing calls to code::yield:: with calls to code::embedInStream::.
code::
(
a = [3, Pseq([-100, 00, 300, 400]), Pseq([-100, 00, 300, 400].reverse) ];
r = Routine({ a.do({ arg v; v.embedInStream}) }) ;
p = Pseq(a);
q = p.asStream;
10.do({ Post << Char.tab << r.next << " " << q.next << Char.nl; });
)
::
Of course, there is no concise way to emphasis::define:: this stream without using Pseq.
note::
For reasons of efficiency, the implementation of code::embedInStream:: assumes that it is called from within a link::Classes/Routine::. Consequently, code::embedInStream:: should never be called from within the function that defines a link::Classes/FuncStream:: or a link::Classes/Pfunc:: (the pattern that creates FuncStreams).
::
subsection::Event Patterns
An link::Classes/Event:: is a link::Classes/Environment:: with a 'play' method. Typically, an Event consists of a collection of key/value pairs that determine what the play method actually does. The values may be any object including functions defined in terms of other named attributes. Changing those values can generate a succession of sounds sometimes called 'music'... The pattern link::Classes/Pbind:: connects specific patterns with specific names. Consult its help page for details.
subsection::Playing Event Patterns
The link::#-play:: method does not return the pattern itself. Instead, it returns the link::Classes/EventStreamPlayer:: object that actually runs the pattern. Control instructions -- stop, pause, resume, play, reset -- should be addressed to the EventStreamPlayer. (The same pattern can play many times simultaneously, using different EventStreamPlayers.)
code::
p = Pbind(...);
p.play;
p.stop; // does not stop because p is not the EventStreamPlayer that is actually playing
p = Pbind(...).play;
p.stop; // DOES stop because p is the EventStreamPlayer
::
subsection::Recording Event Patterns
Patterns may be recorded in realtime or non-realtime. See the method link::#-record:: for realtime recording.
For non-realtime recording see the link::Classes/Score:: helpfile, especially "creating Score from a pattern." It can be tricky, because NRT recording launches a new server instance. That server instance is not aware of buffers or other resources loaded into the realtime server you might have been using for tests. The pattern is responsible for (re)loading any resources (buffers, effects etc.). link::Classes/Pfset:: or link::Classes/Pproto:: may be useful.
InstanceMethods::
method::play
argument::clock
The tempo clock that will run the pattern. If omitted, TempoClock.default is used.
argument::protoEvent
The event prototype that will be fed into the pattern stream on each iteration. If omitted, event.default is used.
argument::quant
see the link::Classes/Quant:: helpfile.
method::record
Opens a disk file for recording and plays the pattern into it.
argument::path
Disk location for the recorded file. If not given, a filename is generated for you and placed in the default recording directory: code::thisProcess.platform.recordingsDir::.
argument::headerFormat
File format, default "AIFF" - see link::Classes/SoundFile:: for supported header and sample formats.
argument::sampleFormat
Sample format, default "float".
argument::numChannels
Number of channels to recorde, default 2.
argument::dur
How long to run the pattern before stopping. If nil (default), the pattern will run until it finishes on its own; then recording stops. Or, use cmd-period to stop the recording. If a number is given, the pattern will run for that many beats and then stop (using link::Classes/Pfindur::), ending the recording as well.
argument::fadeTime
How many beats to allow after the last event before stopping the recording. Default = 0.2.
argument::clock
Which clock to use for play. Uses TempoClock.default if not otherwise specified.
argument::protoEvent
Which event prototype to use for play. Falls back to Event.default if not otherwise specified.
argument::server
Which server to play and record. Server.default if not otherwise specified.
argument::out
Output bus to hear the pattern while recording, default = 0.
Examples::
Below are brief examples for most of the classes derived from Pattern. These examples all rely on the patterns assigned to the Interpreter variable p, q, and r in the first block of code.
code::
s.boot;
(
SynthDef(\cfstring1, { arg i_out, freq = 360, gate = 1, pan, amp=0.1;
var out, eg, fc, osc, a, b, w;
fc = LinExp.kr(LFNoise1.kr(Rand(0.25, 0.4)), -1, 1, 500, 2000);
osc = Mix.fill(8, {LFSaw.ar(freq * [Rand(0.99, 1.01), Rand(0.99, 1.01)], 0, amp) }).distort * 0.2;
eg = EnvGen.kr(Env.asr(1, 1, 1), gate, doneAction:2);
out = eg * RLPF.ar(osc, fc, 0.1);
#a, b = out;
Out.ar(i_out, Mix.ar(PanAz.ar(4, [a, b], [pan, pan+0.3])));
}).add;
SynthDef("sinegrain2",
{ arg out=0, freq=440, sustain=0.05, pan;
var env;
env = EnvGen.kr(Env.perc(0.01, sustain, 0.3), doneAction:2);
Out.ar(out, Pan2.ar(SinOsc.ar(freq, 0, env), pan))
}).add;
p = Pbind(
[\degree, \dur], Pseq([[0, 0.1], [2, 0.1], [3, 0.1], [4, 0.1], [5, 0.8]], 1),
\amp, 0.05, \octave, 6, \instrument, \cfstring1, \mtranspose, 0);
q = Pbindf(p, \instrument, \default );
r = Pset(\freq, Pseq([500, 600, 700], 2), q);
)
::
subsection::EVENT PATTERNS - patterns that generate or require event streams
code::
// Pbind( ArrayOfPatternPairs )
p = Pbind(
[\degree, \dur], Pseq([[0, 0.1], [2, 0.1], [3, 0.1], [4, 0.1], [5, 0.8]], 1),
\amp, 0.05, \octave, 6, \instrument, \cfstring1, \mtranspose, 0);
p.play;
//Ppar(arrayOfPatterns, repeats) - play in parallel
Ppar([Pseq([p], 4), Pseq([Pbindf(q, \ctranspose, -24)], 5)]).play
//Ptpar(arrayOfTimePatternPairs, repeats) - play in parallel at different times
Ptpar([1, Pseq([p], 4), 0, Pseq([Pbindf(q, \ctranspose, -24)], 5)]).play
// Pbindf( pattern, ArrayOfNamePatternPairs )
q = Pbindf(p, \instrument, \default );
q.play;
//Pfset(function, pattern)
// function constructs an event that is passed to the pattern.asStream
Pfset({ ~freq = Pseq([500, 600, 700], 2).asStream }, q).play;
//Pset(name, valPattern, pattern)
// set one field of the event on an event by event basis (Pmul, Padd are similar)
Pset(\freq, Pseq([500, 600, 700], 2), q).play;
//Psetp(name, valPattern, pattern)
// set once for each iteration of the pattern (Pmulp, Paddp are similar)
r = Pset(\freq, Pseq([500, 600, 700], 2), q);
Psetp(\legato, Pseq([0.01, 1.1], inf), r).play;
//Psetpre(name, valPattern, pattern)
// set before passing the event to the pattern (Pmulpre, Paddpre are similar)
r = Psetpre(\freq, Pseq([500, 600, 700], 2), q);
Psetp(\legato, Pseq([0.01, 1.1], inf), r).play;
//Pstretch(valPattern, pattern)
// stretches durations after
r = Psetpre(\freq, Pseq([500, 600, 700], 2), q);
Pstretch(Pn(Env([0.5, 2, 0.5], [10, 10])), Pn(r)).play;
Pset(\stretch, Pn(Env([0.5, 2, 0.5], [10, 10]) ), Pn(r)).play
//Pstretchp(valPattern, pattern)
// stretches durations after
r = Psetpre(\freq, Pseq([500, 600, 700], 2), q);
Pstretchp(Pn(Env([0.5, 2, 0.5], [10, 10])), r).play;
// Pfindur( duration, pattern ) - play pattern for duration
Pfindur(2, Pn(q, inf)).play;
// PfadeIn( pattern, fadeTime, holdTime, tolerance )
PfadeIn(Pn(q), 3, 0).play(quant: 0);
// PfadeOut( pattern, fadeTime, holdTime, tolerance )
PfadeOut(Pn(q), 3, 0).play(quant: 0);
// Psync( pattern, quantization, dur, tolerance )
// pattern is played for dur seconds (within tolerance), then a rest is played so the next pattern
Pn(Psync(
Pbind(\dur, Pwhite(0.2, 0.5).round(0.2),
\db, Pseq([-10, -15, -15, -15, -15, -15, -30])
), 2, 3
)).play
//Plag(duration, pattern)
Ppar([Plag(1.2, Pn(p, 4)), Pn(Pbindf(q, \ctranspose, -24), 5)]).play
::
subsection::GENERAL PATTERNS that work with both event and value streams
code::
//Ptrace(pattern, key, printStream) - print the contents of a pattern
r = Psetpre(\freq, Pseq([500, 600, 700], 2), q);
Ptrace(r).play;
Ptrace(r, \freq).play;
(
{ var printStream;
printStream = CollStream.new;
Pseq([Ptrace(r, \freq, printStream), Pfunc({printStream.collection.dump; nil }) ]).play;
}.value;
)
//Pseed(seed, pattern) - set the seed of the random number generator
// to force repetion of pseudo-random patterns
Pn(Pseed(44, Pbindf(q, \ctranspose, Pbrown(-3.0, 3.0, 10) ) ) ).play;
//Proutine(function) - on exit, the function must return the last value returned by yield
// (otherwise, the pattern cannot be reliably manipulated by other patterns)
Proutine({ arg inval;
inval = p.embedInStream(inval);
inval = Event.silent(4).yield;
inval = q.embedInStream(inval);
inval = r.embedInStream(inval);
inval;
}).play
//Pfunc(function) - the function should not have calls to embedInStream, use Proutine instead.
Pn(Pbindf(q, \legato, Pfunc({ arg inval; if (inval.at(\degree)== 5) {4} {0.2}; })) ).play
// the following patterns control the sequencing and repetition of other patterns
//Pseq(arrayOfPatterns, repeats) - play as a sequence
Pseq([Pseq([p], 4), Pseq([Pbindf(q, \ctranspose, -24)], 5)]).play
//Pser(arrayOfPatterns, num) - play num patterns from the arrayOfPatterns
Pser([p, q, r], 5).play
//Place(arrayOfPatterns, repeats) - similar to Pseq
// but array elements that are themselves arrays are iterated
// embedding the first element on the first repetition, second on the second, etc
Place([[p, q, r], q, r], 5).play
// Pn( pattern, patternRepetitions ) - repeat the pattern n times
Pn(p, 2).play;
// Pfin( eventcount, pattern ) - play n events from the pattern
Pfin(12, Pn(p, inf)).play;
// Pstutter( eventRepetitions, pattern ) - repeat each event from the pattern n times
Pstutter(4, q).play
//Pwhile(function, pattern)
Pwhile({coin(0.5).postln;}, q).play
// Pswitch( patternList, selectPattern ) - when a pattern ends, switch according to select
Pswitch([p, q, r], Pwhite(0, 100)).play
// Pswitch1( patternList, selectPattern ) - on each event switch according to select
Pn(Pswitch1([p, q, r], Pwhite(0, 2))).play
// Prand( patternList, repeats ) - random selection from list
Prand([p, q, r], inf).play
// Pxrand( patternList, repeats ) - random selection from list without repeats
Pxrand([p, q, r], inf).play
// Pwrand( patternList, weights, repeats ) - weighted random selection from list
Pwrand([p, q, r], #[1, 3, 5].normalizeSum, inf).play
// Pwalk( patternList, stepPattern, directionPattern ) - walk through a list of patterns
Pwalk([p, q, r], 1, Pseq([-1, 1], inf)).play
// Pslide(list, repeats, length, step, start)
Pbind(\degree, Pslide(#[1, 2, 3, 4, 5], inf, 3, 1, 0), \dur, 0.2).play
// Pshuf( patternList, repeats ) - random selection from list
Pn(Pshuf([p, q, r, r, p])).play
// Ptuple(list, repeats)
Pbind(\degree, Ptuple([Pwhite(1, -6), Pbrown(8, 15, 2)]),
\dur, Pfunc({ arg ev; ev.at(\degree).last/80 round: 0.1}),
\db, Pfunc({ if (coin(0.8)) {-25} {-20} })
).play
// the following patterns can alter the values returned by other patterns
//Pcollect(function, pattern)
Pcollect({ arg inval; inval.use({ ~freq = 1000.rand }); inval}, q).play
//Pselect(function, pattern)
Pselect({ arg inval; inval.at(\degree) != 0 }, q).play(quant: 0)
//Preject(function, pattern)
Preject({ arg inval; inval.at(\degree) != 0 }, q).play(quant: 0)
//Ppatmod(pattern, function, repeats) -
// function receives the current pattern as an argument and returns the next pattern to be played
Ppatmod(p, { arg oldPat; [p, q, r].choose }, inf).play
::
subsection::VALUE PATTERNS: these patterns define or act on streams of numbers
code::
// Env as a pattern
Pbindf(Pn(q, inf), \ctranspose, Pn(Env.linen(3, 0, 0.3, 20), inf) ).play;
// Pwhite(lo, hi, length)
Pbindf(Pn(q, inf), \ctranspose, Pwhite(-3.0, 3.0) ).play;
// Pbrown(lo, hi, step, length)
Pbindf(Pn(q, inf), \ctranspose, Pbrown(-3.0, 3.0, 2) ).play;
// Pseries(start, step, length)
Pbindf(Pn(q, inf), \ctranspose, Pseries(0, 0.1, 10) ).play;
// Pgeom(start, step, length)
Pbindf(Pn(q, inf), \ctranspose, Pgeom(1, 1.2, 20) ).play;
// Pwrap(pattern, lo, hi)
Pbind(\note, Pwrap(Pwhite(0, 128), 10, 20).round(2), \dur, 0.05).play;
// PdegreeToKey(pattern, scale, stepsPerOctave)
// this reimplements part of pitchEvent (see Event)
Pbindf(Pn(q, inf), \note, PdegreeToKey(Pbrown(-8, 8, 2), [0, 2, 4, 5, 7, 9, 11]) ).play;
// Prewrite(pattern, dict, levels) - see help page for details.
// (notice use of Env to define a chord progression of sorts...
Pbind(\degree,
Prewrite(0, ( 0: #[2, 0],
1: #[0, 0, 1],
2: #[1, 0, 1]
), 4
) + Pn(Env([4, 0, 1, 4, 3, 4], [6.4, 6.4, 6.4, 6.4, 6.4], 'step')),
\dur, 0.2).play
// PdurStutter( repetitionPattern, patternOfDurations ) -
Pbindf(Pn(q), \dur, PdurStutter(
Pseq(#[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 5, 7, 15], inf),
Pseq(#[0.5], inf)
)
).play;
// Pstep2add( pat1, pat2 )
// Pstep3add( pat1, pat2, pat3 )
// PstepNadd(pat1, pat2, ...)
// PstepNfunc(function, patternArray )
// combine multiple patterns with depth first traversal
Pbind(
\octave, 4,
\degree, PstepNadd(
Pseq([1, 2, 3]),
Pseq([0, -2, [1, 3], -5]),
Pshuf([1, 0, 3, 0], 2)
),
\dur, PstepNadd(
Pseq([1, 0, 0, 1], 2),
Pshuf([1, 1, 2, 1], 2)
).loop * (1/8),
\legato, Pn(Pshuf([0.2, 0.2, 0.2, 0.5, 0.5, 1.6, 1.4], 4), inf),
\scale, #[0, 1, 3, 4, 5, 7, 8]
).play;
::
|