This file is indexed.

/usr/share/SuperCollider/HelpSource/Classes/LFGauss.schelp is in supercollider-common 1:3.6.3~repack-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
class:: LFGauss
summary:: Gaussian function oscillator
categories:: UGens>Generators>Deterministic

description::
A non-band-limited gaussian function oscillator. Output ranges from strong::minval:: to 1.

LFGauss implements the formula:
code::
f(x) = exp(squared(x - iphase) / (-2.0 * squared(width)))
::
where x is to vary in the range -1 to 1 over the period dur. strong::minval:: is the initial value at -1.

classmethods::
method:: ar, kr

argument:: duration
duration of one full cycle ( for strong::freq:: input: strong::dur = 1 / freq:: )
argument:: width
relative width of the bell. Best to keep below 0.25 when used as envelope. (default: 0.1)
argument:: iphase
initial offset (default: 0)
argument:: loop
if loop is > 0, UGen oscillates. Otherwise it calls doneAction after one cycle (default: 1)
argument:: doneAction
doneAction, which is evaluated after cycle completes (2 frees the synth, default: 0).
See link::Reference/UGen-doneActions:: for more detail.

examples::

subsection:: Some plots

code::
s.boot ;

// a 0.1 second grain
{ LFGauss.ar(0.1, 0.12) }.plot(0.1);

// shifting left
{ LFGauss.ar(0.1, 0.12, -1, loop: 0) }.plot(0.1);

// moving further away from the center
{ LFGauss.ar(0.1, 0.12, 2) }.plot(0.2);

// several grains
{ LFGauss.ar(0.065, 0.12, 0, loop: 1) }.plot(0.3);
::

subsection:: Some calculations

assuming iphase = 0:

strong::minval:: for a given width:
code::minval = exp(-1.0 / (2.0 * squared(width)))::

strong::width:: for a given minval:
code::width = sqrt(-1.0 / log(minval))::

strong::width at half maximum (0.5):::
code::(2 * sqrt(2 * log(2)) * width) = ca. 2.355 * width::

code::
// minval for a width of 0.1:
(exp(1 / (-2.0 * squared(0.1)))) // 2e-22

// maximum width for a beginning at -60dB:
// we want the beginning small enough to avoid clicks
sqrt(-1 / ( 2 * log(-60.dbamp))) // 0.269

// minval for width of 0.25
(exp(1 / (-2.0 * squared(0.25)))).ampdb // -70dB

// maximum is always 1:
{ LFGauss.ar(0.1, XLine.kr(1, 0.03, 1), 0, loop: 1) }.plot(1);

// a gauss curve in sclang:
(0..1000).normalize(-1, 1).collect(_.gaussCurve(1, 0, 0.1)).plot;


// rescale the function to the range 0..1
(
{
var width = XLine.kr(0.04, 1.0, 1);
var min = (exp(1.0 / (-2.0 * squared(width))));
var gauss = LFGauss.ar(0.1, width, loop: 1);
gauss.linlin(min, 1, 0, 1);
}.plot(1)
);

// range does the same implicitly
(
{
var width = XLine.kr(0.04, 1.0, 1);
LFGauss.ar(0.1, width, loop: 1).range(0, 1);
}.plot(1)
);
::

subsection:: Sound examples
code::
// modulating duration
{ LFGauss.ar(XLine.kr(0.1, 0.001, 10), 0.03) * 0.2 }.play;

// modulating width, freq 60 Hz
{ LFGauss.ar(1/60, XLine.kr(0.1, 0.001, 10)) * 0.2 }.play;

// modulating both: x position is frequency, y is width factor.
// note the artefacts due to alisasing at high frequencies
{ LFGauss.ar(MouseX.kr(1/8000, 0.1, 1), MouseY.kr(0.001, 0.1, 1)) * 0.1 }.play;

// LFGauss as amplitude modulator
{ LFGauss.ar(MouseX.kr(1, 0.001, 1), 0.1) * SinOsc.ar(1000) * 0.1 }.play;

// modulate iphase
{ LFGauss.ar(0.001, 0.2, [0, MouseX.kr(-1, 1)]).sum * 0.2 }.scope;

// for very small width we are "approaching" a dirac function
{ LFGauss.ar(0.01, SampleDur.ir * MouseX.kr(10, 3000, 1)) * 0.2 }.play;

// dur and width can be modulated at audio rate
(
{ 	var dur = SinOsc.ar(MouseX.kr(2, 1000, 1) * [1, 1.1]).range(0.0006, 0.01);
	var width = SinOsc.ar(0.5 * [1, 1.1]).range(0.01, 0.3);
	LFGauss.ar(dur, width) * 0.2
}.play
);


// several frequecies and widths combined
(
{
	var mod = LFGauss.ar(MouseX.kr(1, 0.07, 1), 1 * (MouseY.kr(1, 3) ** (-1..-6)));
	var carr = SinOsc.ar(200 * (1.3 ** (0..5)));
	(carr * mod).sum * 0.1
}.play;
)

// test spectrum
(
{
	var son = LeakDC.ar(LFGauss.ar(0.005, 0.2));
	BPF.ar(son * 3, MouseX.kr(60, 2000, 1), 0.05)
}.play;
)
::

subsection:: Gabor Grain
code::
(
var freq = 1000;
var ncycles = 10;
var width = 0.25;
var dur = ncycles / freq;
{

	var env = LFGauss.ar(dur, width, loop: 0, doneAction: 2);
	var son = FSinOsc.ar(freq, 0.5pi, env);
	son
}.plot(dur);
)


(
SynthDef(\gabor, { |out, i_freq = 440, i_sustain = 1, i_pan = 1, i_amp = 0.1, i_width = 0.25 |
	var env = LFGauss.ar(i_sustain, i_width, loop: 0, doneAction: 2);
	var son = FSinOsc.ar(i_freq, 0.5pi, env);
	OffsetOut.ar(out, Pan2.ar(son, i_pan, i_amp));

}).add;
)

// modulating various parameters
(
Pdef(\x,
	Pbind(
		\instrument, \gabor,
		\freq, Pbrown(step:0.01).linexp(0, 1, 100, 14000),
		\dur, Pbrown().linexp(0, 1, 0.004, 0.02),
		\legato, Pbrown(1, 3, 0.1, inf),
		\pan, Pwhite() * Pbrown()
	)
).play
)

// modulating width only
(
Pdef(\x,
	Pbind(
		\instrument, \gabor,
		\freq, 1000,
		\dur, 0.01,
		\width, Pseg(Pseq([0.25, 0.002], inf), 10, \exp),
		\legato, 2
	)
).play
)

// compare with sine grain.
(
SynthDef(\gabor, { |out, i_freq = 440, i_sustain = 1, i_pan = 1, i_amp = 0.1, i_width=0.25 |
	var env = EnvGen.ar(Env.sine(i_sustain * i_width), doneAction: 2);
	var son = FSinOsc.ar(i_freq, 0.5pi, env);
	OffsetOut.ar(out, Pan2.ar(son, i_pan, i_amp));

}).add;
)
::