/usr/share/SuperCollider/HelpSource/Classes/Function.schelp is in supercollider-common 1:3.6.3~repack-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 | class::Function
summary::Implements a function
categories::Core>Kernel
description::
A Function is a reference to a FunctionDef and its defining context Frame. When a FunctionDef is encountered in your code it is pushed on the stack as a Function. A Function can be evaluated by using the 'value' method. See the Functions help file for a basic introduction.
Because it inherits from AbstractFunction, Functions respond to math operations by creating a new Function.
code::
// example
(
var a, b, c;
a = { [100, 200, 300].choose }; // a Function
b = { 10.rand + 1 }; // another Function
c = a + b; // c is a Function.
c.value.postln; // evaluate c and print the result
)
::
See AbstractFunction for function composition examples.
Because Functions are such an important concept, here some examples from related programming languages with functions as first class objects:
code::
// returning the first argument itself:
{ |x| x }.value(1) // SuperCollider
[:x | x ] value: 1 // Smalltalk
((lambda (x) x) 1) // Lisp
::
classMethods::
private::new
instancemethods::
subsection::Access
method::def
Get the definition ( FunctionDef ) of the Function.
method::isClosed
returns true if the function is closed, i.e. has no external references and can thus be converted to a compile string safely.
subsection::Evaluation
method::value
Evaluates the FunctionDef referred to by the Function. The Function is passed the args given.
code::
{ |a, b| (a * b).postln }.value(3, 10);
{ arg a, b; (a * b).postln }.value(3, 10); // different way of expressing the same
::
method::valueArray
Evaluates the FunctionDef referred to by the Function. If the last argument is an Array or List, then it is unpacked and appended to the other arguments (if any) to the Function. If the last argument is not an Array or List then this is the same as the 'value' method.
code::
{ |a, b, c| ((a * b) + c).postln }.valueArray([3, 10, 7]);
{ |a, b, c, d| [a, b, c, d].postln }.valueArray([1, 2, 3]);
{ |a, b, c, d| [a, b, c, d].postln }.valueArray(9, [1, 2, 3]);
{ |a, b, c, d| [a, b, c, d].postln }.valueArray(9, 10, [1, 2, 3]);
::
A common syntactic shortcut:
code::
{ |a, b, c| ((a * b) + c).postln }.value(*[3, 10, 7]);
::
method::valueEnvir
As value above. Unsupplied argument names are looked up in the current Environment.
code::
(
Environment.use({
~a = 3;
~b = 10;
{ |a, b| (a * b).postln }.valueEnvir;
});
)
::
method::valueArrayEnvir
Evaluates the FunctionDef referred to by the Function. If the last argument is an Array or List, then it is unpacked and appended to the other arguments (if any) to the Function. If the last argument is not an Array or List then this is the same as the 'value' method. Unsupplied argument names are looked up in the current Environment.
method::valueWithEnvir
Evaluate the function, using arguments from the supplied environment
This is slightly faster than valueEnvir and does not require replacing the currentEnvironment
code::
(
e = Environment.make({ ~a = 3; ~b = 10 });
{ |a, b| (a * b) }.valueWithEnvir(e);
)
::
method::functionPerformList
For Function, this behaves the same as valueArray(arglist). It is used where Functions and other objects should behave differently to value, such as in the objecr prototyping implementation of Environment.
method::performWithEnvir
code::
a = { |a, b, c| postf("% plus % plus % is %\n", a, b, c, a + b + c); "" };
a.performWithEnvir(\value, (a: 1, c: 3, d: 4, b: 2));
::
argument::selector
A Symbol representing a method selector.
argument::envir
The remaining arguments derived from the environment and passed as arguments to the method named by the selector.
method::performKeyValuePairs
code::
a = { |a, b, c| postf("% plus % plus % is %\n", a, b, c, a + b + c); "" };
a.performKeyValuePairs(\value, [\a, 1, \b, 2, \c, 3, \d, 4]);
::
argument::selector
A Symbol representing a method selector.
argument::pairs
Array or List with key-value pairs.
method::loop
Repeat this function. Useful with Task and Clocks.
code::
t = Task({ { "I'm loopy".postln; 1.wait;}.loop });
t.start;
t.stop;
::
method::defer
Delay the evaluation of this Function by code::delta:: in seconds on AppClock.
This is equivalent to code::AppClock.sched(0, function):: unless code::delta:: is code::nil::. In that case the function is only scheduled if current code is not running on AppClock, otherwise the function is evaluated immediately.
code::
{ "2 seconds have passed.".postln; }.defer(2);
(
{ "chicken".postln }.defer(0); // schedules on the AppClock
{ "egg".postln }.defer // evaluates immediately
)
(
fork { // schedules on a TempoClock
{ "chicken".postln }.defer // schedules on the AppClock
};
{ "egg".postln }.defer // evaluates immediately
)
::
method::dup
Return an Array consisting of the results of n evaluations of this Function.
code::
x = { 4.rand; }.dup(4);
x.postln;
::
method::!
equivalent to dup(n)
code::
x = { 4.rand } ! 4;
x.postln;
::
method::sum
return the sum of n values produced.
code::
{ 4.rand }.sum(8);
::
method::choose
evaluates the function. This makes it polymorphic to SequenceableCollection, Bag and Set.
code::
[{ 100.rand }, [20, 30, 40]].collect(_.choose);
::
method::bench
Returns the amount of time this function takes to evaluate. print is a boolean indicating whether the result is posted. The default is true.
code::
{ 1000000.do({ 1.0.rand }); }.bench;
::
method::fork
Returns a Routine using the receiver as it's function, and plays it in a TempoClock.
code::
{ 4.do({ "Threadin...".postln; 1.wait;}) }.fork;
::
method::forkIfNeeded
If needed, creates a new Routine to evaluate the function in, if the message is called within a routine already, it simply evaluates it.
code::
f = { 4.do({ "Threadin...".postln; 1.wait;}) };
f.forkIfNeeded;
{ "we are now in a routine".postln; 1.wait; f.forkIfNeeded }.fork;
::
method::block
Break from a loop. Calls the receiver with an argument which is a function that returns from the method block. To exit the loop, call .value on the function passed in. You can pass a value to this function and that value will be returned from the block method.
code::
block {|break|
100.do {|i|
i.postln;
if (i == 7) { break.value(999) }
};
}
::
method::thunk
Return a Thunk, which is an unevaluated value that can be used in calculations
code::
x = thunk { 4.rand };
x.value;
x.value;
::
method::flop
Return a function that, when evaluated with nested arguments, does multichannel expansion by evaluting the receiver function for each channel. A flopped function responds like the "map" function in languages like Lisp.
code::
f = { |a, b| if(a > 0) { a + b } { -inf } }.flop;
f.value([-1, 2, 1, -3.0], [10, 1000]);
f.value(2, 3);
::
method::envirFlop
like flop, but implements an environment argument passing (valueEnvir).
Less efficient in generation than flop, but not a big difference in evaluation.
code::
f = { |a| if(a > 0) { a + 1 } { -inf } }.envirFlop;
e = (a: [20, 40]);
e.use { f.value }
::
method::inEnvir
returns an "environment-safe" function. See Environment for more details.
code::
// prints nil because ~a is read from topEnvironment, not e
e = (a: "got it", f: { { ~a.postln }.defer(0.5) });
e.use { e.f };
// prints "got it" because { ~a.postln } is now bound to the e environment
e = (a: "got it", f: { { ~a.postln }.inEnvir.defer(0.5) });
e.use { e.f };
::
method::case
Function implements a case method which allows for conditional evaluation with multiple cases. Since the receiver represents the first case this can be simply written as pairs of test functions and corresponding functions to be evaluated if true. Unlike Object-switch, this is inlined and is therefore just as efficient as nested if statements.
code::
(
var i, x, z;
z = [0, 1, 1.1, 1.3, 1.5, 2];
i = z.choose;
x = case
{ i == 1 } { \no }
{ i == 1.1 } { \wrong }
{ i == 1.3 } { \wrong }
{ i == 1.5 } { \wrong }
{ i == 2 } { \wrong }
{ i == 0 } { \true };
x.postln;
)
::
method::matchItem
Interface shared with other classes that implements pattern matching. See also: matchItem.
Function.matchItem evaluates the function with the item as argument, expecting a Boolean as reply.
code::
{ |x| x > 5 }.matchItem(6); // true
::
performDegreeToKey(scaleDegree, stepsPerOctave = 12, accidental = 0)
use a function as a conversion from scale degree to note number. See also SequenceableCollection and Scale
code::
// a strange mapping
(
var f = {|degree, stepsPerOctave, acc|
(1.8 ** (degree % stepsPerOctave) + acc).postln
};
Pbind(
\scale, f,
\degree, Pseq([0, 1, 2b, 3s, 4s, 6, 14, [0, 2, 4], [1, 3, 6]], inf)
).play
)
::
subsection::Exception Handling
For the following two methods a return ^ inside of the receiver itself cannot be caught. Returns in methods called by the receiver are OK.
method::try
Executes the receiver. If an exception is thrown the catch function handler is executed with the error as an argument. handler itself can rethrow the error if desired.
method::protect
Executes the receiver. The cleanup function handler is executed with an error as an argument, or nil if there was no error. The error continues to be in effect.
subsection::Audio
method::play
This is probably the simplest way to get audio in SC3. It wraps the Function in a SynthDef (adding an Out ugen if needed), creates and starts a new Synth with it, and returns the Synth object. A Linen is also added to avoid clicks, which is configured to allow the resulting Synth to have its \gate argument set, or to respond to a release message. Args in the function become args in the resulting def.
code::
x = { |freq = 440| SinOsc.ar(freq, 0, 0.3) }.play; // this returns a Synth object;
x.set(\freq, 880); // note you can set the freq argument
x.defName; // the name of the resulting SynthDef (generated automatically in a cycle of 512)
x.release(4); // fadeout over 4 seconds
::
Many of the examples make use of the Function.play syntax.
Note that reusing such code in a SynthDef requires the addition of an Out ugen.
code::
// the following two lines produce equivalent results
{ SinOsc.ar(440, 0, 0.3) }.play(fadeTime: 0.0);
SynthDef(\help_FuncPlay, { Out.ar(0, SinOsc.ar(440, 0, 0.3))}).play;
::
Function.play is often more convienent than SynthDef.play, particularly for short examples and quick testing. The latter does have some additional options, such as lagtimes for controls, etc. Where reuse and maximum flexibility are of greater importance, SynthDef and its various methods are usually the better choice.
argument::target
a Node, Server, or Nil. A Server will be converted to the default group of that server. Nil will be converted to the default group of the default Server.
argument::outbus
the output bus to play the audio out on. This is equivalent to Out.ar(outbus, theoutput). The default is 0.
argument::fadeTime
a fadein time. The default is 0.02 seconds, which is just enough to avoid a click. This will also be the fadeout time for a release if you do not specify.
argument::addAction
see Synth for a list of valid addActions. The default is \addToHead.
argument::args
arguments
method::scope
As play above, and calls Server-scope to open a scope window in which to view the output.
code::
{ FSinOsc.ar(440, 0, 0.3) }.scope(1)
::
argument::numChannels
The number of channels to display in the scope window, starting from outbus. The default is 2.
argument::outbus
The output bus to play the audio out on. This is equivalent to Out.ar(outbus, theoutput). The default is 0.
argument::fadeTime
A fadein time. The default is 0.02 seconds, which is just enough to avoid a click.
argument::bufsize
The size of the buffer for the ScopeView. The default is 4096.
argument::zoom
A zoom value for the scope's X axis. Larger values show more. The default is 1.
method::plot
Calculates duration in seconds worth of the output of this function, and plots it in a GUI window. Unlike play and scope it will not work with explicit Out Ugens, so your function should return a UGen or an Array of them. The plot will be calculated in realtime.
code::
{ SinOsc.ar(440) }.plot(0.01, bounds: Window.screenBounds);
{ {|i| SinOsc.ar(1 + i)}.dup(7) }.plot(1);
::
argument::duration
The duration of the function to plot in seconds. The default is 0.01.
argument::server
The Server on which to calculate the plot. This must be running on your local machine, but does not need to be the internal server. If nil the default server will be used.
argument::bounds
An instance of Rect or Point indicating the bounds of the plot window.
argument::minval
the minimum value in the plot. Defaults to -1.0.
argument::maxval
the maximum value in the plot. Defaults to 1.0.
argument::parent
a window to place the plot in. If nil, one will be created for you.
subsection::Conversion
method::asSynthDef
Returns a SynthDef based on this Function, adding a Linen and an Out ugen if needed.
argument::rates
An Array of rates and lagtimes for the function's arguments (see SynthDef for more details).
argument::prependArgs
arguments
argument::outClass
The class of the output ugen as a symbol. The default is \Out.
argument::fadeTime
a fadein time. The default is 0.
argument::name
the name of the SynthDef
method::asDefName
Performs asSynthDef (see above), sends the resulting def to the local server and returns the SynthDefs name. This is asynchronous.
code::
x = { SinOsc.ar(440, 0, 0.3) }.asDefName; // this must complete first
y = Synth(x);
::
method::asRoutine
Returns a Routine using this as its func argument.
method::r
Returns a Routine using this as its func argument.
code::
a = r { 5.do { |i| i.rand.yield } };
a.nextN(8);
::
method::p
Returns a Prout using this as its func argument.
code::
a = p { 5.do { |i| i.rand.yield } };
x = a.asStream;
x.nextN(8);
::
This is useful for using ListComprehensions in Patterns:
code::
Pbind(\degree, p {:[x, y].postln, x<-(0..10), y<-(0..10), (x + y).isPrime }, \dur, 0.3).play;
::
examples::
subsection::Exception Handling
code::
// no exception handler
value { 8.zorg; \didnt_continue.postln; }
try { 8.zorg } {|error| error.postln; \cleanup.postln; }; \continued.postln;
protect { 8.zorg } {|error| error.postln; }; \didnt_continue.postln;
::
code::
try { 123.postln; 456.throw; 789.postln } {|error| [\catch, error].postln };
try { 123.postln; 789.postln } {|error| [\catch, error].postln };
try { 123.postln; nil.throw; 789.postln } {|error| [\catch, error].postln };
protect { 123.postln; 456.throw; 789.postln } {|error| [\onExit, error].postln };
protect { 123.postln; 789.postln } {|error| [\onExit, error].postln };
(
try {
protect { 123.postln; 456.throw; 789.postln } {|error| [\onExit, error].postln };
} {|error| [\catch, error].postln };
)
value { 123.postln; 456.throw; 789.postln }
value { 123.postln; Error("what happened?").throw; 789.postln }
::
code::
(
a = [\aaa, \bbb, \ccc, \ddd];
a[1].postln;
a[\x].postln;
a[2].postln;
)
(
try {
a = [\aaa, \bbb, \ccc, \ddd];
a[1].postln;
a[\x].postln;
a[2].postln;
} {|error| \caught.postln; error.dump }
)
(
try {
a = [\aaa, \bbb, \ccc, \ddd];
a[1].postln;
a[\x].postln;
a[2].postln;
} {|error| \caught.postln; error.dump; error.throw }
)
(
protect {
a = [\aaa, \bbb, \ccc, \ddd];
a[1].postln;
a[\x].postln;
a[2].postln;
} {|error| \caught.postln; error.dump }
)
::
|