This file is indexed.

/usr/share/SuperCollider/HelpSource/Classes/AmpCompA.schelp is in supercollider-common 1:3.6.3~repack-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
class:: AmpCompA
summary:: Basic psychoacoustic amplitude compensation (ANSI A-weighting curve).
related:: Classes/AmpComp
categories::  UGens>Analysis>Amplitude


Description::

Higher frequencies are normally perceived as louder, which AmpCompA
compensates. Following the measurings by Fletcher and Munson, the
ANSI standard describes a function for loudness vs. frequency.

Note that this curve is only valid for standardized amplitude.
footnote::
Function freq → dB,
derived from http://www.beis.de/Elektronik/AudioMeasure/WeightingFilters.html
and modified to map freq → amp.
code::
(
var k =  3.5041384e16;
var c1 = 424.31867740601;
var c2 = 11589.093052022;
var c3 = 544440.67046057;
var c4 = 148698928.24309;
f = {|f|
var r = squared(f);
var m1 = pow(r,4);
var n1 = squared(c1 + r);
var n2 = c2 + r;
var n3 = c3 + r;
var n4 = squared(c4 + r);
var level = k * m1 / (n1 * n2 * n3 * n4);
sqrt(level)
};
)
::

::


For a simpler but more flexible curve, see  link::Classes/AmpComp::

classmethods::

method::ar, kr, ir

argument::freq
Input frequency value. For freq == root, the output is rootAmp.

argument::root
Root freq relative to which the curve is calculated (usually lowest freq).

argument::minAmp
Amplitude at the minimum point of the curve (around 2512 Hz).

argument::rootAmp
Amplitude at the root frequency.

discussion::
Apart from code::freq::, the values are not modulatable

Examples::

code::

// compare a sine without compensation

{ SinOsc.ar(MouseX.kr(300, 15000, 1)) * 0.1 }.play;

// with one that uses amplitude compensation
(
{
	var freq;
	freq = MouseX.kr(300, 15000, 1);
	SinOsc.ar(freq) * 0.3 * AmpCompA.kr(freq)
}.play;
)


// adjust the minimum and root amp
// (in this way one can flatten out the curve for higher amplitudes)

(
{
	var freq;
	freq = MouseX.kr(300, 18000, 1);
	Formant.ar(300, freq, 20, 0.1) * AmpCompA.kr(freq, 300, 0.6, 0.3)
}.play;
)

// the curve:

{ AmpCompA.ar(Line.ar(48, 120, 1).midicps, 48.midicps) }.plot(1.0);

// freqs:

{ AmpCompA.ar(Line.ar(0, 20000, 1)) }.plot(1.0);

// compare with AmpComp (exponential decay)

{ AmpComp.ar(Line.ar(48, 120, 1).midicps, 48.midicps) }.plot(1.0);

// freqs:

{ AmpComp.ar(Line.ar(40, 20000, 1), 40) }.plot(1.0);



// amplitude compensation in frequency modulation (using Fletscher-Munson curve)
(
{
	var freq;
	freq = MouseX.kr(300, 15000, 1);
	freq = freq * SinOsc.ar(MouseY.kr(3, 200, 1), 0, 0.5, 1);
	SinOsc.ar(freq) * 0.1 * AmpCompA.ar(freq, 300)
}.play;
)

// amplitude compensation in frequency modulation (using AmpComp exponential decay)
(
{
	var freq;
	freq = MouseX.kr(300, 15000, 1);
	freq = freq * SinOsc.ar(MouseY.kr(3, 200, 1), 0, 0.5, 1);
	SinOsc.ar(freq) * 0.1 * AmpComp.ar(freq, 300)
}.play;
)


// without amplitude compensation
(
{
	var freq;
	freq = MouseX.kr(300, 15000, 1);
	freq = freq * SinOsc.ar(MouseY.kr(3, 200, 1), 0, 0.5, 1);
	SinOsc.ar(freq) * 0.1
}.play;
)





[1] Function freq -> dB,
	derived from http://www.beis.de/Elektronik/AudioMeasure/WeightingFilters.html
	and modified to map freq -> amp

(
var k =  3.5041384e16;
var c1 = 424.31867740601;
var c2 = 11589.093052022;
var c3 = 544440.67046057;
var c4 = 148698928.24309;
f = {|f|
  var r = squared(f);
  var m1 = pow(r,4);
  var n1 = squared(c1 + r);
  var n2 = c2 + r;
  var n3 = c3 + r;
  var n4 = squared(c4 + r);
  var level = k * m1 / (n1 * n2 * n3 * n4);
  sqrt(level)
 };
)

::