/usr/share/sugar/activities/Calculate.activity/functions.py is in sugar-calculate-activity 40-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 | # functions.py, functions available in Calculate,
# by Reinier Heeres <reinier@heeres.eu>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# Any variable or function in this module that does not start with an
# underscore ('_') will be available in Calculate through astparser.py.
# Docstrings will automatically be added to the help index for that function.
# However, instead of setting the docstring on a function in the simple way we
# add it after the function definition so that they can more easily be
# localized through gettext.
import types
import math
import random
from decimal import Decimal as _Decimal
from rational import Rational as _Rational
from gettext import gettext as _
# List of functions to allow translating the function names.
_FUNCTIONS = [
_('add'),
_('abs'),
_('acos'),
_('acosh'),
_('asin'),
_('asinh'),
_('atan'),
_('atanh'),
_('and'),
_('b10bin'),
_('ceil'),
_('cos'),
_('cosh'),
_('div'),
_('gcd'),
_('exp'),
_('factorial'),
_('fac'),
_('factorize'),
_('floor'),
_('inv'),
_('is_int'),
_('ln'),
_('log10'),
_('mul'),
_('or'),
_('rand_float'),
_('rand_int'),
_('round'),
_('sin'),
_('sinh'),
_('sinc'),
_('sqrt'),
_('sub'),
_('square'),
_('tan'),
_('tanh'),
_('xor'),
]
def _d(val):
'''Return a _Decimal object.'''
if isinstance(val, _Decimal):
return val
elif type(val) in (types.IntType, types.LongType):
return _Decimal(val)
elif type(val) == types.StringType:
d = _Decimal(val)
return d.normalize()
elif type(val) is types.FloatType or hasattr(val, '__float__'):
s = '%.18e' % float(val)
d = _Decimal(s)
return d.normalize()
else:
return None
class ClassValue:
"""
Class to share a value with the outside world.
This is required because plain floats / integers are not asigned by
reference, and can therefore not easily be changed in a different place.
"""
def __init__(self, val):
self.value = val
angle_scaling = ClassValue(1.0)
def _scale_angle(x):
return x * angle_scaling.value
def _inv_scale_angle(x):
return x / angle_scaling.value
def abs(x):
return math.fabs(x)
abs.__doc__ = _(
'abs(x), return absolute value of x, which means -x for x < 0')
def acos(x):
return _inv_scale_angle(math.acos(x))
acos.__doc__ = _(
'acos(x), return the arc cosine of x. This is the angle for which the cosine \
is x. Defined for -1 <= x < 1')
def acosh(x):
return math.acosh(x)
acosh.__doc__ = _(
'acosh(x), return the arc hyperbolic cosine of x. This is the value y for \
which the hyperbolic cosine equals x.')
def And(x, y):
return x & y
And.__doc__ = _(
'And(x, y), logical and. Returns True if x and y are True, else returns False')
def add(x, y):
if isinstance(x, _Decimal) or isinstance(y, _Decimal):
x = _d(x)
y = _d(y)
return x + y
add.__doc__ = _('add(x, y), return x + y')
def asin(x):
return _inv_scale_angle(math.asin(x))
asin.__doc__ = _(
'asin(x), return the arc sine of x. This is the angle for which the sine is x. \
Defined for -1 <= x <= 1')
def asinh(x):
return math.asinh(x)
asinh.__doc__ = _(
'asinh(x), return the arc hyperbolic sine of x. This is the value y for \
which the hyperbolic sine equals x.')
def atan(x):
return _inv_scale_angle(math.atan(x))
atan.__doc__ = _(
'atan(x), return the arc tangent of x. This is the angle for which the tangent \
is x. Defined for all x')
def atanh(x):
return math.atanh(x)
atanh.__doc__ = _(
'atanh(x), return the arc hyperbolic tangent of x. This is the value y for \
which the hyperbolic tangent equals x.')
def b10bin(x):
ret = 0
while x > 0:
ret <<= 1
y = x % 10
if y == 1:
ret += 1
elif y != 0:
raise ValueError(_('Number does not look binary in base 10'))
x /= 10
return ret
b10bin.__doc__ = _(
'b10bin(x), interpret a number written in base 10 as binary, e.g.: \
b10bin(10111) = 23,')
def ceil(x):
return math.ceil(float(x))
ceil.__doc__ = _('ceil(x), return the smallest integer larger than x.')
def cos(x):
return math.cos(_scale_angle(x))
cos.__doc__ = _(
'cos(x), return the cosine of x. This is the x-coordinate on the unit circle \
at the angle x')
def cosh(x):
return math.cosh(x)
cosh.__doc__ = _(
'cosh(x), return the hyperbolic cosine of x. Given by (exp(x) + exp(-x)) / 2')
def div(x, y):
if y == 0 or y == 0.0:
raise ValueError(_('Can not divide by zero'))
if is_int(x) and float(abs(x)) < 1e12 and \
is_int(y) and float(abs(y)) < 1e12:
return _Rational(x, y)
if isinstance(x, _Decimal) or isinstance(y, _Decimal):
x = _d(x)
y = _d(y)
return x / y
def _do_gcd(a, b):
if b == 0:
return a
else:
return _do_gcd(b, a % b)
def gcd( a, b):
TYPES = (types.IntType, types.LongType)
if type(a) not in TYPES or type(b) not in TYPES:
raise ValueError(_('Invalid argument'))
return _do_gcd(a, b)
gcd.__doc__ = _(
'gcd(a, b), determine the greatest common denominator of a and b. \
For example, the biggest factor that is shared by the numbers 15 and 18 is 3.')
def exp(x):
return math.exp(float(x))
exp.__doc__ = _('exp(x), return the natural exponent of x. Given by e^x')
def factorial(n):
if type(n) not in (types.IntType, types.LongType):
raise ValueError(_('Factorial only defined for integers'))
if n == 0:
return 1
n = long(n)
res = long(n)
while n > 2:
res *= n - 1
n -= 1
return res
factorial.__doc__ = _(
'factorial(n), return the factorial of n. \
Given by n * (n - 1) * (n - 2) * ...')
def fac(x):
return factorial(x)
fac.__doc__ = _(
'fac(x), return the factorial of x. Given by x * (x - 1) * (x - 2) * ...')
def factorize(x):
if not is_int(x):
return 0
factors = []
num = x
i = 2
while i <= math.sqrt(num):
if num % i == 0:
factors.append(i)
num /= i
i = 2
elif i == 2:
i += 1
else:
i += 2
factors.append(num)
if len(factors) == 1:
return "1 * %d" % x
else:
ret = "%d" % factors[0]
for fac in factors[1:]:
ret += " * %d" % fac
return ret
factorize.__doc__ = (
'factorize(x), determine the prime factors that together form x. \
For examples: 15 = 3 * 5.')
def floor(x):
return math.floor(float(x))
floor.__doc__ = _('floor(x), return the largest integer smaller than x.')
def inv(x):
return 1 / x
inv.__doc__ = _('inv(x), return the inverse of x, which is 1 / x')
def is_int(n):
if type(n) in (types.IntType, types.LongType):
return True
if isinstance(n, _Rational):
return (n.n == 0 or n.d == 1)
if not isinstance(n, _Decimal):
n = _d(n)
if n is None:
return False
(sign, d, e) = n.normalize().as_tuple()
return e >= 0
is_int.__doc__ = ('is_int(n), determine whether n is an integer.')
def ln(x):
if float(x) > 0:
return math.log(float(x))
else:
raise ValueError(_('Logarithm(x) only defined for x > 0'))
ln.__doc__ = _(
'ln(x), return the natural logarithm of x. This is the value for which the \
exponent exp() equals x. Defined for x >= 0.')
def log10(x):
if float(x) > 0:
return math.log(float(x))
else:
raise ValueError(_('Logarithm(x) only defined for x > 0'))
log10.__doc__ = _(
'log10(x), return the base 10 logarithm of x. This is the value y for which \
10^y equals x. Defined for x >= 0.')
def mod(x, y):
if is_int(y):
return x % y
else:
raise ValueError(_('Can only calculate x modulo <integer>'))
mod.__doc__ = _(
'mod(x, y), return the modulus of x with respect to y. This is the remainder \
after dividing x by y.')
def mul(x, y):
if isinstance(x, _Decimal) or isinstance(y, _Decimal):
x = _d(x)
y = _d(y)
return x * y
mul.__doc__ = _('mul(x, y), return x * y')
def negate(x):
return -x
negate.__doc__ = _('negate(x), return -x')
def Or(x, y):
return x | y
Or.__doc__ = _(
'Or(x, y), logical or. Returns True if x or y is True, else returns False')
def pow(x, y):
if is_int(y):
if is_int(x):
return long(x) ** int(y)
elif hasattr(x, '__pow__'):
return x ** y
else:
return float(x) ** int(y)
else:
if isinstance(x, _Decimal) or isinstance(y, _Decimal):
x = _d(x)
y = _d(y)
return _d(math.pow(float(x), float(y)))
pow.__doc__ = _('pow(x, y), return x to the power y (x**y)')
def rand_float():
return random.random()
rand_float.__doc__ = _(
'rand_float(), return a random floating point number between 0.0 and 1.0')
def rand_int(maxval=65535):
return random.randint(0, maxval)
rand_int.__doc__ = _(
'rand_int([<maxval>]), return a random integer between 0 and <maxval>. \
<maxval> is an optional argument and is set to 65535 by default.')
def round(x):
return math.round(float(x))
round.__doc__ = _('round(x), return the integer nearest to x.')
def shift_left(x, y):
if is_int(x) and is_int(y):
return _d(int(x) << int(y))
else:
raise ValueError(_('Bitwise operations only apply to integers'))
shift_left.__doc__ = _(
'shift_left(x, y), shift x by y bits to the left (multiply by 2 per bit)')
def shift_right(x, y):
if is_int(x) and is_int(y):
return _d(int(x) >> int(y))
else:
raise ValueError(_('Bitwise operations only apply to integers'))
shift_right.__doc__ = _(
'shift_right(x, y), shift x by y bits to the right (divide by 2 per bit)')
def sin(x):
return math.sin(_scale_angle(x))
sin.__doc__ = _(
'sin(x), return the sine of x. This is the y-coordinate on the unit circle at \
the angle x')
def sinh(x):
return math.sinh(x)
sinh.__doc__ = _(
'sinh(x), return the hyperbolic sine of x. Given by (exp(x) - exp(-x)) / 2')
def sinc(x):
if float(x) == 0.0:
return 1
return sin(x) / x
sinc.__doc__ = _(
'sinc(x), return the sinc of x. This is given by sin(x) / x.')
def sqrt(x):
return math.sqrt(float(x))
sqrt.__doc__ = _(
'sqrt(x), return the square root of x. This is the value for which the square \
equals x. Defined for x >= 0.')
def square(x):
return x**2
square.__doc__ = _('square(x), return x * x')
def sub(x, y):
if isinstance(x, _Decimal) or isinstance(y, _Decimal):
x = _d(x)
y = _d(y)
return x - y
sub.__doc__ = _('sub(x, y), return x - y')
def tan(x):
return math.tan(_scale_angle(x))
tan.__doc__ = _(
'tan(x), return the tangent of x. This is the slope of the line from the origin \
of the unit circle to the point on the unit circle defined by the angle x. Given \
by sin(x) / cos(x)')
def tanh(x):
return math.tanh(x)
tanh.__doc__ = _(
'tanh(x), return the hyperbolic tangent of x. Given by sinh(x) / cosh(x)')
def xor(x, y):
return x ^ y
xor.__doc__ = _(
'xor(x, y), logical xor. Returns True if either x is True (and y is False) \
or y is True (and x is False), else returns False')
|