/usr/include/seqan/statistics/statistics_base.h is in seqan-dev 1.3.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 | // ==========================================================================
// SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2010, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Knut Reinert or the FU Berlin nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
#ifndef SEQAN_STATISTICS_STATISTICS_BASE_H_
#define SEQAN_STATISTICS_STATISTICS_BASE_H_
namespace seqan
{
template <typename TAlgorithm, typename TFloat, typename TAlphabet>
void _numOccurrences(TFloat &nW, String<TAlphabet>& haystack, StringSet<String<TAlphabet> >& needle, TAlgorithm const &);
/*
.Function._zscore:
..summary:Auxiliary function to compute the z-score index for a set of patterns w.r.t. a set of text strings and a MarkovModel
..signature:template <TFloat,TStringSet,TAlphabet,TSpec,tTAlgorithm>_zscore(W,X,M, algorithmTag)
..param.TFloat:The type of the exploited arrays.
..param.TStringSet:A set of strings.
..param.TAlphabet:The type of the alphabet.
..param.TAlgorithm:The algorithm to exploit to compute the number of occurrences of patterns in the text strings.
..param.W:The set of patterns.
...type:Class.StringSet
..param.X:The text strings.
...type:Class.StringSet
..param.M:The @MarkovModel@ object.
...type:Class.MarkovModel
..returns:The z-score for W w.r.t. X and M.
..remarks:If the alphabet is Dna, then the suitable correction factors are computed.
..include:seqan/statistics.h
*/
template <typename TAlgorithm, typename TFloat, typename TStringSet, typename TAlphabet, typename TSpec>
TFloat _zscore(TStringSet W, TStringSet& X, MarkovModel<TAlphabet, TFloat, TSpec> & M, TAlgorithm const &)
{
TFloat z_score=0;
TFloat nW=0;
//compute occurrances
for(unsigned int i=0; i< length(X); i++)
{
String<TAlphabet> temp = getValueById(X, i);
_numOccurrences(nW, temp, W, TAlgorithm());
}
//compute expectation
TFloat E = expectation(W, X, M);
//std::cout<<"\nE:"<<E;
//compute variance
TFloat V = _computeVariance(W, X, M, E);
//std::cout<<"\nV:"<<V;
//compute z-score
z_score=(nW-E)/sqrt(V);
return z_score;
}
/*
.Function._numOccurrences:
..summary:Auxiliary function to compute the number of occurrences of a set of patterns in a set of text strings
..signature:template <tTAlgorithm,TFloat,TAlphabet,TStringSet>_numOccurrences(W,haystack,needle)
..param.TAlgorithm:The algorithm to exploit to compute the number of occurrences of patterns in the text strings.
..param.TFloat:The type of the exploited arrays.
..param.TAlphabet:The type of the alphabet.
..param.TStringSet:A set of strings.
..param.W:The set of patterns.
...type:Class.StringSet
..param.haystack:The text strings.
...type:Metafunction.Haystack
..param.needle:The sequence that is searched in the @Metafunction.Haystack@.
..include:seqan/statistics.h
*/
//Fixed to AhoCorasick in original code, reason???
template <typename TAlgorithm, typename TFloat, typename TAlphabet>
void _numOccurrences(TFloat &nW, String<TAlphabet> &haystack, StringSet<String<TAlphabet> > &needle, TAlgorithm const &)
{
SEQAN_CHECKPOINT;
Finder<String<TAlphabet> > finder(haystack);
Pattern<StringSet<String<TAlphabet> >, TAlgorithm> pattern(needle);
while (find(finder, pattern))
{
nW++;
}
}
/*
.Function._computeExpectation:
..summary:Auxiliary function to compute the expectation for a set of patterns w.r.t. a text string and a MarkovModel
..signature:template <TAlphabet,TFloat,TSpec,TStringSet>_computeExpectation(mm,W,n)
..param.TAlphabet:The type of the alphabet.
..param.TFloat:The type of the exploited arrays.
..param.TStringSet:A set of strings.
..param.mm:The @MarkovModel@ object.
...type:Class.MarkovModel
..param.W:The set of patterns.
...type:Class.StringSet
..param.n:The length of the string.
...type:nolink:unsigned int
..returns:The expectation for W w.r.t. a string and M.
..include:seqan/statistics.h
*/
template <typename TAlphabet, typename TFloat, typename TSpec>
TFloat _computeExpectation(MarkovModel<TAlphabet, TFloat, TSpec> &mm,
StringSet<String<TAlphabet> > &W, unsigned int n)
{
TFloat E=0;
for (unsigned int i=0; i<length(W); i++){
String<TAlphabet> temp = getValueById(W, i);
E += (n - length(temp) + 1)*mm.emittedProbability(temp);
}
return E;
}
/*
.Function._computevariance:
..summary:Auxiliary function to compute the variance for a set of patterns w.r.t. a set of text strings and a MarkovModel
..signature:template <TFloat,TStringSet,TAlphabet,TSpec>_computevariance(W,X,M)
..param.TFloat:The type of the exploited arrays.
..param.TStringSet:A set of strings.
..param.TAlphabet:The type of the alphabet.
..param.W:The set of patterns.
...type:nolink:TStringSet
..param.X:The text strings.
...type:nolink:TStringSet
..param.M:The @MarkovModel@ object.
...type:Class.MarkovModel
..returns:The variance for W w.r.t. X and M.
..remarks:If the alphabet is Dna, then the suitable correction factors are computed.
..include:seqan/statistics.h
*/
template <typename TFloat, typename TAlphabet, typename TSpec>
TFloat _computeVariance( StringSet<String<TAlphabet> > W, StringSet<String<TAlphabet> > &X, MarkovModel<TAlphabet, TFloat, TSpec> &M, TFloat &E)
{
//V=B+2C-E^2
TFloat V = E;
//C=D+A
//compute A and D
TFloat A = 0;
TFloat D = 0;
TFloat tmpA, eQPPPe, eQPPQPPe;
unsigned int sizeW=length(W);
unsigned int n;
String <TFloat> pStar;
resize(pStar, sizeW, 0);
Shape<TAlphabet, SimpleShape> orderShape;
resize(orderShape, M.order);
for(unsigned int j=0; j<sizeW; j++){
String<TAlphabet> string =getValueById(W, j);
int row = hash(orderShape,begin(string));
TFloat p = 1;
for(unsigned int i=1; i<length(string)-M.order+1; i++)
{
int column=hash(orderShape,begin(string)+i);
p*=value(M.transition,row,column);
row = column;
}
value(pStar, j) = p;
}
for(unsigned int z=0; z<length(X); z++){
for(unsigned int i=0; i<length(X); i++){
n = length(getValueById(X, i));
for(unsigned int j=0; j<sizeW; j++){
String<TAlphabet> Wj =getValueById(W, j);
TFloat q = (TFloat) (n-(2*length(Wj))+2);
for(unsigned int k=0; k<sizeW; k++){
tmpA=value(pStar,j)*value(pStar,k);
unsigned int jfirst, jlast, kfirst;
jfirst = hash(orderShape,begin(Wj));
jlast = hash(orderShape,end(Wj)-M.order);
kfirst = hash(orderShape,begin(getValueById(W, k)));
eQPPPe = value(M._qppp, jlast,kfirst);
eQPPQPPe = value(M._qppqpp, jlast,kfirst);
tmpA *= value(M.stationaryDistribution, jfirst) * ((q*(q+1)/2)* value(M.stationaryDistribution, kfirst) - (q-1)*eQPPPe - eQPPQPPe);
A += tmpA;
}
}
}
// Compute D
D+= _overlapExpectation(W,M,length(getValueById(X, z)));
}
//Compute Variance
V += (2*A) + (2*D) - std::pow((double) E, (int) 2);
//return V;
return V;
}
/*
.Function._overlapExpectation:
..summary:Auxiliary function necessary when correction factors have to be computed
..signature:template <TFloat,TStringSet,TAlphabet,TSpec>_overlapExpectation(W,X,M)
..param.TFloat:The type of the exploited arrays.
..param.TStringSet:A set of strings.
..param.TAlphabet:The type of the alphabet.
..param.W:The set of patterns.
...type:Class.StringSet
..param.X:The text strings.
...type:Class.StringSet
..param.M:The @MarkovModel@ object.
...type:Class.MarkovModel
..returns:A value of overlapping for the expectation.
..include:seqan/statistics.h
*/
template <typename TFloat, typename TAlphabet, typename TSpec>
TFloat _overlapExpectation(StringSet<String<TAlphabet> > W, MarkovModel<TAlphabet, TFloat, TSpec> &M, unsigned int n)
{
TFloat E_overlap = 0;
unsigned int sizeW = length(W);
for(unsigned int i=0; i<sizeW; i++)
{
String<TAlphabet> patt1 = getValueById(W, i);
unsigned int size1 = length(patt1);
for(unsigned int j=0; j<sizeW; j++)
{
String<TAlphabet> patt2 = getValueById(W, j);
unsigned int k=1;
unsigned int size2 = length(patt2);
if(size1>size2)
{
k = size1 - size2 + 1;
}
for(; k<size1; k++)
{
if(isEqual(infix(patt1,begin(patt1)+k,end(patt1)),infix(patt2,begin(patt2),begin(patt2)+k-1)))
{
String<TAlphabet> temp = infix(patt1, begin(patt1),begin(patt1)+k-1);
append(temp,infix(patt2,begin(patt2),end(patt2)));
E_overlap += (n - size1 + 1)*M.emittedProbability(temp);
}
}
}
}
return E_overlap;
}
/*
.Function._addReveseComplements:
..summary:Computes the reverse complements of a set of strings in input.
..signature:<TStringSet> void _addReveseComplements(needle)
..param.needle:The sequence to be computed the reverse complement.
..include:seqan/statistics.h
*/
template <typename TAlphabet>
void _addReveseComplements(StringSet<String<TAlphabet> > &stringSet)
{
unsigned int num= length(stringSet);
for(unsigned int i=0; i< num; i++){
DnaStringReverseComplement mycom(getValueById(stringSet, i));
appendValue(stringSet, mycom);
}
}
///////////////////////////////////////////////////////////////////////
// Extern functions to be provided by SeqAn
///////////////////////////////////////////////////////////////////////
typedef Dna TDnaAlphabet;
typedef String<TDnaAlphabet> TDnaSequence;
/**
.Function.zscore:
..summary:Computes the z-score index for a set of patterns w.r.t. a set of text strings and a MarkovModel
..signature:zscore(W, X, M, algorithmTag)
..param.W:The set of patterns.
...type:Class.StringSet
..param.X:The set of text strings.
...type:Class.StringSet
..param.M:The MarkovModel object.
...type:Class.MarkovModel
..param.algorithmTag:The algorithm to exploit to compute the number of occurrences of patterns in the text strings (see @Spec.AhoCorasick@ etc.).
..returns:The z-score for W w.r.t. X and M.
..remarks:If the alphabet is Dna, then the suitable correction factors are computed.
..include:seqan/statistics.h
*/
template <typename TAlgorithm, typename TFloat, typename TSpec, typename TStringSet, typename TAlphabet>
TFloat zscore(TStringSet W, TStringSet &X, MarkovModel<TAlphabet, TFloat, TSpec> &M, TAlgorithm const & algorithmTag)
{
ensureAuxMatrices(M);
return _zscore(W,X,M, algorithmTag);
}
template <typename TAlgorithm, typename TFloat, typename TSpec, typename TDnaSequence>
TFloat zscore(StringSet<TDnaSequence> W, StringSet<TDnaSequence> &X, MarkovModel<Dna, TFloat, TSpec> &M, TAlgorithm const &)
{
//add-reverse complements
_addReveseComplements(W);
ensureAuxMatrices(M);
TFloat z_score=0;
TFloat nW=0;
//compute occurrences
for(unsigned int i=0; i < length(X); i++)
{
String<Dna> temp = getValueById(X, i);
_numOccurrences(nW, temp, W, TAlgorithm());
}
//compute expectation
TFloat E = expectation(W, X, M);
//std::cout<<"\nE: "<<E<<"\n";
//compute variance
TFloat V = _computeVariance(W, X, M, E);
//std::cout<<"\nV: "<<V<<"\n";
//compute correction factor
TFloat correction = 0;
unsigned int n;
unsigned int sizeW= length(W);
for(unsigned int j=0; j<length(X); j++){
n = length(getValueById(X, j));
for(unsigned int i=0; i<sizeW; i++)
{
String<Dna> patt = getValueById(W, i);
DnaStringReverseComplement revpatt(patt);
String<Dna> revc= revpatt;
if (isEqual(patt,revc))
{
correction += (n-length(patt)+1)*M.emittedProbability(revc);
}
}
}
V+= correction;
//compute z-score
z_score=(nW-E)/sqrt(V);
//std::cout<<"\nnW: "<<nW<<"\n";
//std::cout<<"\nZ: "<<z_score<<"\n";
return z_score;
}
/**
.Function.variance:
..summary:Computes the variance for a set of patterns w.r.t. a set of text strings and a MarkovModel
..signature:variance(W,X,M)
..param.W:The set of patterns.
...type:Class.StringSet
..param.X:The set of text strings.
...type:Class.StringSet
..param.M:The MarkovModel object.
...type:Class.MarkovModel
..returns:The variance for W w.r.t. X and M.
..remarks:If the alphabet is Dna, then the suitable correction factors are computed.
..include:seqan/statistics.h
*/
template <typename TFloat, typename TAlphabet, typename TSpec>
TFloat variance(StringSet<String<TAlphabet> > &W, StringSet<String<TAlphabet> >& X, MarkovModel<TAlphabet, TFloat, TSpec> & M)
{
TFloat E = expectation(W, X, M);
return _computeVariance(W,X,M,E);
}
//Special case for DNA sequences, reverse complement sequences are added
template <typename TFloat, typename TSpec>
TFloat variance(StringSet<String<Dna> > W, StringSet<String<Dna> > &X, MarkovModel<Dna, TFloat, TSpec> & M)
{
//add-reverse complements
_addReveseComplements(W);
TFloat E = expectation(W, X, M);
TFloat var = _computeVariance(W,X,M,E);
//compute correction factor
TFloat correction = 0;
unsigned int n;
unsigned int sizeW= length(W);
for(unsigned int j=0; j<length(X); j++){
n = length(getValueById(X, j));
for(unsigned int i=0; i<sizeW; i++)
{
String<Dna> patt = getValueById(W, i);
DnaStringReverseComplement revpatt(patt);
String<Dna> revc= revpatt;
if (isEqual(patt,revc))
{
correction += (n-length(patt)+1)*M.emittedProbability(revc);
}
}
}
var+=correction;
return var;
}
/**
.Function.expectation:
..summary:Computes the expectation for a set of patterns w.r.t. a set of text strings and a MarkovModel
..signature:expectation(W,X,M)
..param.W:The set of patterns.
...type:Class.StringSet
..param.X:The set of text strings.
...type:Class.StringSet
..param.M:The MarkovModel object.
...type:Class.MarkovModel
..returns:The expectation for W w.r.t. X and M.
..include:seqan/statistics.h
*/
template <typename TAlphabet, typename TFloat, typename TSpec>
TFloat expectation(StringSet<String<TAlphabet> > & W, StringSet<String<TAlphabet> > &X, MarkovModel<TAlphabet, TFloat, TSpec> &M)
{
unsigned int n;
TFloat E = 0;
for(unsigned int i=0; i<length(X); i++){
n = length(getValueById(X, i));
E += _computeExpectation(M, W, n);
}
return E;
}
} // namespace seqan
#endif // #ifndef SEQAN_STATISTICS_STATISTICS_BASE_H_
|