This file is indexed.

/usr/include/seqan/statistics/statistics_base.h is in seqan-dev 1.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
// ==========================================================================
//                 SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2010, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//     * Neither the name of Knut Reinert or the FU Berlin nor the names of
//       its contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================

#ifndef SEQAN_STATISTICS_STATISTICS_BASE_H_
#define SEQAN_STATISTICS_STATISTICS_BASE_H_

namespace seqan
{

template <typename TAlgorithm, typename TFloat, typename TAlphabet>
void _numOccurrences(TFloat &nW, String<TAlphabet>& haystack, StringSet<String<TAlphabet> >& needle, TAlgorithm const &);

/*
.Function._zscore:
..summary:Auxiliary function to compute the z-score index for a set of patterns w.r.t. a set of text strings and a MarkovModel
..signature:template <TFloat,TStringSet,TAlphabet,TSpec,tTAlgorithm>_zscore(W,X,M, algorithmTag)
..param.TFloat:The type of the exploited arrays.
..param.TStringSet:A set of strings.
..param.TAlphabet:The type of the alphabet.
..param.TAlgorithm:The algorithm to exploit to compute the number of occurrences of patterns in the text strings.
..param.W:The set of patterns.
...type:Class.StringSet
..param.X:The text strings.
...type:Class.StringSet
..param.M:The @MarkovModel@ object.
...type:Class.MarkovModel
..returns:The z-score for W w.r.t. X and M.
..remarks:If the alphabet is Dna, then the suitable correction factors are computed.
..include:seqan/statistics.h
*/

template <typename TAlgorithm, typename TFloat,  typename TStringSet, typename TAlphabet, typename TSpec>
TFloat _zscore(TStringSet W,  TStringSet& X, MarkovModel<TAlphabet, TFloat, TSpec> & M, TAlgorithm const &)
{


	TFloat z_score=0;
	TFloat nW=0;
	//compute occurrances
	for(unsigned int i=0; i< length(X); i++)
	{
		String<TAlphabet> temp = getValueById(X, i);
		_numOccurrences(nW, temp, W, TAlgorithm());
	}

	//compute expectation
	TFloat E = expectation(W, X, M);
//std::cout<<"\nE:"<<E;
	//compute variance
	TFloat V = _computeVariance(W, X, M, E);
//std::cout<<"\nV:"<<V;
	//compute z-score
	z_score=(nW-E)/sqrt(V);

	return z_score;

}

/*
.Function._numOccurrences:
..summary:Auxiliary function to compute the number of occurrences of a set of patterns in a set of text strings
..signature:template <tTAlgorithm,TFloat,TAlphabet,TStringSet>_numOccurrences(W,haystack,needle)
..param.TAlgorithm:The algorithm to exploit to compute the number of occurrences of patterns in the text strings.
..param.TFloat:The type of the exploited arrays.
..param.TAlphabet:The type of the alphabet.
..param.TStringSet:A set of strings.
..param.W:The set of patterns.
...type:Class.StringSet
..param.haystack:The text strings.
...type:Metafunction.Haystack
..param.needle:The sequence that is searched in the @Metafunction.Haystack@.
..include:seqan/statistics.h
*/

//Fixed to  AhoCorasick in original code, reason???
template <typename TAlgorithm, typename TFloat, typename TAlphabet>
void _numOccurrences(TFloat &nW, String<TAlphabet> &haystack, StringSet<String<TAlphabet> > &needle, TAlgorithm const &)
{
	SEQAN_CHECKPOINT;
	Finder<String<TAlphabet> > finder(haystack);
	Pattern<StringSet<String<TAlphabet> >, TAlgorithm> pattern(needle);
	while (find(finder, pattern))
	{
		nW++;
	}
}


/*
.Function._computeExpectation:
..summary:Auxiliary function to compute the expectation for a set of patterns w.r.t. a text string  and a MarkovModel
..signature:template <TAlphabet,TFloat,TSpec,TStringSet>_computeExpectation(mm,W,n)
..param.TAlphabet:The type of the alphabet.
..param.TFloat:The type of the exploited arrays.
..param.TStringSet:A set of strings.
..param.mm:The @MarkovModel@ object.
...type:Class.MarkovModel
..param.W:The set of patterns.
...type:Class.StringSet
..param.n:The length of the string.
...type:nolink:unsigned int

..returns:The expectation for W w.r.t. a string and M.
..include:seqan/statistics.h
*/

template <typename TAlphabet, typename TFloat, typename TSpec>
TFloat _computeExpectation(MarkovModel<TAlphabet, TFloat, TSpec> &mm,
					 StringSet<String<TAlphabet> > &W, unsigned int n)
{
	TFloat E=0;
	for (unsigned int i=0; i<length(W); i++){
		String<TAlphabet> temp = getValueById(W, i);
		E += (n - length(temp) + 1)*mm.emittedProbability(temp);
	}
	return E;
}


/*
.Function._computevariance:
..summary:Auxiliary function to compute the variance for a set of patterns w.r.t. a set of text strings and a MarkovModel
..signature:template <TFloat,TStringSet,TAlphabet,TSpec>_computevariance(W,X,M)
..param.TFloat:The type of the exploited arrays.
..param.TStringSet:A set of strings.
..param.TAlphabet:The type of the alphabet.
..param.W:The set of patterns.
...type:nolink:TStringSet
..param.X:The text strings.
...type:nolink:TStringSet
..param.M:The @MarkovModel@ object.
...type:Class.MarkovModel
..returns:The variance for W w.r.t. X and M.
..remarks:If the alphabet is Dna, then the suitable correction factors are computed.
..include:seqan/statistics.h
*/

template <typename TFloat, typename TAlphabet, typename TSpec>
TFloat _computeVariance( StringSet<String<TAlphabet> > W,  StringSet<String<TAlphabet> > &X, MarkovModel<TAlphabet, TFloat, TSpec> &M, TFloat &E)
{
	//V=B+2C-E^2
	TFloat V = E;

	//C=D+A

	//compute A and D

	TFloat A = 0;
	TFloat D = 0;
	TFloat tmpA, eQPPPe, eQPPQPPe;
	unsigned int sizeW=length(W);
	unsigned int n;

	String <TFloat> pStar;
	resize(pStar, sizeW, 0);

	Shape<TAlphabet, SimpleShape> orderShape;
	resize(orderShape, M.order);

	for(unsigned int j=0; j<sizeW; j++){
		String<TAlphabet> string =getValueById(W, j);

		int row = hash(orderShape,begin(string));
		TFloat p = 1;
		for(unsigned int i=1; i<length(string)-M.order+1; i++)
		{
			int column=hash(orderShape,begin(string)+i);
			p*=value(M.transition,row,column);
			row = column;
		}
		value(pStar, j) = p;
	}



	for(unsigned int z=0; z<length(X); z++){

	  for(unsigned int i=0; i<length(X); i++){

	 	n = length(getValueById(X, i));

		 for(unsigned int j=0; j<sizeW; j++){

			String<TAlphabet> Wj =getValueById(W, j);

			TFloat q = (TFloat) (n-(2*length(Wj))+2);

			for(unsigned int k=0; k<sizeW; k++){

				tmpA=value(pStar,j)*value(pStar,k);

				unsigned int jfirst, jlast, kfirst;

				jfirst = hash(orderShape,begin(Wj));

				jlast = hash(orderShape,end(Wj)-M.order);

				kfirst = hash(orderShape,begin(getValueById(W, k)));

				eQPPPe = value(M._qppp, jlast,kfirst);

				eQPPQPPe = value(M._qppqpp, jlast,kfirst);

				tmpA  *= value(M.stationaryDistribution, jfirst) * ((q*(q+1)/2)* value(M.stationaryDistribution, kfirst) - (q-1)*eQPPPe - eQPPQPPe);

				A += tmpA;
			}
		 }
	  }

	  // Compute D
	  D+= _overlapExpectation(W,M,length(getValueById(X, z)));
	}




	//Compute Variance
	V += (2*A) + (2*D) -  std::pow((double) E, (int) 2);

	//return V;
	return V;
}


/*
.Function._overlapExpectation:
..summary:Auxiliary function necessary when correction factors have to be computed
..signature:template <TFloat,TStringSet,TAlphabet,TSpec>_overlapExpectation(W,X,M)
..param.TFloat:The type of the exploited arrays.
..param.TStringSet:A set of strings.
..param.TAlphabet:The type of the alphabet.
..param.W:The set of patterns.
...type:Class.StringSet
..param.X:The text strings.
...type:Class.StringSet
..param.M:The @MarkovModel@ object.
...type:Class.MarkovModel
..returns:A value of overlapping for the expectation.
..include:seqan/statistics.h
*/

template <typename TFloat, typename TAlphabet, typename TSpec>
TFloat _overlapExpectation(StringSet<String<TAlphabet> > W, MarkovModel<TAlphabet, TFloat, TSpec> &M, unsigned int n)
{
	TFloat E_overlap = 0;
	unsigned int sizeW = length(W);
	for(unsigned int i=0; i<sizeW; i++)
	{
		String<TAlphabet> patt1 = getValueById(W, i);
		unsigned int size1 = length(patt1);
		for(unsigned int j=0; j<sizeW; j++)
		{
			String<TAlphabet> patt2 = getValueById(W, j);
			unsigned int k=1;
			unsigned int size2 = length(patt2);
			if(size1>size2)
			{
				k = size1 - size2 + 1;
			}
			for(; k<size1; k++)
			{
				if(isEqual(infix(patt1,begin(patt1)+k,end(patt1)),infix(patt2,begin(patt2),begin(patt2)+k-1)))
				{
					String<TAlphabet> temp = infix(patt1, begin(patt1),begin(patt1)+k-1);
					append(temp,infix(patt2,begin(patt2),end(patt2)));
					E_overlap += (n - size1 + 1)*M.emittedProbability(temp);
				}
			}
		}
	}
	return E_overlap;
}

/*
.Function._addReveseComplements:
..summary:Computes the reverse complements of a set of strings in input.
..signature:<TStringSet> void _addReveseComplements(needle)
..param.needle:The sequence to be computed the reverse complement.
..include:seqan/statistics.h
*/

template <typename TAlphabet>
void _addReveseComplements(StringSet<String<TAlphabet> > &stringSet)
{
	unsigned int num= length(stringSet);

	for(unsigned int i=0; i< num; i++){
  	     DnaStringReverseComplement mycom(getValueById(stringSet, i));
		 appendValue(stringSet, mycom);
	}
}


///////////////////////////////////////////////////////////////////////
// Extern functions to be provided by SeqAn
///////////////////////////////////////////////////////////////////////

typedef Dna TDnaAlphabet;
typedef String<TDnaAlphabet> TDnaSequence;

/**
.Function.zscore:
..summary:Computes the z-score index for a set of patterns w.r.t. a set of text strings and a MarkovModel
..signature:zscore(W, X, M, algorithmTag)
..param.W:The set of patterns.
...type:Class.StringSet
..param.X:The set of text strings.
...type:Class.StringSet
..param.M:The MarkovModel object.
...type:Class.MarkovModel
..param.algorithmTag:The algorithm to exploit to compute the number of occurrences of patterns in the text strings (see @Spec.AhoCorasick@ etc.).
..returns:The z-score for W w.r.t. X and M.
..remarks:If the alphabet is Dna, then the suitable correction factors are computed.
..include:seqan/statistics.h
*/

template <typename TAlgorithm, typename TFloat, typename TSpec, typename TStringSet, typename TAlphabet>
TFloat zscore(TStringSet W,  TStringSet &X, MarkovModel<TAlphabet, TFloat, TSpec> &M, TAlgorithm const & algorithmTag)
{
	ensureAuxMatrices(M);
   	return _zscore(W,X,M, algorithmTag);
}

template <typename TAlgorithm, typename TFloat, typename TSpec, typename TDnaSequence>
TFloat zscore(StringSet<TDnaSequence> W,  StringSet<TDnaSequence> &X, MarkovModel<Dna, TFloat, TSpec> &M, TAlgorithm const &)
{
   //add-reverse complements
   _addReveseComplements(W);

	ensureAuxMatrices(M);

   TFloat z_score=0;
   TFloat nW=0;
   //compute occurrences
   for(unsigned int i=0; i < length(X); i++)
   {
		 String<Dna> temp = getValueById(X, i);
		_numOccurrences(nW, temp, W, TAlgorithm());
	}

	//compute expectation
	TFloat E = expectation(W, X, M);
	//std::cout<<"\nE: "<<E<<"\n";
	//compute variance
	TFloat V = _computeVariance(W, X, M, E);
	//std::cout<<"\nV: "<<V<<"\n";
	//compute correction factor
	TFloat correction = 0;

	unsigned int n;
	unsigned int sizeW= length(W);

	for(unsigned int j=0; j<length(X); j++){

	 	n = length(getValueById(X, j));

		for(unsigned int i=0; i<sizeW; i++)
		{
			String<Dna> patt = getValueById(W, i);
			DnaStringReverseComplement revpatt(patt);
			String<Dna> revc= revpatt;
			if (isEqual(patt,revc))
			{
				correction += (n-length(patt)+1)*M.emittedProbability(revc);
			}
		}
	}

	V+= correction;

	//compute z-score
	z_score=(nW-E)/sqrt(V);
	//std::cout<<"\nnW: "<<nW<<"\n";
	//std::cout<<"\nZ: "<<z_score<<"\n";
	return z_score;
}


/**
.Function.variance:
..summary:Computes the variance for a set of patterns w.r.t. a set of text strings and a MarkovModel
..signature:variance(W,X,M)
..param.W:The set of patterns.
...type:Class.StringSet
..param.X:The set of text strings.
...type:Class.StringSet
..param.M:The MarkovModel object.
...type:Class.MarkovModel
..returns:The variance for W w.r.t. X and M.
..remarks:If the alphabet is Dna, then the suitable correction factors are computed.
..include:seqan/statistics.h
*/

template <typename TFloat, typename TAlphabet, typename TSpec>
TFloat variance(StringSet<String<TAlphabet> > &W, StringSet<String<TAlphabet> >& X, MarkovModel<TAlphabet, TFloat, TSpec> & M)
{
   TFloat E = expectation(W, X, M);

   return _computeVariance(W,X,M,E);
}

//Special case for DNA sequences, reverse complement sequences are added
template <typename TFloat, typename TSpec>
TFloat variance(StringSet<String<Dna> > W, StringSet<String<Dna> > &X, MarkovModel<Dna, TFloat, TSpec> & M)
{

   //add-reverse complements
	_addReveseComplements(W);

	TFloat E = expectation(W, X, M);

	TFloat var =  _computeVariance(W,X,M,E);

	//compute correction factor
	TFloat correction = 0;

	unsigned int n;
	unsigned int sizeW= length(W);


   for(unsigned int j=0; j<length(X); j++){

	 	n = length(getValueById(X, j));

		for(unsigned int i=0; i<sizeW; i++)
		{
			String<Dna> patt = getValueById(W, i);
			DnaStringReverseComplement revpatt(patt);
			String<Dna> revc= revpatt;
			if (isEqual(patt,revc))
			{
				correction += (n-length(patt)+1)*M.emittedProbability(revc);
			}
		}
	}
	var+=correction;

  return var;
}

/**
.Function.expectation:
..summary:Computes the expectation for a set of patterns w.r.t. a set of text strings and a MarkovModel
..signature:expectation(W,X,M)
..param.W:The set of patterns.
...type:Class.StringSet
..param.X:The set of text strings.
...type:Class.StringSet
..param.M:The MarkovModel object.
...type:Class.MarkovModel
..returns:The expectation for W w.r.t. X and M.
..include:seqan/statistics.h
*/

template <typename TAlphabet, typename TFloat, typename TSpec>
TFloat expectation(StringSet<String<TAlphabet> > & W, StringSet<String<TAlphabet> > &X, MarkovModel<TAlphabet, TFloat, TSpec> &M)
{
	unsigned int n;
	TFloat E = 0;

	for(unsigned int i=0; i<length(X); i++){
	 	n = length(getValueById(X, i));
        E += _computeExpectation(M, W, n);
	}

    return E;
}

}  // namespace seqan

#endif  // #ifndef SEQAN_STATISTICS_STATISTICS_BASE_H_