/usr/share/pyshared/qm/executable.py is in qmtest 2.4.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 | ########################################################################
#
# File: executable.py
# Author: Mark Mitchell
# Date: 11/14/2002
#
# Contents:
# Executable, RedirectedExecutable
#
# Copyright (c) 2002, 2003 by CodeSourcery, LLC. All rights reserved.
#
########################################################################
########################################################################
# Imports
#######################################################################
import os
import qm.common
import signal
import string
import sys
import time
# The classes in this module are implemented differently depending on
# the operating system in use.
if sys.platform == "win32":
import msvcrt
import pywintypes
from threading import *
import win32api
import win32con
import win32event
import win32file
import win32pipe
import win32process
else:
import cPickle
import fcntl
import select
import qm.sigmask
########################################################################
# Classes
#######################################################################
class Executable(object):
"""An 'Executable' is a program that the operating system can run.
'Exectuable' (and classes derived from it) create child processes.
The 'Spawn' function creates child processes that execute
asynchronously. The 'Run' function creates child processes that
execute synchrounously, i.e,. the 'Run' function does not return
until the child process has completed its execution.
It is safe to reuse a particular 'Executable' instance (by calling
'Spawn' or 'Run' more than once), so long as the uses are not
interleaved."""
def Spawn(self, arguments=[], environment = None, dir = None,
path = None, exception_pipe = None):
"""Spawn the program.
'arguments' -- The sequence of arguments that should be passed
to the executable. The first argument provided in this
sequence will be 'argv[0]'; that is also the value used for
the path to the executable.
'environment' -- If not 'None', a dictionary giving the
environment that should be provided to the child.
'dir' -- If not 'None', the directory in which the child
should begin execution. If 'None', the child will execute in
the same directory as the parent.
'path' -- If not 'None', the path to the program to run. If
'None', 'arguments[0]' is used.
'exception_pipe' -- If not 'None', a pipe that the child can
use to communicate an exception to the parent. This pipe is
only used on UNIX systems. The write end of the pipe will be
closed by this function.
returns -- The PID of the child.
Before creating the child, the parent will call
'self._InitializeParent'. On UNIX systems, the child will
call 'self._InitializeChild' after 'fork', but before 'exec'.
On non-UNIX systems, 'self._InitializeChild' will never be
called.
After creating the child, 'self._HandleChild' is called in the
parent. This hook should be used to handle tasks that must be
performed after the child is running.
If the path to the program is absolute, or contains no
separator characters, it is not modified. Otherwise the path
to the program is relative, it is transformed into an absolute
path using 'dir' as the base, or the current directory if
'dir' is not set."""
# Remember the directory in which the execution will occur.
self.__dir = dir
# The path to the executable is the first argument, if not
# explicitly specified.
if not path:
path = arguments[0]
# Normalize the path name. At the conclusion of this
# processing, the path is either an absolute path, or contains
# no directory seperators.
if os.path.isabs(path):
# An absolute path.
pass
elif (os.sep in path or (os.altsep and os.altsep in path)):
# A relative path name, like "./program".
if dir:
path = os.path.normpath(os.path.join(dir, path))
if not os.path.isabs(path):
path = os.path.abspath(path)
else:
path = os.path.abspath(path)
else:
# A path with no directory separators. The program to
# execute will be found by searching the PATH environment
# variable.
pass
# Initialize the parent.
startupinfo = self._InitializeParent()
# Initialize self.__child so that if "fork" or "CreateProcess"
# throws an exception our caller can tell that there is no
# child process to kill.
self.__child = None
if sys.platform == "win32":
# Compute the command line. The Windows API uses a single
# string as the command line, rather than an array of
# arguments.
command_line = self.__CreateCommandLine(arguments)
# If the path is not absolute, then we need to search the
# PATH. Since CreateProcess only searches the PATH if its
# first argument is None, we clear path here.
if not os.path.isabs(path):
path = None
# Windows supports wide-characters in the environment, but
# the Win32 extensions to Python require that all of the
# entries in the environment be of the same type,
# i.e,. that either all of them be of type StringType or
# of type UnicodeType. Therefore, if we find any elements
# that are Unicode strings, convert all of them to Unicode
# strings.
if environment is not None:
# See if there any Unicode strings in the environment.
uses_unicode = 0
for (k, v) in environment.iteritems():
if (isinstance(k, unicode)
or isinstance(v, unicode)):
uses_unicode = 1
break
# If there are Unicode strings in the environment,
# convert all of the key-value pairs to Unicode.
if uses_unicode:
new_environment = {}
for (k, v) in environment.iteritems():
new_environment[unicode(k)] = unicode(v)
environment = new_environment
# Create the child process.
self.__child \
= win32process.CreateProcess(path,
command_line,
None,
None,
1,
0,
environment,
self.__dir,
startupinfo)[0]
else:
# Fork.
self.__child = os.fork()
if self.__child == 0:
try:
# Close the read end of the pipe.
if exception_pipe:
os.close(exception_pipe[0])
# Initialize the child.
self._InitializeChild()
# Exec the program.
if environment:
os.execvpe(path, arguments, environment)
else:
os.execvp(path, arguments)
except:
if exception_pipe:
# Get the exception information.
exc_info = sys.exc_info()
# Write it to the pipe. The traceback object
# cannot be pickled, unfortunately, so we
# cannot communicate that information.
cPickle.dump(exc_info[:2],
os.fdopen(exception_pipe[1], "w"),
1)
# Exit without running cleanups.
os._exit(1)
# This code should never be reached.
assert None
# Nothing will be written to the exception pipe in the parent.
if exception_pipe:
os.close(exception_pipe[1])
# Let the parent take any actions required after creating the
# child.
self._HandleChild()
return self.__child
def Run(self, arguments=[], environment = None, dir = None,
path = None):
"""Spawn the program and wait for it to finish.
'arguments' -- The sequence of arguments that should be passed
to the executable. The first argument provided in this
sequence will be 'argv[0]'.
'environment' -- If not 'None', a dictionary giving the
environment that should be provided to the child. If 'None',
the child will inherit the parents environment.
'dir' -- If not 'None', the directory in which the child
should begin execution. If 'None', the child will execute in
the same directory as the parent.
'path' -- If not 'None', the path to the program to run. If
'None', 'arguments[0]' is used.
returns -- The status returned by the program. Under UNIX,
this is the value returned by 'waitpid'; under Windows, it is
the value returned by 'GetExitCodeProcess'.
After invoking 'Spawn', this function invokes '_DoParent' to
allow the parent process to perform whatever actions are
required. After that function returns, the parent waits for
the child process to exit."""
# If fork succeeds, but the exec fails, we want information
# about *why* it failed. The exit code from the subprocess is
# not nearly as illuminating as the exception raised by exec.
# Therefore, we create a pipe between the parent and child;
# the child writes the exception into the pipe to communicate
# it to the parent.
if sys.platform != "win32":
exception_pipe = os.pipe()
# Mark the write end as close-on-exec so that the file
# descriptor is not passed on to the child.
qm.common.close_file_on_exec(exception_pipe[1])
else:
exception_pipe = None
# Start the program.
child = self.Spawn(arguments, environment, dir, path, exception_pipe)
# Give the parent a chance to do whatever it needs to do.
self._DoParent()
# Wait for the child to exit.
if sys.platform == "win32":
win32event.WaitForSingleObject(child, win32event.INFINITE)
# Get its exit code.
return win32process.GetExitCodeProcess(child)
else:
status = os.waitpid(child, 0)[1]
# See if an exception was pushed back up the pipe.
data = os.fdopen(exception_pipe[0]).read()
# If any data was read, then it is data corresponding to
# the exception thrown by exec.
if data:
# Unpickle the data.
exc_info = cPickle.loads(data)
# And raise it here.
raise exc_info[0], exc_info[1]
return status
def _InitializeParent(self):
"""Initialize the parent process.
Before spawning the child, this method is invoked to give the
parent a chance to initialize itself.
returns -- Under Windows, a 'PySTARTUPINFO' structure
explaining how the child should be initialized. On other
systems, the return value is ignored."""
if sys.platform == "win32":
return win32process.STARTUPINFO()
def Kill(self):
"""Kill the child process.
The child process is killed in a way that does not permit an
orderly shutdown. In other words, 'SIGKILL' is used under
UNIX, not 'SIGTERM'. On Windows, 'TerminateProcess' is used,
and the exit code from the child process will be '1'."""
if sys.platform == "win32":
win32process.TerminateProcess(self._GetChildPID(), 1)
else:
os.kill(self._GetChildPID(), signal.SIGKILL)
def _HandleChild(self):
"""Run in the parent process after the child has been created.
The child process has been spawned; its PID is avialable via
'_GetChildPID'. Take any actions in the parent that are
required now that the child exists.
Derived class versions must call this method."""
pass
def _InitializeChild(self):
"""Initialize the child process.
After 'fork' is called this method is invoked to give the
child a chance to initialize itself. '_InitializeParent' will
already have been called in the parent process.
This method is not used under Windows."""
assert sys.platform != "win32"
# The way Python's threading support works, every thread except
# the main thread always has all signals blocked. This is fine
# for the threads themselves, but it causes problems if we
# 'fork' from a child thread; the new process starts with all
# signals blocked, which is probably not what you want!
# Arguably this is a bug in Python, but for the meantime, work
# around this by setting the new process's signal mask to match
# the signal mask that QMTest was started with.
qm.sigmask.restore_mask()
if self.__dir:
os.chdir(self.__dir)
def _DoParent(self):
"""Perform actions required in the parent after 'Spawn'."""
pass
def _GetChildPID(self):
"""Return the process ID for the child process.
returns -- The process ID for the child process. (On Windows,
the value returned is the process handle.) Returns 'None' if
the child has not yet been created, or if something went awry
when creating it. For example, if 'os.fork' throws an
exception, this value will return 'None'."""
return self.__child
def __CreateCommandLine(self, arguments):
"""Return a string giving the process command line.
arguments -- A sequence of arguments (including argv[0])
indicating the command to be run.
returns -- A string that could be provided to the shell in
order to run the command."""
command = ""
need_space = 0
for a in arguments:
# Add a space between arguments.
if need_space:
command += " "
else:
need_space = 1
# If the argument contains whitespace characters, enclose
# it in quotes. Similarly, an empty argument must be
# enclosed in quotes.
if not a:
command += '""'
continue
whitespace = 0
for c in string.whitespace:
if c in a:
whitespace = 1
break
if whitespace:
command += '"' + a + '"'
else:
command += a
return command
class TimeoutExecutable(Executable):
"""A 'TimeoutExecutable' runs for a limited time.
If the timer expires, the child process is killed and
self.timedout is set to 1. Otherwise, self.timedout is set to 0.
In order to implement this functionality under UNIX, the child
process is placed into its own process group. An additional
monitoring process is created whose sole job is to kill the
primary child's process group if the timeout expires. Process
groups are used so that if the child process spawns additional
processes they are killed too. A separate monitoring process is
used so as not to block the parent.
Under Windows, a monitoring thread is created. When the timer
expires, the child process is terminated. However, the child
process is not placed into a separate process group, so
granchildren kare not terminated. In the future, when Python
provides access to 'CreateJobObject' and related functions, jobs
will be used to provide functionality similar to UNIX process
groups.
The 'Run' method will automatically start the monitoring process.
The 'Spawn' method does not start the monitoring process. User's
of 'Spawn' should invoke '_DoParent' in order to start the
monitoring process. Derived class '_DoParent' functions should
call the version defined in this class."""
def __init__(self, timeout = -1):
"""Construct a new 'TimeoutExecutable'.
'timeout' -- The number of seconds that the child is permitted
to run. This value may be a floating-point value. However,
the value may be rounded to an integral value on some systems.
Once the timeout expires, the child and its entire process
group is killed. (The processes in the process group are sent
the 'SIGKILL' signal.) If the 'timeout' is -2, the child is
allowed to run forever, but when it terminates the child's
process group is killed.
If the 'timeout' is -1, this class behaves exactly like
'Executable'."""
super(TimeoutExecutable, self).__init__()
self.__timeout = float(timeout)
def _InitializeChild(self):
# Put the child into its own process group. This step is
# performed in both the parent and the child; therefore both
# processes can safely assume that the creation of the process
# group has taken place.
if self.__UseSeparateProcessGroupForChild():
os.setpgid(0, 0)
super(TimeoutExecutable, self)._InitializeChild()
def _HandleChild(self):
super(TimeoutExecutable, self)._HandleChild()
if self.__UseSeparateProcessGroupForChild():
# Put the child into its own process group. This step is
# performed in both the parent and the child; therefore both
# processes can safely assume that the creation of the process
# group has taken place.
child_pid = self._GetChildPID()
try:
os.setpgid(child_pid, child_pid)
except:
# The call to setpgid may fail if the child has exited,
# or has already called 'exec'. In that case, we are
# guaranteed that the child has already put itself in the
# desired process group.
pass
# Create the monitoring process.
#
# If the monitoring process is in parent's process group and
# kills the child after waitpid has returned in the parent, we
# may end up trying to kill a process group other than the one
# that we intend to kill. Therefore, we put the monitoring
# process in the same process group as the child; that ensures
# that the process group will persist until the monitoring
# process kills it.
self.__monitor_pid = os.fork()
if self.__monitor_pid != 0:
# Make sure that the monitoring process is placed into the
# child's process group before the parent process calls
# 'waitpid'. In this way, we are guaranteed that the process
# group as the child
os.setpgid(self.__monitor_pid, child_pid)
else:
# Put the monitoring process into the child's process
# group. We know the process group still exists at
# this point because either (a) we are in the process
# group, or (b) the parent has not yet called waitpid.
os.setpgid(0, child_pid)
# Close all open file descriptors. They are not needed
# in the monitor process. Furthermore, when the parent
# closes the write end of the stdin pipe to the child,
# we do not want the pipe to remain open; leaving the
# pipe open in the monitor process might cause the child
# to block waiting for additional input.
try:
max_fds = os.sysconf("SC_OPEN_MAX")
except:
max_fds = 256
for fd in xrange(max_fds):
try:
os.close(fd)
except:
pass
try:
if self.__timeout >= 0:
# Give the child time to run.
time.sleep (self.__timeout)
# Kill all processes in the child process group.
os.kill(0, signal.SIGKILL)
else:
# This call to select will never terminate.
select.select ([], [], [])
finally:
# Exit. This code is in a finally clause so that
# we are guaranteed to get here no matter what.
os._exit(0)
elif self.__timeout >= 0 and sys.platform == "win32":
# Create a monitoring thread.
self.__monitor_thread = Thread(target = self.__Monitor)
self.__monitor_thread.start()
def Run(self, arguments=[], environment = None, dir = None,
path = None):
if self.__UseSeparateProcessGroupForChild():
self.__monitor_pid = None
elif self.__timeout >= 0 and sys.platform == "win32":
self.__monitor_thread = None
# Run the process.
try:
status = super(TimeoutExecutable, self).Run(arguments,
environment,
dir,
path)
finally:
if self.__UseSeparateProcessGroupForChild():
# Clean up the monitoring program; it is no longer needed.
child_pid = self._GetChildPID()
if child_pid is not None:
os.kill(-child_pid, signal.SIGKILL)
if self.__monitor_pid is not None:
os.waitpid(self.__monitor_pid, 0)
elif self.__timeout >= 0 and sys.platform == "win32":
# Join the monitoring thread.
if self.__monitor_thread is not None:
self.__monitor_thread.join()
return status
def __UseSeparateProcessGroupForChild(self):
"""Returns true if the child wil be placed in its own process group.
returns -- True if the child will be placed in its own process
group. In that case, a separate monitoring process will also
be created."""
if sys.platform == "win32":
# In Windows 2000 (or later), we should use "jobs" by
# analogy with UNIX process groups. However, that
# functionality is not (yet) provided by the Python Win32
# extensions.
return 0
return 0
#return self.__timeout >= 0 or self.__timeout == -2
if sys.platform == "win32":
def __Monitor(self):
"""Kill the child if the timeout expires.
This function is run in the monitoring thread."""
# The timeout may be expressed as a floating-point value
# on UNIX, but it must be an integer number of
# milliseconds when passed to WaitForSingleObject.
timeout = int(self.__timeout * 1000)
# Wait for the child process to terminate or for the
# timer to expire.
result = win32event.WaitForSingleObject(self._GetChildPID(),
timeout)
# If the timeout occurred, kill the child process.
if result == win32con.WAIT_TIMEOUT:
self.Kill()
class RedirectedExecutable(TimeoutExecutable):
"""A 'RedirectedExecutable' redirects the standard I/O streams."""
def _InitializeParent(self):
super(RedirectedExecutable, self)._InitializeParent()
# Create a pipe for each of the streams.
self._stdin_pipe = self._StdinPipe()
self._stdout_pipe = self._StdoutPipe()
self._stderr_pipe = self._StderrPipe()
# There has been no output yet.
self.stdout = ""
self.stderr = ""
# Under Windows, create a startupinfo structure that explains
# where the streams connected to the child should go.
if sys.platform == "win32":
# Create a startupinfo structure.
startupinfo = win32process.STARTUPINFO()
# Indicate that the child process should use the standard
# handles in startupinfo.
startupinfo.dwFlags = win32con.STARTF_USESTDHANDLES
# Attach each of the pipes to the appropriate entries in
# startupinfo. Also create a non-inheritable duplicate of the
# pipe end we will be using, and close the inheritable
# version.
if self._stdin_pipe:
startupinfo.hStdInput = self._stdin_pipe[0]
self._stdin_pipe[1] \
= self.__UninheritableHandle(self._stdin_pipe[1])
else:
startupinfo.hStdInput = win32file.INVALID_HANDLE_VALUE
if self._stdout_pipe:
startupinfo.hStdOutput = self._stdout_pipe[1]
self._stdout_pipe[0] \
= self.__UninheritableHandle(self._stdout_pipe[0])
else:
startupinfo.hStdOutput = win32file.INVALID_HANDLE_VALUE
if self._stderr_pipe:
startupinfo.hStdError = self._stderr_pipe[1]
self._stderr_pipe[0] \
= self.__UninheritableHandle(self._stderr_pipe[0])
elif self._stdout_pipe:
# If there's no stderr pipe -- but there is a stdout
# pipe -- redirect both stdout and stderr to the same
# pipe.
startupinfo.hStdError = self._stdout_pipe[1]
else:
startupinfo.hStdError = win32file.INVALID_HANDLE_VALUE
return startupinfo
def _InitializeChild(self):
# Let the base class do any initialization required.
super(RedirectedExecutable, self)._InitializeChild()
# Redirect the standard I/O streams to the pipes. Python does
# not provide STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO,
# so we must use the file descriptor numbers directly.
if self._stdin_pipe:
os.dup2(self._stdin_pipe[0], 0)
else:
os.close(0)
if self._stdout_pipe:
os.dup2(self._stdout_pipe[1], 1)
else:
os.close(1)
if self._stderr_pipe:
os.dup2(self._stderr_pipe[1], 2)
elif self._stdout_pipe:
# If there's no stderr pipe -- but there is a stdout
# pipe -- redirect both stdout and stderr to the same
# pipe.
os.dup2(self._stdout_pipe[1], 2)
else:
os.close(2)
# Close the pipe fds. This should happen automatically when we
# exec the new process anyway, but it is polite to close fds as
# soon as possible.
if self._stdin_pipe:
os.close(self._stdin_pipe[0])
os.close(self._stdin_pipe[1])
if self._stdout_pipe:
os.close(self._stdout_pipe[0])
os.close(self._stdout_pipe[1])
if self._stderr_pipe:
os.close(self._stderr_pipe[0])
os.close(self._stderr_pipe[1])
def _HandleChild(self):
# Close the pipe ends that we do not need.
if self._stdin_pipe:
self._ClosePipeEnd(self._stdin_pipe[0])
if self._stdout_pipe:
self._ClosePipeEnd(self._stdout_pipe[1])
if self._stderr_pipe:
self._ClosePipeEnd(self._stderr_pipe[1])
# The pipes created by 'RedirectedExecutable' must be closed
# before the monitor process (created by 'TimeoutExecutable')
# is created. Otherwise, if the child process dies, 'select'
# in the parent will not return if the monitor process may
# still have one of the file descriptors open.
super(RedirectedExecutable, self)._HandleChild()
def _DoParent(self):
super(RedirectedExecutable, self)._DoParent()
# Process the various redirected streams until none of the
# streams remain open.
if sys.platform != "win32":
while 1:
# Prepare the lists of interesting descriptors.
read_fds = []
write_fds = []
if self._stdout_pipe:
read_fds.append(self._stdout_pipe[0])
if self._stderr_pipe:
read_fds.append(self._stderr_pipe[0])
if self._stdin_pipe:
write_fds.append(self._stdin_pipe[1])
# If there are no longer any interesting descriptors, we are
# done.
if not read_fds and not write_fds:
return
# See which descriptors are ready for processing.
read_ready, write_ready \
= select.select(read_fds, write_fds, [])[:2]
# Process them.
if self._stdout_pipe and self._stdout_pipe[0] in read_ready:
self._ReadStdout()
if self._stderr_pipe and self._stderr_pipe[0] in read_ready:
self._ReadStderr()
if self._stdin_pipe and self._stdin_pipe[1] in write_ready:
self._WriteStdin()
else:
# Under Windows, neither select, nor
# WaitForMultipleObjects, works on pipes. The only
# approach that is reliable under all versions of Windows
# is to use a separate thread for each handle. By
# converting the pipe ends from OS handles to file
# descriptors at this point, _ReadStdout, _ReadStderr, and
# _WriteStdin can use the same implementations under
# Windows that they do under UNIX.
if self._stdin_pipe:
h = self._stdin_pipe[1]
self._stdin_pipe[1] = msvcrt.open_osfhandle(h, 0)
h.Detach()
stdin_thread = Thread(target = self.__CallUntilNone,
args = (self._WriteStdin,
"_stdin_pipe"))
else:
stdin_thread = None
if self._stdout_pipe:
h = self._stdout_pipe[0]
self._stdout_pipe[0] = msvcrt.open_osfhandle(h, 0)
h.Detach()
stdout_thread = Thread(target = self.__CallUntilNone,
args = (self._ReadStdout,
"_stdout_pipe"))
else:
stdout_thread = None
if self._stderr_pipe:
h = self._stderr_pipe[0]
self._stderr_pipe[0] = msvcrt.open_osfhandle(h, 0)
h.Detach()
stderr_thread = Thread(target = self.__CallUntilNone,
args = (self._ReadStderr,
"_stderr_pipe"))
else:
stderr_thread = None
# Start the threads.
for t in stdin_thread, stdout_thread, stderr_thread:
if t:
t.start()
# Wait for them to finish.
for t in stdin_thread, stdout_thread, stderr_thread:
if t:
t.join()
def _ReadStdout(self):
"""Read from the standard output pipe."""
# Read some data.
data = os.read(self._stdout_pipe[0], 64 * 1024)
if not data:
# If there is no new data, end-of-file has been reached.
os.close(self._stdout_pipe[0])
self._stdout_pipe = None
else:
# Otherwise, add the data to the output we have already
# collected.
self.stdout += data
def _ReadStderr(self):
"""Read from the standard error pipe."""
# Read some data.
data = os.read(self._stderr_pipe[0], 64 * 1024)
if not data:
# If there is no new data, end-of-file has been reached.
os.close(self._stderr_pipe[0])
self._stderr_pipe = None
else:
# Otherwise, add the data to the output we have already
# collected.
self.stderr += data
def _WriteStdin(self):
"""Write to the standard input pipe.
This implementation writes no data and closes the pipe."""
# Close the pipe.
os.close(self._stdin_pipe[1])
self._stdin_pipe = None
def _StdinPipe(self):
"""Return a pipe to which to redirect the standard input.
returns -- A pipe, or 'None' if the standard input should be
closed in the child."""
pipe = self._CreatePipe()
if sys.platform != "win32":
# Make sure that writing to the pipe will never result in
# deadlock.
fcntl.fcntl(pipe[1], fcntl.F_SETFL,
fcntl.fcntl(pipe[1], fcntl.F_GETFL) | os.O_NONBLOCK)
return pipe
def _StdoutPipe(self):
"""Return a pipe to which to redirect the standard output.
returns -- A pipe, or 'None' if the standard output should be
closed in the child."""
return self._CreatePipe()
def _StderrPipe(self):
"""Return a pipe to which to redirect the standard input.
returns -- A pipe, or 'None'. If 'None' is returned, but
'_StdoutPipe' returns a pipe, then the standard error and
standard input will both be redirected to that pipe. However,
if '_StdoutPipe' also returns 'None', then the standard error
will be closed in the child."""
return self._CreatePipe()
def _ClosePipeEnd(self, fd):
"""Close the file descriptor 'fd', which is one end of a pipe.
'fd' -- Under UNIX, a file descriptor. Under Windows, a
handle."""
if sys.platform == "win32":
fd.Close()
else:
os.close(fd)
def _CreatePipe(self):
"""Return a new pipe.
returns -- A tuple (under UNIX) or list (under Windows)
consisting of the file descriptors (UNIX) or handles (Windows)
for the read end and write end of a new pipe. The pipe is
inheritable by child processes. On UNIX the fds will not be
inherited across 'exec'."""
if sys.platform == "win32":
# Create a security descriptor so that we can mark the handles
# as inheritable. (A call to os.pipe under Windows
# returns handles that are not inheritable.)
sa = pywintypes.SECURITY_ATTRIBUTES()
sa.bInheritHandle = 1
# Transform the tuple returned into a list so that the
# individual elements can be altered.
r, w = win32pipe.CreatePipe(sa, 0)
return [r, w]
else:
pipe = os.pipe()
for fd in pipe:
qm.common.close_file_on_exec(fd)
return pipe
def __CallUntilNone(self, f, attribute):
"""Call 'f' until 'self.attribute' is 'None'.
'f' -- A callable.
'attribute' -- A string giving the name of an attribute."""
while getattr(self, attribute) is not None:
f()
def __UninheritableHandle(self, handle):
"""Return a duplicate of a file handle that is not inheritable.
'handle' -- A file handle.
returns -- A new handle that is a non-inheritable duplicate of
the 'handle'.
This method should only be used under Windows."""
assert sys.platform == "win32"
current_process = win32api.GetCurrentProcess()
return win32api.DuplicateHandle(current_process,
handle,
current_process,
0,
0,
win32con.DUPLICATE_SAME_ACCESS)
class Filter(RedirectedExecutable):
"""A 'FilterExecutable' feeds an input string to another proces.
The input string is provided to a child process via a pipe; the
standard output and standard error streams from the child process
are collected in the 'Filter'."""
def __init__(self, input, timeout = -1):
"""Create a new 'Filter'.
'input' -- The string containing the input to provide to the
child process.
'timeout' -- As for 'TimeoutExecutable.__init__'."""
super(Filter, self).__init__(timeout)
self.__input = input
self.__next = 0
def _WriteStdin(self):
# If there's nothing more to write, stop.
if self.__next == len(self.__input):
super(Filter, self)._WriteStdin()
else:
# Write some data.
self.__next += os.write(self._stdin_pipe[1],
self.__input[self.__next
: self.__next + 64 * 1024])
########################################################################
# Variables
#######################################################################
__all__ = ["Executable",
"TimeoutExecutable",
"RedirectedExecutable",
"Filter"]
|