/usr/share/doc/pyxplot/html/sect0252.html is in pyxplot-doc 0.9.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta name="generator" content="plasTeX" />
<meta content="text/html; charset=utf-8" http-equiv="content-type" />
<title>PyXPlot Users' Guide: The random module</title>
<link href="sect0253.html" title="The stats module" rel="next" />
<link href="sect0251.html" title="The phy module" rel="prev" />
<link href="ch-function_list.html" title="List of in-built functions" rel="up" />
<link rel="stylesheet" href="styles/styles.css" />
</head>
<body>
<div class="navigation">
<table cellspacing="2" cellpadding="0" width="100%">
<tr>
<td><a href="sect0251.html" title="The phy module"><img alt="Previous: The phy module" border="0" src="icons/previous.gif" width="32" height="32" /></a></td>
<td><a href="ch-function_list.html" title="List of in-built functions"><img alt="Up: List of in-built functions" border="0" src="icons/up.gif" width="32" height="32" /></a></td>
<td><a href="sect0253.html" title="The stats module"><img alt="Next: The stats module" border="0" src="icons/next.gif" width="32" height="32" /></a></td>
<td class="navtitle" align="center">PyXPlot Users' Guide</td>
<td><a href="index.html" title="Table of Contents"><img border="0" alt="" src="icons/contents.gif" width="32" height="32" /></a></td>
<td><a href="sect0288.html" title="Index"><img border="0" alt="" src="icons/index.gif" width="32" height="32" /></a></td>
<td><img border="0" alt="" src="icons/blank.gif" width="32" height="32" /></td>
</tr>
</table>
</div>
<div class="breadcrumbs">
<span>
<span>
<a href="index.html">PyXPlot Users' Guide</a> <b>:</b>
</span>
</span><span>
<span>
<a href="sect0089.html">Reference Manual</a> <b>:</b>
</span>
</span><span>
<span>
<a href="ch-function_list.html">List of in-built functions</a> <b>:</b>
</span>
</span><span>
<span>
<b class="current">The <tt class="ttfamily">random</tt> module</b>
</span>
</span>
<hr />
</div>
<div><h2 id="a0000000253">2.8 The <tt class="ttfamily">random</tt> module</h2>
<p>The <tt class="ttfamily">random</tt> module contains function for generating random samples from probability distributions: </p><p> <big class="large"><b class="bf">random.binomial(<img src="images/img-0269.png" alt="$p,n$" style="vertical-align:-4px;
width:29px;
height:12px" class="math gen" />)</b></big> <br />The random.binomial(<img src="images/img-0269.png" alt="$p,n$" style="vertical-align:-4px;
width:29px;
height:12px" class="math gen" />) function returns a random sample from a binomial distribution with <img src="images/img-0025.png" alt="$n$" style="vertical-align:0px;
width:11px;
height:8px" class="math gen" /> independent trials and a success probability <img src="images/img-0270.png" alt="$p$" style="vertical-align:-4px;
width:10px;
height:12px" class="math gen" />. <img src="images/img-0025.png" alt="$n$" style="vertical-align:0px;
width:11px;
height:8px" class="math gen" /> must be a real positive dimensionless integer. <img src="images/img-0270.png" alt="$p$" style="vertical-align:-4px;
width:10px;
height:12px" class="math gen" /> must be a dimensionless number in the range <img src="images/img-0718.png" alt="$0\leq p\leq 1$" style="vertical-align:-4px;
width:74px;
height:16px" class="math gen" />. <a name="a0000001594" id="a0000001594"></a> </p><p> <big class="large"><b class="bf">random.chisq(<img src="images/img-0271.png" alt="$\nu $" style="vertical-align:0px;
width:9px;
height:8px" class="math gen" />)</b></big> <br />The random.chisq(<img src="images/img-0271.png" alt="$\nu $" style="vertical-align:0px;
width:9px;
height:8px" class="math gen" />) function returns a random sample from a <img src="images/img-0272.png" alt="$\chi $" style="vertical-align:-4px;
width:11px;
height:12px" class="math gen" />-squared distribution with <img src="images/img-0271.png" alt="$\nu $" style="vertical-align:0px;
width:9px;
height:8px" class="math gen" /> degrees of freedom, where <img src="images/img-0271.png" alt="$\nu $" style="vertical-align:0px;
width:9px;
height:8px" class="math gen" /> must be a real positive dimensionless integer. <a name="a0000001595" id="a0000001595"></a> </p><p> <big class="large"><b class="bf">random.gaussian(<img src="images/img-0273.png" alt="$\sigma $" style="vertical-align:0px;
width:11px;
height:8px" class="math gen" />)</b></big> <br />The random.gaussian(<img src="images/img-0273.png" alt="$\sigma $" style="vertical-align:0px;
width:11px;
height:8px" class="math gen" />) function returns a random sample from a Gaussian (normal) distribution of standard deviation <img src="images/img-0273.png" alt="$\sigma $" style="vertical-align:0px;
width:11px;
height:8px" class="math gen" /> and centred upon zero. <img src="images/img-0273.png" alt="$\sigma $" style="vertical-align:0px;
width:11px;
height:8px" class="math gen" /> must be real, but may have any physical units. The returned random sample shares the physical units of <img src="images/img-0273.png" alt="$\sigma $" style="vertical-align:0px;
width:11px;
height:8px" class="math gen" />. <a name="a0000001596" id="a0000001596"></a> </p><p> <big class="large"><b class="bf">random.lognormal(<img src="images/img-0274.png" alt="$\zeta ,\sigma $" style="vertical-align:-4px;
width:28px;
height:17px" class="math gen" />)</b></big> <br />The random.lognormal(<img src="images/img-0274.png" alt="$\zeta ,\sigma $" style="vertical-align:-4px;
width:28px;
height:17px" class="math gen" />) function returns a random sample from the log normal distribution centred on <img src="images/img-0275.png" alt="$\zeta $" style="vertical-align:-4px;
width:9px;
height:17px" class="math gen" />, and of width <img src="images/img-0273.png" alt="$\sigma $" style="vertical-align:0px;
width:11px;
height:8px" class="math gen" />. <img src="images/img-0273.png" alt="$\sigma $" style="vertical-align:0px;
width:11px;
height:8px" class="math gen" /> must be a real positive dimensionless number. <img src="images/img-0275.png" alt="$\zeta $" style="vertical-align:-4px;
width:9px;
height:17px" class="math gen" /> must be real, but may have any physical units. The returned random sample shares the physical units of <img src="images/img-0275.png" alt="$\zeta $" style="vertical-align:-4px;
width:9px;
height:17px" class="math gen" />. <a name="a0000001597" id="a0000001597"></a> </p><p> <big class="large"><b class="bf">random.poisson(<img src="images/img-0025.png" alt="$n$" style="vertical-align:0px;
width:11px;
height:8px" class="math gen" />)</b></big> <br />The random.poisson(<img src="images/img-0025.png" alt="$n$" style="vertical-align:0px;
width:11px;
height:8px" class="math gen" />) function returns a random integer from a Poisson distribution with mean <img src="images/img-0025.png" alt="$n$" style="vertical-align:0px;
width:11px;
height:8px" class="math gen" />, where <img src="images/img-0025.png" alt="$n$" style="vertical-align:0px;
width:11px;
height:8px" class="math gen" /> must be a real positive dimensionless number. <a name="a0000001598" id="a0000001598"></a> </p><p> <big class="large"><b class="bf">random.random()</b></big> <br />The random.random() function returns a random real number between 0 and 1. <a name="a0000001599" id="a0000001599"></a> </p><p> <big class="large"><b class="bf">random.tdist(<img src="images/img-0271.png" alt="$\nu $" style="vertical-align:0px;
width:9px;
height:8px" class="math gen" />)</b></big> <br />The random.tdist(<img src="images/img-0271.png" alt="$\nu $" style="vertical-align:0px;
width:9px;
height:8px" class="math gen" />) function returns a random sample from a <img src="images/img-0065.png" alt="$t$" style="vertical-align:0px;
width:6px;
height:12px" class="math gen" />-distribution with <img src="images/img-0271.png" alt="$\nu $" style="vertical-align:0px;
width:9px;
height:8px" class="math gen" /> degrees of freedom, where <img src="images/img-0271.png" alt="$\nu $" style="vertical-align:0px;
width:9px;
height:8px" class="math gen" /> must be a real positive dimensionless integer. <a name="a0000001600" id="a0000001600"></a> </p></div>
<div class="navigation">
<table cellspacing="2" cellpadding="0" width="100%">
<tr>
<td><a href="sect0251.html" title="The phy module"><img alt="Previous: The phy module" border="0" src="icons/previous.gif" width="32" height="32" /></a></td>
<td><a href="ch-function_list.html" title="List of in-built functions"><img alt="Up: List of in-built functions" border="0" src="icons/up.gif" width="32" height="32" /></a></td>
<td><a href="sect0253.html" title="The stats module"><img alt="Next: The stats module" border="0" src="icons/next.gif" width="32" height="32" /></a></td>
<td class="navtitle" align="center">PyXPlot Users' Guide</td>
<td><a href="index.html" title="Table of Contents"><img border="0" alt="" src="icons/contents.gif" width="32" height="32" /></a></td>
<td><a href="sect0288.html" title="Index"><img border="0" alt="" src="icons/index.gif" width="32" height="32" /></a></td>
<td><img border="0" alt="" src="icons/blank.gif" width="32" height="32" /></td>
</tr>
</table>
</div>
<script language="javascript" src="icons/imgadjust.js" type="text/javascript"></script>
</body>
</html>
|