This file is indexed.

/usr/share/doc/pyxplot/html/sect0248.html is in pyxplot-doc 0.9.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta name="generator" content="plasTeX" />
<meta content="text/html; charset=utf-8" http-equiv="content-type" />
<title>PyXPlot Users' Guide: The fractals module</title>

<link href="sect0249.html" title="The os module" rel="next" />
<link href="sect0247.html" title="The exceptions module" rel="prev" />
<link href="ch-function_list.html" title="List of in-built functions" rel="up" />
<link rel="stylesheet" href="styles/styles.css" />
</head>
<body>

<div class="navigation">
<table cellspacing="2" cellpadding="0" width="100%">
<tr>
<td><a href="sect0247.html" title="The exceptions module"><img alt="Previous: The exceptions module" border="0" src="icons/previous.gif" width="32" height="32" /></a></td>

<td><a href="ch-function_list.html" title="List of in-built functions"><img alt="Up: List of in-built functions" border="0" src="icons/up.gif" width="32" height="32" /></a></td>

<td><a href="sect0249.html" title="The os module"><img alt="Next: The os module" border="0" src="icons/next.gif" width="32" height="32" /></a></td>

<td class="navtitle" align="center">PyXPlot Users' Guide</td>
<td><a href="index.html" title="Table of Contents"><img border="0" alt="" src="icons/contents.gif" width="32" height="32" /></a></td>

<td><a href="sect0288.html" title="Index"><img border="0" alt="" src="icons/index.gif" width="32" height="32" /></a></td>

<td><img border="0" alt="" src="icons/blank.gif" width="32" height="32" /></td>
</tr>
</table>
</div>

<div class="breadcrumbs">
<span>
<span>
<a href="index.html">PyXPlot Users' Guide</a> <b>:</b>
</span>

</span><span>
<span>
<a href="sect0089.html">Reference Manual</a> <b>:</b>
</span>

</span><span>
<span>
<a href="ch-function_list.html">List of in-built functions</a> <b>:</b>
</span>

</span><span>

<span>
<b class="current">The <tt class="ttfamily">fractals</tt> module</b>
</span>
</span>
<hr />
</div>

<div><h2 id="a0000000249">2.4 The <tt class="ttfamily">fractals</tt> module</h2>
<p>   <big class="large"><b class="bf">fractals.julia(<img src="images/img-0110.png" alt="$z$" style="vertical-align:0px; 
                                     width:9px; 
                                     height:8px" class="math gen" />,<img src="images/img-0713.png" alt="$z_ c$" style="vertical-align:-2px; 
                                     width:14px; 
                                     height:10px" class="math gen" />,<img src="images/img-0360.png" alt="$m$" style="vertical-align:0px; 
                                     width:16px; 
                                     height:8px" class="math gen" />)</b></big> <br />The fractals.julia(<img src="images/img-0110.png" alt="$z$" style="vertical-align:0px; 
                                     width:9px; 
                                     height:8px" class="math gen" />,<img src="images/img-0713.png" alt="$z_ c$" style="vertical-align:-2px; 
                                     width:14px; 
                                     height:10px" class="math gen" />,<img src="images/img-0360.png" alt="$m$" style="vertical-align:0px; 
                                     width:16px; 
                                     height:8px" class="math gen" />) function tests whether the point <img src="images/img-0110.png" alt="$z$" style="vertical-align:0px; 
                                     width:9px; 
                                     height:8px" class="math gen" /> in the complex plane lies within the Julia set associated with the point <img src="images/img-0713.png" alt="$z_ c$" style="vertical-align:-2px; 
                                     width:14px; 
                                     height:10px" class="math gen" /> in the complex plane. The expression <img src="images/img-0714.png" alt="$z_{n+1} = z_ n^2 + z_ c$" style="vertical-align:-4px; 
                                     width:114px; 
                                     height:20px" class="math gen" /> is iterated until either <img src="images/img-0715.png" alt="$|z_ n|&gt;2$" style="vertical-align:-5px; 
                                     width:59px; 
                                     height:18px" class="math gen" />, in which case the iteration is deemed to have diverged, or until <img src="images/img-0360.png" alt="$m$" style="vertical-align:0px; 
                                     width:16px; 
                                     height:8px" class="math gen" /> iterations have been exceeded, in which case it is deemed to have remained bounded. The number of iterations required for divergence is returned, or <img src="images/img-0360.png" alt="$m$" style="vertical-align:0px; 
                                     width:16px; 
                                     height:8px" class="math gen" /> is returned if the iteration remained bounded – i.e. the point lies within the numerical approximation to the Julia set. <a name="a0000001561" id="a0000001561"></a>  </p><p>    <big class="large"><b class="bf">fractals.mandelbrot(<img src="images/img-0110.png" alt="$z$" style="vertical-align:0px; 
                                     width:9px; 
                                     height:8px" class="math gen" />,<img src="images/img-0360.png" alt="$m$" style="vertical-align:0px; 
                                     width:16px; 
                                     height:8px" class="math gen" />)</b></big> <br />The fractals.mandelbrot(<img src="images/img-0110.png" alt="$z$" style="vertical-align:0px; 
                                     width:9px; 
                                     height:8px" class="math gen" />,<img src="images/img-0360.png" alt="$m$" style="vertical-align:0px; 
                                     width:16px; 
                                     height:8px" class="math gen" />) function tests whether the point <img src="images/img-0110.png" alt="$z$" style="vertical-align:0px; 
                                     width:9px; 
                                     height:8px" class="math gen" /> in the complex plane lies within the Mandelbrot set. The expression <img src="images/img-0716.png" alt="$z_{n+1} = z_ n^2 + z_0$" style="vertical-align:-4px; 
                                     width:115px; 
                                     height:20px" class="math gen" /> is iterated until either <img src="images/img-0715.png" alt="$|z_ n|&gt;2$" style="vertical-align:-5px; 
                                     width:59px; 
                                     height:18px" class="math gen" />, in which case the iteration is deemed to have diverged, or until <img src="images/img-0360.png" alt="$m$" style="vertical-align:0px; 
                                     width:16px; 
                                     height:8px" class="math gen" /> iterations have been exceeded, in which case it is deemed to have remained bounded. The number of iterations required for divergence is returned, or <img src="images/img-0360.png" alt="$m$" style="vertical-align:0px; 
                                     width:16px; 
                                     height:8px" class="math gen" /> is returned if the iteration remained bounded – i.e. the point lies within the numerical approximation to the Mandelbrot set. <a name="a0000001562" id="a0000001562"></a>  </p></div>





<div class="navigation">
<table cellspacing="2" cellpadding="0" width="100%">
<tr>
<td><a href="sect0247.html" title="The exceptions module"><img alt="Previous: The exceptions module" border="0" src="icons/previous.gif" width="32" height="32" /></a></td>

<td><a href="ch-function_list.html" title="List of in-built functions"><img alt="Up: List of in-built functions" border="0" src="icons/up.gif" width="32" height="32" /></a></td>

<td><a href="sect0249.html" title="The os module"><img alt="Next: The os module" border="0" src="icons/next.gif" width="32" height="32" /></a></td>

<td class="navtitle" align="center">PyXPlot Users' Guide</td>
<td><a href="index.html" title="Table of Contents"><img border="0" alt="" src="icons/contents.gif" width="32" height="32" /></a></td>

<td><a href="sect0288.html" title="Index"><img border="0" alt="" src="icons/index.gif" width="32" height="32" /></a></td>

<td><img border="0" alt="" src="icons/blank.gif" width="32" height="32" /></td>
</tr>
</table>
</div>

<script language="javascript" src="icons/imgadjust.js" type="text/javascript"></script>

</body>
</html>