/usr/share/doc/pyxplot/html/sect0248.html is in pyxplot-doc 0.9.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta name="generator" content="plasTeX" />
<meta content="text/html; charset=utf-8" http-equiv="content-type" />
<title>PyXPlot Users' Guide: The fractals module</title>
<link href="sect0249.html" title="The os module" rel="next" />
<link href="sect0247.html" title="The exceptions module" rel="prev" />
<link href="ch-function_list.html" title="List of in-built functions" rel="up" />
<link rel="stylesheet" href="styles/styles.css" />
</head>
<body>
<div class="navigation">
<table cellspacing="2" cellpadding="0" width="100%">
<tr>
<td><a href="sect0247.html" title="The exceptions module"><img alt="Previous: The exceptions module" border="0" src="icons/previous.gif" width="32" height="32" /></a></td>
<td><a href="ch-function_list.html" title="List of in-built functions"><img alt="Up: List of in-built functions" border="0" src="icons/up.gif" width="32" height="32" /></a></td>
<td><a href="sect0249.html" title="The os module"><img alt="Next: The os module" border="0" src="icons/next.gif" width="32" height="32" /></a></td>
<td class="navtitle" align="center">PyXPlot Users' Guide</td>
<td><a href="index.html" title="Table of Contents"><img border="0" alt="" src="icons/contents.gif" width="32" height="32" /></a></td>
<td><a href="sect0288.html" title="Index"><img border="0" alt="" src="icons/index.gif" width="32" height="32" /></a></td>
<td><img border="0" alt="" src="icons/blank.gif" width="32" height="32" /></td>
</tr>
</table>
</div>
<div class="breadcrumbs">
<span>
<span>
<a href="index.html">PyXPlot Users' Guide</a> <b>:</b>
</span>
</span><span>
<span>
<a href="sect0089.html">Reference Manual</a> <b>:</b>
</span>
</span><span>
<span>
<a href="ch-function_list.html">List of in-built functions</a> <b>:</b>
</span>
</span><span>
<span>
<b class="current">The <tt class="ttfamily">fractals</tt> module</b>
</span>
</span>
<hr />
</div>
<div><h2 id="a0000000249">2.4 The <tt class="ttfamily">fractals</tt> module</h2>
<p> <big class="large"><b class="bf">fractals.julia(<img src="images/img-0110.png" alt="$z$" style="vertical-align:0px;
width:9px;
height:8px" class="math gen" />,<img src="images/img-0713.png" alt="$z_ c$" style="vertical-align:-2px;
width:14px;
height:10px" class="math gen" />,<img src="images/img-0360.png" alt="$m$" style="vertical-align:0px;
width:16px;
height:8px" class="math gen" />)</b></big> <br />The fractals.julia(<img src="images/img-0110.png" alt="$z$" style="vertical-align:0px;
width:9px;
height:8px" class="math gen" />,<img src="images/img-0713.png" alt="$z_ c$" style="vertical-align:-2px;
width:14px;
height:10px" class="math gen" />,<img src="images/img-0360.png" alt="$m$" style="vertical-align:0px;
width:16px;
height:8px" class="math gen" />) function tests whether the point <img src="images/img-0110.png" alt="$z$" style="vertical-align:0px;
width:9px;
height:8px" class="math gen" /> in the complex plane lies within the Julia set associated with the point <img src="images/img-0713.png" alt="$z_ c$" style="vertical-align:-2px;
width:14px;
height:10px" class="math gen" /> in the complex plane. The expression <img src="images/img-0714.png" alt="$z_{n+1} = z_ n^2 + z_ c$" style="vertical-align:-4px;
width:114px;
height:20px" class="math gen" /> is iterated until either <img src="images/img-0715.png" alt="$|z_ n|>2$" style="vertical-align:-5px;
width:59px;
height:18px" class="math gen" />, in which case the iteration is deemed to have diverged, or until <img src="images/img-0360.png" alt="$m$" style="vertical-align:0px;
width:16px;
height:8px" class="math gen" /> iterations have been exceeded, in which case it is deemed to have remained bounded. The number of iterations required for divergence is returned, or <img src="images/img-0360.png" alt="$m$" style="vertical-align:0px;
width:16px;
height:8px" class="math gen" /> is returned if the iteration remained bounded – i.e. the point lies within the numerical approximation to the Julia set. <a name="a0000001561" id="a0000001561"></a> </p><p> <big class="large"><b class="bf">fractals.mandelbrot(<img src="images/img-0110.png" alt="$z$" style="vertical-align:0px;
width:9px;
height:8px" class="math gen" />,<img src="images/img-0360.png" alt="$m$" style="vertical-align:0px;
width:16px;
height:8px" class="math gen" />)</b></big> <br />The fractals.mandelbrot(<img src="images/img-0110.png" alt="$z$" style="vertical-align:0px;
width:9px;
height:8px" class="math gen" />,<img src="images/img-0360.png" alt="$m$" style="vertical-align:0px;
width:16px;
height:8px" class="math gen" />) function tests whether the point <img src="images/img-0110.png" alt="$z$" style="vertical-align:0px;
width:9px;
height:8px" class="math gen" /> in the complex plane lies within the Mandelbrot set. The expression <img src="images/img-0716.png" alt="$z_{n+1} = z_ n^2 + z_0$" style="vertical-align:-4px;
width:115px;
height:20px" class="math gen" /> is iterated until either <img src="images/img-0715.png" alt="$|z_ n|>2$" style="vertical-align:-5px;
width:59px;
height:18px" class="math gen" />, in which case the iteration is deemed to have diverged, or until <img src="images/img-0360.png" alt="$m$" style="vertical-align:0px;
width:16px;
height:8px" class="math gen" /> iterations have been exceeded, in which case it is deemed to have remained bounded. The number of iterations required for divergence is returned, or <img src="images/img-0360.png" alt="$m$" style="vertical-align:0px;
width:16px;
height:8px" class="math gen" /> is returned if the iteration remained bounded – i.e. the point lies within the numerical approximation to the Mandelbrot set. <a name="a0000001562" id="a0000001562"></a> </p></div>
<div class="navigation">
<table cellspacing="2" cellpadding="0" width="100%">
<tr>
<td><a href="sect0247.html" title="The exceptions module"><img alt="Previous: The exceptions module" border="0" src="icons/previous.gif" width="32" height="32" /></a></td>
<td><a href="ch-function_list.html" title="List of in-built functions"><img alt="Up: List of in-built functions" border="0" src="icons/up.gif" width="32" height="32" /></a></td>
<td><a href="sect0249.html" title="The os module"><img alt="Next: The os module" border="0" src="icons/next.gif" width="32" height="32" /></a></td>
<td class="navtitle" align="center">PyXPlot Users' Guide</td>
<td><a href="index.html" title="Table of Contents"><img border="0" alt="" src="icons/contents.gif" width="32" height="32" /></a></td>
<td><a href="sect0288.html" title="Index"><img border="0" alt="" src="icons/index.gif" width="32" height="32" /></a></td>
<td><img border="0" alt="" src="icons/blank.gif" width="32" height="32" /></td>
</tr>
</table>
</div>
<script language="javascript" src="icons/imgadjust.js" type="text/javascript"></script>
</body>
</html>
|