This file is indexed.

/usr/share/doc/pyxplot/html/sect0032.html is in pyxplot-doc 0.9.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta name="generator" content="plasTeX" />
<meta content="text/html; charset=utf-8" http-equiv="content-type" />
<title>PyXPlot Users' Guide: Two-dimensional interpolation</title>

<link href="sect0033.html" title="Fourier transforms" rel="next" />
<link href="ex-interpolation.html" title="Datafile interpolation" rel="prev" />
<link href="ex-interpolation.html" title="Datafile interpolation" rel="up" />
<link rel="stylesheet" href="styles/styles.css" />
</head>
<body>

<div class="navigation">
<table cellspacing="2" cellpadding="0" width="100%">
<tr>
<td><a href="ex-interpolation.html" title="Datafile interpolation"><img alt="Previous: Datafile interpolation" border="0" src="icons/previous.gif" width="32" height="32" /></a></td>

<td><a href="ex-interpolation.html" title="Datafile interpolation"><img alt="Up: Datafile interpolation" border="0" src="icons/up.gif" width="32" height="32" /></a></td>

<td><a href="sect0033.html" title="Fourier transforms"><img alt="Next: Fourier transforms" border="0" src="icons/next.gif" width="32" height="32" /></a></td>

<td class="navtitle" align="center">PyXPlot Users' Guide</td>
<td><a href="index.html" title="Table of Contents"><img border="0" alt="" src="icons/contents.gif" width="32" height="32" /></a></td>

<td><a href="sect0288.html" title="Index"><img border="0" alt="" src="icons/index.gif" width="32" height="32" /></a></td>

<td><img border="0" alt="" src="icons/blank.gif" width="32" height="32" /></td>
</tr>
</table>
</div>

<div class="breadcrumbs">
<span>
<span>
<a href="index.html">PyXPlot Users' Guide</a> <b>:</b>
</span>

</span><span>
<span>
<a href="sect0001.html">Introduction to PyXPlot</a> <b>:</b>
</span>

</span><span>
<span>
<a href="ch-numerics.html">Working with data</a> <b>:</b>
</span>

</span><span>
<span>
<a href="ex-interpolation.html">Datafile interpolation</a> <b>:</b>
</span>

</span><span>

<span>
<b class="current">Two-dimensional interpolation</b>
</span>
</span>
<hr />
</div>

<div><h2 id="a0000000033">5.7.1 Two-dimensional interpolation</h2>
<p>In the case of two-dimensional interpolation, the type of interpolation to be used is set using the <tt class="tt">interpolate</tt> modifier to the <tt class="tt">set samples</tt> command<a name="a0000000560" id="a0000000560"></a>, and may be changed at any time after the interpolation function has been created. The options available are nearest neighbor interpolation – which is the two-dimensional equivalent of stepwise interpolation, inverse square interpolation – which returns a weighted average of the supplied data points, using the inverse squares of their distances from the requested point in argument space as weights, and Monaghan Lattanzio interpolation, which uses the weighting function (Monaghan &amp; Lattanzio 1985) </p><table id="a0000000561" cellpadding="7" width="100%" cellspacing="0" class="eqnarray">
<tr id="a0000000562">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0175.png" alt="$\displaystyle  w(x)  $" style="vertical-align:-4px; width:36px;                     height:18px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0176.png" alt="$\displaystyle  = 1 - \nicefrac {3}{2}v^2 + \nicefrac {3}{4}v^3  $" style="vertical-align:-5px; width:146px;                     height:22px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0177.png" alt="$\displaystyle  \, \mathrm{for~ }0\leq v\leq 1  $" style="vertical-align:-3px; width:103px;                     height:15px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr><tr id="a0000000563">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0178.png" alt="$\displaystyle  $" style="vertical-align:0px; width:1px;                     height:1px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0179.png" alt="$\displaystyle  = \nicefrac {1}{4}(2-v)^3  $" style="vertical-align:-5px; width:100px;                     height:22px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0180.png" alt="$\displaystyle  \, \mathrm{for~ }1\leq v\leq 2  $" style="vertical-align:-3px; width:104px;                     height:15px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr>
</table><p> where <img src="images/img-0181.png" alt="$v=r/h$" style="vertical-align:-5px; 
                                     width:61px; 
                                     height:18px" class="math gen" /> for <img src="images/img-0182.png" alt="$h=\sqrt {A/n}$" style="vertical-align:-5px; 
                                     width:86px; 
                                     height:22px" class="math gen" />, <img src="images/img-0183.png" alt="$A$" style="vertical-align:0px; 
                                     width:13px; 
                                     height:12px" class="math gen" /> is the product <img src="images/img-0184.png" alt="$(x_\mathrm {max}-x_\mathrm {min})(y_\mathrm {max}-y_\mathrm {min})$" style="vertical-align:-4px; 
                                     width:212px; 
                                     height:18px" class="math gen" /> and <img src="images/img-0025.png" alt="$n$" style="vertical-align:0px; 
                                     width:11px; 
                                     height:8px" class="math gen" /> is the number of input datapoints. These are selected as follows: </p><pre>
set samples interpolate nearestNeighbor
set samples interpolate inverseSquare
set samples interpolate monaghanLattanzio
</pre><p>The following example creates a function <tt class="tt">quad­ra­pole(x,y)</tt> which interpolates a quadrapole: </p><pre>
set samples interpolate inverseSquare
interpolate 2d quadrapole() '--'
-1 -1  1
-1  1 -1
 1 -1 -1
 1  1  1
END
</pre><p>Finally, data can be imported from graphical images in bitmap (<tt class="tt">.bmp</tt>) format to produce a function of two arguments returning a value in the range <img src="images/img-0185.png" alt="$0\to 1$" style="vertical-align:-1px; 
                                     width:45px; 
                                     height:13px" class="math gen" /> which represents the data in one of the image’s three color channels. The two arguments are the horizontal and vertical position within the bitmap image, as measured in pixels. This is done using syntax of the form: </p><pre>
interpolate 2d bmp_b blue() 'myImg.bmp'
</pre></div>





<div class="navigation">
<table cellspacing="2" cellpadding="0" width="100%">
<tr>
<td><a href="ex-interpolation.html" title="Datafile interpolation"><img alt="Previous: Datafile interpolation" border="0" src="icons/previous.gif" width="32" height="32" /></a></td>

<td><a href="ex-interpolation.html" title="Datafile interpolation"><img alt="Up: Datafile interpolation" border="0" src="icons/up.gif" width="32" height="32" /></a></td>

<td><a href="sect0033.html" title="Fourier transforms"><img alt="Next: Fourier transforms" border="0" src="icons/next.gif" width="32" height="32" /></a></td>

<td class="navtitle" align="center">PyXPlot Users' Guide</td>
<td><a href="index.html" title="Table of Contents"><img border="0" alt="" src="icons/contents.gif" width="32" height="32" /></a></td>

<td><a href="sect0288.html" title="Index"><img border="0" alt="" src="icons/index.gif" width="32" height="32" /></a></td>

<td><img border="0" alt="" src="icons/blank.gif" width="32" height="32" /></td>
</tr>
</table>
</div>

<script language="javascript" src="icons/imgadjust.js" type="text/javascript"></script>

</body>
</html>