This file is indexed.

/usr/lib/python3/dist-packages/twisted/internet/defer.py is in python3-twisted-experimental 13.2.0-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
# -*- test-case-name: twisted.test.test_defer,twisted.test.test_defgen,twisted.internet.test.test_inlinecb -*-
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

"""
Support for results that aren't immediately available.

Maintainer: Glyph Lefkowitz

@var _NO_RESULT: The result used to represent the fact that there is no
    result. B{Never ever ever use this as an actual result for a Deferred}.  You
    have been warned.

@var _CONTINUE: A marker left in L{Deferred.callbacks} to indicate a Deferred
    chain.  Always accompanied by a Deferred instance in the args tuple pointing
    at the Deferred which is chained to the Deferred which has this marker.
"""

from __future__ import division, absolute_import

import traceback
import types
import warnings
from sys import exc_info
from functools import wraps

# Twisted imports
from twisted.python.compat import cmp, comparable
from twisted.python import lockfile, log, failure
from twisted.python.deprecate import warnAboutFunction



class AlreadyCalledError(Exception):
    pass



class CancelledError(Exception):
    """
    This error is raised by default when a L{Deferred} is cancelled.
    """


class TimeoutError(Exception):
    """
    This exception is deprecated.  It is used only by the deprecated
    L{Deferred.setTimeout} method.
    """



def logError(err):
    log.err(err)
    return err



def succeed(result):
    """
    Return a L{Deferred} that has already had C{.callback(result)} called.

    This is useful when you're writing synchronous code to an
    asynchronous interface: i.e., some code is calling you expecting a
    L{Deferred} result, but you don't actually need to do anything
    asynchronous. Just return C{defer.succeed(theResult)}.

    See L{fail} for a version of this function that uses a failing
    L{Deferred} rather than a successful one.

    @param result: The result to give to the Deferred's 'callback'
           method.

    @rtype: L{Deferred}
    """
    d = Deferred()
    d.callback(result)
    return d



def fail(result=None):
    """
    Return a L{Deferred} that has already had C{.errback(result)} called.

    See L{succeed}'s docstring for rationale.

    @param result: The same argument that L{Deferred.errback} takes.

    @raise NoCurrentExceptionError: If C{result} is C{None} but there is no
        current exception state.

    @rtype: L{Deferred}
    """
    d = Deferred()
    d.errback(result)
    return d



def execute(callable, *args, **kw):
    """
    Create a L{Deferred} from a callable and arguments.

    Call the given function with the given arguments.  Return a L{Deferred}
    which has been fired with its callback as the result of that invocation
    or its C{errback} with a L{Failure} for the exception thrown.
    """
    try:
        result = callable(*args, **kw)
    except:
        return fail()
    else:
        return succeed(result)



def maybeDeferred(f, *args, **kw):
    """
    Invoke a function that may or may not return a L{Deferred}.

    Call the given function with the given arguments.  If the returned
    object is a L{Deferred}, return it.  If the returned object is a L{Failure},
    wrap it with L{fail} and return it.  Otherwise, wrap it in L{succeed} and
    return it.  If an exception is raised, convert it to a L{Failure}, wrap it
    in L{fail}, and then return it.

    @type f: Any callable
    @param f: The callable to invoke

    @param args: The arguments to pass to C{f}
    @param kw: The keyword arguments to pass to C{f}

    @rtype: L{Deferred}
    @return: The result of the function call, wrapped in a L{Deferred} if
    necessary.
    """
    try:
        result = f(*args, **kw)
    except:
        return fail(failure.Failure(captureVars=Deferred.debug))

    if isinstance(result, Deferred):
        return result
    elif isinstance(result, failure.Failure):
        return fail(result)
    else:
        return succeed(result)



def timeout(deferred):
    deferred.errback(failure.Failure(TimeoutError("Callback timed out")))



def passthru(arg):
    return arg



def setDebugging(on):
    """
    Enable or disable L{Deferred} debugging.

    When debugging is on, the call stacks from creation and invocation are
    recorded, and added to any L{AlreadyCalledErrors} we raise.
    """
    Deferred.debug=bool(on)



def getDebugging():
    """
    Determine whether L{Deferred} debugging is enabled.
    """
    return Deferred.debug


# See module docstring.
_NO_RESULT = object()
_CONTINUE = object()



class Deferred:
    """
    This is a callback which will be put off until later.

    Why do we want this? Well, in cases where a function in a threaded
    program would block until it gets a result, for Twisted it should
    not block. Instead, it should return a L{Deferred}.

    This can be implemented for protocols that run over the network by
    writing an asynchronous protocol for L{twisted.internet}. For methods
    that come from outside packages that are not under our control, we use
    threads (see for example L{twisted.enterprise.adbapi}).

    For more information about Deferreds, see doc/core/howto/defer.html or
    U{http://twistedmatrix.com/documents/current/core/howto/defer.html}

    When creating a Deferred, you may provide a canceller function, which
    will be called by d.cancel() to let you do any clean-up necessary if the
    user decides not to wait for the deferred to complete.

    @ivar called: A flag which is C{False} until either C{callback} or
        C{errback} is called and afterwards always C{True}.
    @type called: C{bool}

    @ivar paused: A counter of how many unmatched C{pause} calls have been made
        on this instance.
    @type paused: C{int}

    @ivar _suppressAlreadyCalled: A flag used by the cancellation mechanism
        which is C{True} if the Deferred has no canceller and has been
        cancelled, C{False} otherwise.  If C{True}, it can be expected that
        C{callback} or C{errback} will eventually be called and the result
        should be silently discarded.
    @type _suppressAlreadyCalled: C{bool}

    @ivar _runningCallbacks: A flag which is C{True} while this instance is
        executing its callback chain, used to stop recursive execution of
        L{_runCallbacks}
    @type _runningCallbacks: C{bool}

    @ivar _chainedTo: If this Deferred is waiting for the result of another
        Deferred, this is a reference to the other Deferred.  Otherwise, C{None}.
    """

    called = False
    paused = 0
    _debugInfo = None
    _suppressAlreadyCalled = False

    # Are we currently running a user-installed callback?  Meant to prevent
    # recursive running of callbacks when a reentrant call to add a callback is
    # used.
    _runningCallbacks = False

    # Keep this class attribute for now, for compatibility with code that
    # sets it directly.
    debug = False

    _chainedTo = None

    def __init__(self, canceller=None):
        """
        Initialize a L{Deferred}.

        @param canceller: a callable used to stop the pending operation
            scheduled by this L{Deferred} when L{Deferred.cancel} is
            invoked. The canceller will be passed the deferred whose
            cancelation is requested (i.e., self).

            If a canceller is not given, or does not invoke its argument's
            C{callback} or C{errback} method, L{Deferred.cancel} will
            invoke L{Deferred.errback} with a L{CancelledError}.

            Note that if a canceller is not given, C{callback} or
            C{errback} may still be invoked exactly once, even though
            defer.py will have already invoked C{errback}, as described
            above.  This allows clients of code which returns a L{Deferred}
            to cancel it without requiring the L{Deferred} instantiator to
            provide any specific implementation support for cancellation.
            New in 10.1.

        @type canceller: a 1-argument callable which takes a L{Deferred}. The
            return result is ignored.
        """
        self.callbacks = []
        self._canceller = canceller
        if self.debug:
            self._debugInfo = DebugInfo()
            self._debugInfo.creator = traceback.format_stack()[:-1]


    def addCallbacks(self, callback, errback=None,
                     callbackArgs=None, callbackKeywords=None,
                     errbackArgs=None, errbackKeywords=None):
        """
        Add a pair of callbacks (success and error) to this L{Deferred}.

        These will be executed when the 'master' callback is run.

        @return: C{self}.
        @rtype: a L{Deferred}
        """
        assert callable(callback)
        assert errback == None or callable(errback)
        cbs = ((callback, callbackArgs, callbackKeywords),
               (errback or (passthru), errbackArgs, errbackKeywords))
        self.callbacks.append(cbs)

        if self.called:
            self._runCallbacks()
        return self


    def addCallback(self, callback, *args, **kw):
        """
        Convenience method for adding just a callback.

        See L{addCallbacks}.
        """
        return self.addCallbacks(callback, callbackArgs=args,
                                 callbackKeywords=kw)


    def addErrback(self, errback, *args, **kw):
        """
        Convenience method for adding just an errback.

        See L{addCallbacks}.
        """
        return self.addCallbacks(passthru, errback,
                                 errbackArgs=args,
                                 errbackKeywords=kw)


    def addBoth(self, callback, *args, **kw):
        """
        Convenience method for adding a single callable as both a callback
        and an errback.

        See L{addCallbacks}.
        """
        return self.addCallbacks(callback, callback,
                                 callbackArgs=args, errbackArgs=args,
                                 callbackKeywords=kw, errbackKeywords=kw)


    def chainDeferred(self, d):
        """
        Chain another L{Deferred} to this L{Deferred}.

        This method adds callbacks to this L{Deferred} to call C{d}'s callback
        or errback, as appropriate. It is merely a shorthand way of performing
        the following::

            self.addCallbacks(d.callback, d.errback)

        When you chain a deferred d2 to another deferred d1 with
        d1.chainDeferred(d2), you are making d2 participate in the callback
        chain of d1. Thus any event that fires d1 will also fire d2.
        However, the converse is B{not} true; if d2 is fired d1 will not be
        affected.

        Note that unlike the case where chaining is caused by a L{Deferred}
        being returned from a callback, it is possible to cause the call
        stack size limit to be exceeded by chaining many L{Deferred}s
        together with C{chainDeferred}.

        @return: C{self}.
        @rtype: a L{Deferred}
        """
        d._chainedTo = self
        return self.addCallbacks(d.callback, d.errback)


    def callback(self, result):
        """
        Run all success callbacks that have been added to this L{Deferred}.

        Each callback will have its result passed as the first argument to
        the next; this way, the callbacks act as a 'processing chain'.  If
        the success-callback returns a L{Failure} or raises an L{Exception},
        processing will continue on the *error* callback chain.  If a
        callback (or errback) returns another L{Deferred}, this L{Deferred}
        will be chained to it (and further callbacks will not run until that
        L{Deferred} has a result).

        An instance of L{Deferred} may only have either L{callback} or
        L{errback} called on it, and only once.

        @param result: The object which will be passed to the first callback
            added to this L{Deferred} (via L{addCallback}).

        @raise AlreadyCalledError: If L{callback} or L{errback} has already been
            called on this L{Deferred}.
        """
        assert not isinstance(result, Deferred)
        self._startRunCallbacks(result)


    def errback(self, fail=None):
        """
        Run all error callbacks that have been added to this L{Deferred}.

        Each callback will have its result passed as the first
        argument to the next; this way, the callbacks act as a
        'processing chain'. Also, if the error-callback returns a non-Failure
        or doesn't raise an L{Exception}, processing will continue on the
        *success*-callback chain.

        If the argument that's passed to me is not a L{failure.Failure} instance,
        it will be embedded in one. If no argument is passed, a
        L{failure.Failure} instance will be created based on the current
        traceback stack.

        Passing a string as `fail' is deprecated, and will be punished with
        a warning message.

        An instance of L{Deferred} may only have either L{callback} or
        L{errback} called on it, and only once.

        @param fail: The L{Failure} object which will be passed to the first
            errback added to this L{Deferred} (via L{addErrback}).
            Alternatively, a L{Exception} instance from which a L{Failure} will
            be constructed (with no traceback) or C{None} to create a L{Failure}
            instance from the current exception state (with a traceback).

        @raise AlreadyCalledError: If L{callback} or L{errback} has already been
            called on this L{Deferred}.

        @raise NoCurrentExceptionError: If C{fail} is C{None} but there is
            no current exception state.
        """
        if fail is None:
            fail = failure.Failure(captureVars=self.debug)
        elif not isinstance(fail, failure.Failure):
            fail = failure.Failure(fail)

        self._startRunCallbacks(fail)


    def pause(self):
        """
        Stop processing on a L{Deferred} until L{unpause}() is called.
        """
        self.paused = self.paused + 1


    def unpause(self):
        """
        Process all callbacks made since L{pause}() was called.
        """
        self.paused = self.paused - 1
        if self.paused:
            return
        if self.called:
            self._runCallbacks()


    def cancel(self):
        """
        Cancel this L{Deferred}.

        If the L{Deferred} has not yet had its C{errback} or C{callback} method
        invoked, call the canceller function provided to the constructor. If
        that function does not invoke C{callback} or C{errback}, or if no
        canceller function was provided, errback with L{CancelledError}.

        If this L{Deferred} is waiting on another L{Deferred}, forward the
        cancellation to the other L{Deferred}.
        """
        if not self.called:
            canceller = self._canceller
            if canceller:
                canceller(self)
            else:
                # Arrange to eat the callback that will eventually be fired
                # since there was no real canceller.
                self._suppressAlreadyCalled = True
            if not self.called:
                # There was no canceller, or the canceller didn't call
                # callback or errback.
                self.errback(failure.Failure(CancelledError()))
        elif isinstance(self.result, Deferred):
            # Waiting for another deferred -- cancel it instead.
            self.result.cancel()


    def _startRunCallbacks(self, result):
        if self.called:
            if self._suppressAlreadyCalled:
                self._suppressAlreadyCalled = False
                return
            if self.debug:
                if self._debugInfo is None:
                    self._debugInfo = DebugInfo()
                extra = "\n" + self._debugInfo._getDebugTracebacks()
                raise AlreadyCalledError(extra)
            raise AlreadyCalledError
        if self.debug:
            if self._debugInfo is None:
                self._debugInfo = DebugInfo()
            self._debugInfo.invoker = traceback.format_stack()[:-2]
        self.called = True
        self.result = result
        self._runCallbacks()


    def _continuation(self):
        """
        Build a tuple of callback and errback with L{_continue} to be used by
        L{_addContinue} and L{_removeContinue} on another Deferred.
        """
        return ((_CONTINUE, (self,), None),
                (_CONTINUE, (self,), None))


    def _runCallbacks(self):
        """
        Run the chain of callbacks once a result is available.

        This consists of a simple loop over all of the callbacks, calling each
        with the current result and making the current result equal to the
        return value (or raised exception) of that call.

        If C{self._runningCallbacks} is true, this loop won't run at all, since
        it is already running above us on the call stack.  If C{self.paused} is
        true, the loop also won't run, because that's what it means to be
        paused.

        The loop will terminate before processing all of the callbacks if a
        C{Deferred} without a result is encountered.

        If a C{Deferred} I{with} a result is encountered, that result is taken
        and the loop proceeds.

        @note: The implementation is complicated slightly by the fact that
            chaining (associating two Deferreds with each other such that one
            will wait for the result of the other, as happens when a Deferred is
            returned from a callback on another Deferred) is supported
            iteratively rather than recursively, to avoid running out of stack
            frames when processing long chains.
        """
        if self._runningCallbacks:
            # Don't recursively run callbacks
            return

        # Keep track of all the Deferreds encountered while propagating results
        # up a chain.  The way a Deferred gets onto this stack is by having
        # added its _continuation() to the callbacks list of a second Deferred
        # and then that second Deferred being fired.  ie, if ever had _chainedTo
        # set to something other than None, you might end up on this stack.
        chain = [self]

        while chain:
            current = chain[-1]

            if current.paused:
                # This Deferred isn't going to produce a result at all.  All the
                # Deferreds up the chain waiting on it will just have to...
                # wait.
                return

            finished = True
            current._chainedTo = None
            while current.callbacks:
                item = current.callbacks.pop(0)
                callback, args, kw = item[
                    isinstance(current.result, failure.Failure)]
                args = args or ()
                kw = kw or {}

                # Avoid recursion if we can.
                if callback is _CONTINUE:
                    # Give the waiting Deferred our current result and then
                    # forget about that result ourselves.
                    chainee = args[0]
                    chainee.result = current.result
                    current.result = None
                    # Making sure to update _debugInfo
                    if current._debugInfo is not None:
                        current._debugInfo.failResult = None
                    chainee.paused -= 1
                    chain.append(chainee)
                    # Delay cleaning this Deferred and popping it from the chain
                    # until after we've dealt with chainee.
                    finished = False
                    break

                try:
                    current._runningCallbacks = True
                    try:
                        current.result = callback(current.result, *args, **kw)
                        if current.result is current:
                            warnAboutFunction(
                                callback,
                                "Callback returned the Deferred "
                                "it was attached to; this breaks the "
                                "callback chain and will raise an "
                                "exception in the future.")
                    finally:
                        current._runningCallbacks = False
                except:
                    # Including full frame information in the Failure is quite
                    # expensive, so we avoid it unless self.debug is set.
                    current.result = failure.Failure(captureVars=self.debug)
                else:
                    if isinstance(current.result, Deferred):
                        # The result is another Deferred.  If it has a result,
                        # we can take it and keep going.
                        resultResult = getattr(current.result, 'result', _NO_RESULT)
                        if resultResult is _NO_RESULT or isinstance(resultResult, Deferred) or current.result.paused:
                            # Nope, it didn't.  Pause and chain.
                            current.pause()
                            current._chainedTo = current.result
                            # Note: current.result has no result, so it's not
                            # running its callbacks right now.  Therefore we can
                            # append to the callbacks list directly instead of
                            # using addCallbacks.
                            current.result.callbacks.append(current._continuation())
                            break
                        else:
                            # Yep, it did.  Steal it.
                            current.result.result = None
                            # Make sure _debugInfo's failure state is updated.
                            if current.result._debugInfo is not None:
                                current.result._debugInfo.failResult = None
                            current.result = resultResult

            if finished:
                # As much of the callback chain - perhaps all of it - as can be
                # processed right now has been.  The current Deferred is waiting on
                # another Deferred or for more callbacks.  Before finishing with it,
                # make sure its _debugInfo is in the proper state.
                if isinstance(current.result, failure.Failure):
                    # Stash the Failure in the _debugInfo for unhandled error
                    # reporting.
                    current.result.cleanFailure()
                    if current._debugInfo is None:
                        current._debugInfo = DebugInfo()
                    current._debugInfo.failResult = current.result
                else:
                    # Clear out any Failure in the _debugInfo, since the result
                    # is no longer a Failure.
                    if current._debugInfo is not None:
                        current._debugInfo.failResult = None

                # This Deferred is done, pop it from the chain and move back up
                # to the Deferred which supplied us with our result.
                chain.pop()


    def __str__(self):
        """
        Return a string representation of this C{Deferred}.
        """
        cname = self.__class__.__name__
        result = getattr(self, 'result', _NO_RESULT)
        myID = id(self)
        if self._chainedTo is not None:
            result = ' waiting on Deferred at 0x%x' % (id(self._chainedTo),)
        elif result is _NO_RESULT:
            result = ''
        else:
            result = ' current result: %r' % (result,)
        return "<%s at 0x%x%s>" % (cname, myID, result)
    __repr__ = __str__



class DebugInfo:
    """
    Deferred debug helper.
    """

    failResult = None

    def _getDebugTracebacks(self):
        info = ''
        if hasattr(self, "creator"):
            info += " C: Deferred was created:\n C:"
            info += "".join(self.creator).rstrip().replace("\n","\n C:")
            info += "\n"
        if hasattr(self, "invoker"):
            info += " I: First Invoker was:\n I:"
            info += "".join(self.invoker).rstrip().replace("\n","\n I:")
            info += "\n"
        return info


    def __del__(self):
        """
        Print tracebacks and die.

        If the *last* (and I do mean *last*) callback leaves me in an error
        state, print a traceback (if said errback is a L{Failure}).
        """
        if self.failResult is not None:
            log.msg("Unhandled error in Deferred:", isError=True)
            debugInfo = self._getDebugTracebacks()
            if debugInfo != '':
                log.msg("(debug: " + debugInfo + ")", isError=True)
            log.err(self.failResult)



@comparable
class FirstError(Exception):
    """
    First error to occur in a L{DeferredList} if C{fireOnOneErrback} is set.

    @ivar subFailure: The L{Failure} that occurred.
    @type subFailure: L{Failure}

    @ivar index: The index of the L{Deferred} in the L{DeferredList} where
        it happened.
    @type index: C{int}
    """
    def __init__(self, failure, index):
        Exception.__init__(self, failure, index)
        self.subFailure = failure
        self.index = index


    def __repr__(self):
        """
        The I{repr} of L{FirstError} instances includes the repr of the
        wrapped failure's exception and the index of the L{FirstError}.
        """
        return 'FirstError[#%d, %r]' % (self.index, self.subFailure.value)


    def __str__(self):
        """
        The I{str} of L{FirstError} instances includes the I{str} of the
        entire wrapped failure (including its traceback and exception) and
        the index of the L{FirstError}.
        """
        return 'FirstError[#%d, %s]' % (self.index, self.subFailure)


    def __cmp__(self, other):
        """
        Comparison between L{FirstError} and other L{FirstError} instances
        is defined as the comparison of the index and sub-failure of each
        instance.  L{FirstError} instances don't compare equal to anything
        that isn't a L{FirstError} instance.

        @since: 8.2
        """
        if isinstance(other, FirstError):
            return cmp(
                (self.index, self.subFailure),
                (other.index, other.subFailure))
        return -1



class DeferredList(Deferred):
    """
    L{DeferredList} is a tool for collecting the results of several Deferreds.

    This tracks a list of L{Deferred}s for their results, and makes a single
    callback when they have all completed.  By default, the ultimate result is a
    list of (success, result) tuples, 'success' being a boolean.
    L{DeferredList} exposes the same API that L{Deferred} does, so callbacks and
    errbacks can be added to it in the same way.

    L{DeferredList} is implemented by adding callbacks and errbacks to each
    L{Deferred} in the list passed to it.  This means callbacks and errbacks
    added to the Deferreds before they are passed to L{DeferredList} will change
    the result that L{DeferredList} sees (i.e., L{DeferredList} is not special).
    Callbacks and errbacks can also be added to the Deferreds after they are
    passed to L{DeferredList} and L{DeferredList} may change the result that
    they see.

    See the documentation for the C{__init__} arguments for more information.

    @ivar _deferredList: The C{list} of L{Deferred}s to track.
    """

    fireOnOneCallback = False
    fireOnOneErrback = False

    def __init__(self, deferredList, fireOnOneCallback=False,
                 fireOnOneErrback=False, consumeErrors=False):
        """
        Initialize a DeferredList.

        @param deferredList: The list of deferreds to track.
        @type deferredList:  C{list} of L{Deferred}s

        @param fireOnOneCallback: (keyword param) a flag indicating that this
            L{DeferredList} will fire when the first L{Deferred} in
            C{deferredList} fires with a non-failure result without waiting for
            any of the other Deferreds.  When this flag is set, the DeferredList
            will fire with a two-tuple: the first element is the result of the
            Deferred which fired; the second element is the index in
            C{deferredList} of that Deferred.
        @type fireOnOneCallback: C{bool}

        @param fireOnOneErrback: (keyword param) a flag indicating that this
            L{DeferredList} will fire when the first L{Deferred} in
            C{deferredList} fires with a failure result without waiting for any
            of the other Deferreds.  When this flag is set, if a Deferred in the
            list errbacks, the DeferredList will errback with a L{FirstError}
            failure wrapping the failure of that Deferred.
        @type fireOnOneErrback: C{bool}

        @param consumeErrors: (keyword param) a flag indicating that failures in
            any of the included L{Deferreds} should not be propagated to
            errbacks added to the individual L{Deferreds} after this
            L{DeferredList} is constructed.  After constructing the
            L{DeferredList}, any errors in the individual L{Deferred}s will be
            converted to a callback result of C{None}.  This is useful to
            prevent spurious 'Unhandled error in Deferred' messages from being
            logged.  This does not prevent C{fireOnOneErrback} from working.
        @type consumeErrors: C{bool}
        """
        self._deferredList = list(deferredList)
        self.resultList = [None] * len(self._deferredList)
        Deferred.__init__(self)
        if len(self._deferredList) == 0 and not fireOnOneCallback:
            self.callback(self.resultList)

        # These flags need to be set *before* attaching callbacks to the
        # deferreds, because the callbacks use these flags, and will run
        # synchronously if any of the deferreds are already fired.
        self.fireOnOneCallback = fireOnOneCallback
        self.fireOnOneErrback = fireOnOneErrback
        self.consumeErrors = consumeErrors
        self.finishedCount = 0

        index = 0
        for deferred in self._deferredList:
            deferred.addCallbacks(self._cbDeferred, self._cbDeferred,
                                  callbackArgs=(index,SUCCESS),
                                  errbackArgs=(index,FAILURE))
            index = index + 1


    def _cbDeferred(self, result, index, succeeded):
        """
        (internal) Callback for when one of my deferreds fires.
        """
        self.resultList[index] = (succeeded, result)

        self.finishedCount += 1
        if not self.called:
            if succeeded == SUCCESS and self.fireOnOneCallback:
                self.callback((result, index))
            elif succeeded == FAILURE and self.fireOnOneErrback:
                self.errback(failure.Failure(FirstError(result, index)))
            elif self.finishedCount == len(self.resultList):
                self.callback(self.resultList)

        if succeeded == FAILURE and self.consumeErrors:
            result = None

        return result


    def cancel(self):
        """
        Cancel this L{DeferredList}.

        If the L{DeferredList} hasn't fired yet, cancel every L{Deferred} in
        the list.

        If the L{DeferredList} has fired, including the case where the
        C{fireOnOneCallback}/C{fireOnOneErrback} flag is set and the
        L{DeferredList} fires because one L{Deferred} in the list fires with a
        non-failure/failure result, do nothing in the C{cancel} method.
        """
        if not self.called:
            for deferred in self._deferredList:
                try:
                    deferred.cancel()
                except:
                    log.err(
                        _why="Exception raised from user supplied canceller")


def _parseDListResult(l, fireOnOneErrback=False):
    if __debug__:
        for success, value in l:
            assert success
    return [x[1] for x in l]



def gatherResults(deferredList, consumeErrors=False):
    """
    Returns, via a L{Deferred}, a list with the results of the given
    L{Deferred}s - in effect, a "join" of multiple deferred operations.

    The returned L{Deferred} will fire when I{all} of the provided L{Deferred}s
    have fired, or when any one of them has failed.

    This method can be cancelled by calling the C{cancel} method of the
    L{Deferred}, all the L{Deferred}s in the list will be cancelled.

    This differs from L{DeferredList} in that you don't need to parse
    the result for success/failure.

    @type deferredList:  C{list} of L{Deferred}s

    @param consumeErrors: (keyword param) a flag, defaulting to False,
        indicating that failures in any of the given L{Deferreds} should not be
        propagated to errbacks added to the individual L{Deferreds} after this
        L{gatherResults} invocation.  Any such errors in the individual
        L{Deferred}s will be converted to a callback result of C{None}.  This
        is useful to prevent spurious 'Unhandled error in Deferred' messages
        from being logged.  This parameter is available since 11.1.0.
    @type consumeErrors: C{bool}
    """
    d = DeferredList(deferredList, fireOnOneErrback=True,
                                   consumeErrors=consumeErrors)
    d.addCallback(_parseDListResult)
    return d



# Constants for use with DeferredList

SUCCESS = True
FAILURE = False



## deferredGenerator

class waitForDeferred:
    """
    See L{deferredGenerator}.
    """

    def __init__(self, d):
        if not isinstance(d, Deferred):
            raise TypeError("You must give waitForDeferred a Deferred. You gave it %r." % (d,))
        self.d = d


    def getResult(self):
        if isinstance(self.result, failure.Failure):
            self.result.raiseException()
        return self.result



def _deferGenerator(g, deferred):
    """
    See L{deferredGenerator}.
    """
    result = None

    # This function is complicated by the need to prevent unbounded recursion
    # arising from repeatedly yielding immediately ready deferreds.  This while
    # loop and the waiting variable solve that by manually unfolding the
    # recursion.

    waiting = [True, # defgen is waiting for result?
               None] # result

    while 1:
        try:
            result = next(g)
        except StopIteration:
            deferred.callback(result)
            return deferred
        except:
            deferred.errback()
            return deferred

        # Deferred.callback(Deferred) raises an error; we catch this case
        # early here and give a nicer error message to the user in case
        # they yield a Deferred.
        if isinstance(result, Deferred):
            return fail(TypeError("Yield waitForDeferred(d), not d!"))

        if isinstance(result, waitForDeferred):
            # a waitForDeferred was yielded, get the result.
            # Pass result in so it don't get changed going around the loop
            # This isn't a problem for waiting, as it's only reused if
            # gotResult has already been executed.
            def gotResult(r, result=result):
                result.result = r
                if waiting[0]:
                    waiting[0] = False
                    waiting[1] = r
                else:
                    _deferGenerator(g, deferred)
            result.d.addBoth(gotResult)
            if waiting[0]:
                # Haven't called back yet, set flag so that we get reinvoked
                # and return from the loop
                waiting[0] = False
                return deferred
            # Reset waiting to initial values for next loop
            waiting[0] = True
            waiting[1] = None

            result = None



def deferredGenerator(f):
    """
    L{deferredGenerator} and L{waitForDeferred} help you write
    L{Deferred}-using code that looks like a regular sequential function.
    Consider the use of L{inlineCallbacks} instead, which can accomplish
    the same thing in a more concise manner.

    There are two important functions involved: L{waitForDeferred}, and
    L{deferredGenerator}.  They are used together, like this::

        @deferredGenerator
        def thingummy():
            thing = waitForDeferred(makeSomeRequestResultingInDeferred())
            yield thing
            thing = thing.getResult()
            print thing #the result! hoorj!

    L{waitForDeferred} returns something that you should immediately yield; when
    your generator is resumed, calling C{thing.getResult()} will either give you
    the result of the L{Deferred} if it was a success, or raise an exception if it
    was a failure.  Calling C{getResult} is B{absolutely mandatory}.  If you do
    not call it, I{your program will not work}.

    L{deferredGenerator} takes one of these waitForDeferred-using generator
    functions and converts it into a function that returns a L{Deferred}. The
    result of the L{Deferred} will be the last value that your generator yielded
    unless the last value is a L{waitForDeferred} instance, in which case the
    result will be C{None}.  If the function raises an unhandled exception, the
    L{Deferred} will errback instead.  Remember that C{return result} won't work;
    use C{yield result; return} in place of that.

    Note that not yielding anything from your generator will make the L{Deferred}
    result in C{None}. Yielding a L{Deferred} from your generator is also an error
    condition; always yield C{waitForDeferred(d)} instead.

    The L{Deferred} returned from your deferred generator may also errback if your
    generator raised an exception.  For example::

        @deferredGenerator
        def thingummy():
            thing = waitForDeferred(makeSomeRequestResultingInDeferred())
            yield thing
            thing = thing.getResult()
            if thing == 'I love Twisted':
                # will become the result of the Deferred
                yield 'TWISTED IS GREAT!'
                return
            else:
                # will trigger an errback
                raise Exception('DESTROY ALL LIFE')

    Put succinctly, these functions connect deferred-using code with this 'fake
    blocking' style in both directions: L{waitForDeferred} converts from a
    L{Deferred} to the 'blocking' style, and L{deferredGenerator} converts from the
    'blocking' style to a L{Deferred}.
    """
    @wraps(f)
    def unwindGenerator(*args, **kwargs):
        return _deferGenerator(f(*args, **kwargs), Deferred())
    return unwindGenerator


## inlineCallbacks



class _DefGen_Return(BaseException):
    def __init__(self, value):
        self.value = value



def returnValue(val):
    """
    Return val from a L{inlineCallbacks} generator.

    Note: this is currently implemented by raising an exception
    derived from L{BaseException}.  You might want to change any
    'except:' clauses to an 'except Exception:' clause so as not to
    catch this exception.

    Also: while this function currently will work when called from
    within arbitrary functions called from within the generator, do
    not rely upon this behavior.
    """
    raise _DefGen_Return(val)



def _inlineCallbacks(result, g, deferred):
    """
    See L{inlineCallbacks}.
    """
    # This function is complicated by the need to prevent unbounded recursion
    # arising from repeatedly yielding immediately ready deferreds.  This while
    # loop and the waiting variable solve that by manually unfolding the
    # recursion.

    waiting = [True, # waiting for result?
               None] # result

    while 1:
        try:
            # Send the last result back as the result of the yield expression.
            isFailure = isinstance(result, failure.Failure)
            if isFailure:
                result = result.throwExceptionIntoGenerator(g)
            else:
                result = g.send(result)
        except StopIteration:
            # fell off the end, or "return" statement
            deferred.callback(None)
            return deferred
        except _DefGen_Return as e:
            # returnValue() was called; time to give a result to the original
            # Deferred.  First though, let's try to identify the potentially
            # confusing situation which results when returnValue() is
            # accidentally invoked from a different function, one that wasn't
            # decorated with @inlineCallbacks.

            # The traceback starts in this frame (the one for
            # _inlineCallbacks); the next one down should be the application
            # code.
            appCodeTrace = exc_info()[2].tb_next
            if isFailure:
                # If we invoked this generator frame by throwing an exception
                # into it, then throwExceptionIntoGenerator will consume an
                # additional stack frame itself, so we need to skip that too.
                appCodeTrace = appCodeTrace.tb_next
            # Now that we've identified the frame being exited by the
            # exception, let's figure out if returnValue was called from it
            # directly.  returnValue itself consumes a stack frame, so the
            # application code will have a tb_next, but it will *not* have a
            # second tb_next.
            if appCodeTrace.tb_next.tb_next:
                # If returnValue was invoked non-local to the frame which it is
                # exiting, identify the frame that ultimately invoked
                # returnValue so that we can warn the user, as this behavior is
                # confusing.
                ultimateTrace = appCodeTrace
                while ultimateTrace.tb_next.tb_next:
                    ultimateTrace = ultimateTrace.tb_next
                filename = ultimateTrace.tb_frame.f_code.co_filename
                lineno = ultimateTrace.tb_lineno
                warnings.warn_explicit(
                    "returnValue() in %r causing %r to exit: "
                    "returnValue should only be invoked by functions decorated "
                    "with inlineCallbacks" % (
                        ultimateTrace.tb_frame.f_code.co_name,
                        appCodeTrace.tb_frame.f_code.co_name),
                    DeprecationWarning, filename, lineno)
            deferred.callback(e.value)
            return deferred
        except:
            deferred.errback()
            return deferred

        if isinstance(result, Deferred):
            # a deferred was yielded, get the result.
            def gotResult(r):
                if waiting[0]:
                    waiting[0] = False
                    waiting[1] = r
                else:
                    _inlineCallbacks(r, g, deferred)

            result.addBoth(gotResult)
            if waiting[0]:
                # Haven't called back yet, set flag so that we get reinvoked
                # and return from the loop
                waiting[0] = False
                return deferred

            result = waiting[1]
            # Reset waiting to initial values for next loop.  gotResult uses
            # waiting, but this isn't a problem because gotResult is only
            # executed once, and if it hasn't been executed yet, the return
            # branch above would have been taken.


            waiting[0] = True
            waiting[1] = None


    return deferred



def inlineCallbacks(f):
    """
    inlineCallbacks helps you write L{Deferred}-using code that looks like a
    regular sequential function. For example::

        @inlineCallBacks
        def thingummy():
            thing = yield makeSomeRequestResultingInDeferred()
            print(thing)  # the result! hoorj!

    When you call anything that results in a L{Deferred}, you can simply yield it;
    your generator will automatically be resumed when the Deferred's result is
    available. The generator will be sent the result of the L{Deferred} with the
    'send' method on generators, or if the result was a failure, 'throw'.

    Things that are not L{Deferred}s may also be yielded, and your generator
    will be resumed with the same object sent back. This means C{yield}
    performs an operation roughly equivalent to L{maybeDeferred}.

    Your inlineCallbacks-enabled generator will return a L{Deferred} object, which
    will result in the return value of the generator (or will fail with a
    failure object if your generator raises an unhandled exception). Note that
    you can't use C{return result} to return a value; use C{returnValue(result)}
    instead. Falling off the end of the generator, or simply using C{return}
    will cause the L{Deferred} to have a result of C{None}.

    Be aware that L{returnValue} will not accept a L{Deferred} as a parameter.
    If you believe the thing you'd like to return could be a L{Deferred}, do
    this::

        result = yield result
        returnValue(result)

    The L{Deferred} returned from your deferred generator may errback if your
    generator raised an exception::

        @inlineCallbacks
        def thingummy():
            thing = yield makeSomeRequestResultingInDeferred()
            if thing == 'I love Twisted':
                # will become the result of the Deferred
                returnValue('TWISTED IS GREAT!')
            else:
                # will trigger an errback
                raise Exception('DESTROY ALL LIFE')
    """
    @wraps(f)
    def unwindGenerator(*args, **kwargs):
        try:
            gen = f(*args, **kwargs)
        except _DefGen_Return:
            raise TypeError(
                "inlineCallbacks requires %r to produce a generator; instead"
                "caught returnValue being used in a non-generator" % (f,))
        if not isinstance(gen, types.GeneratorType):
            raise TypeError(
                "inlineCallbacks requires %r to produce a generator; "
                "instead got %r" % (f, gen))
        return _inlineCallbacks(None, gen, Deferred())
    return unwindGenerator


## DeferredLock/DeferredQueue

class _ConcurrencyPrimitive(object):
    def __init__(self):
        self.waiting = []


    def _releaseAndReturn(self, r):
        self.release()
        return r


    def run(*args, **kwargs):
        """
        Acquire, run, release.

        This function takes a callable as its first argument and any
        number of other positional and keyword arguments.  When the
        lock or semaphore is acquired, the callable will be invoked
        with those arguments.

        The callable may return a L{Deferred}; if it does, the lock or
        semaphore won't be released until that L{Deferred} fires.

        @return: L{Deferred} of function result.
        """
        if len(args) < 2:
            if not args:
                raise TypeError("run() takes at least 2 arguments, none given.")
            raise TypeError("%s.run() takes at least 2 arguments, 1 given" % (
                args[0].__class__.__name__,))
        self, f = args[:2]
        args = args[2:]

        def execute(ignoredResult):
            d = maybeDeferred(f, *args, **kwargs)
            d.addBoth(self._releaseAndReturn)
            return d

        d = self.acquire()
        d.addCallback(execute)
        return d



class DeferredLock(_ConcurrencyPrimitive):
    """
    A lock for event driven systems.

    @ivar locked: C{True} when this Lock has been acquired, false at all other
        times.  Do not change this value, but it is useful to examine for the
        equivalent of a "non-blocking" acquisition.
    """

    locked = False


    def _cancelAcquire(self, d):
        """
        Remove a deferred d from our waiting list, as the deferred has been
        canceled.

        Note: We do not need to wrap this in a try/except to catch d not
        being in self.waiting because this canceller will not be called if
        d has fired. release() pops a deferred out of self.waiting and
        calls it, so the canceller will no longer be called.

        @param d: The deferred that has been canceled.
        """
        self.waiting.remove(d)


    def acquire(self):
        """
        Attempt to acquire the lock.  Returns a L{Deferred} that fires on
        lock acquisition with the L{DeferredLock} as the value.  If the lock
        is locked, then the Deferred is placed at the end of a waiting list.

        @return: a L{Deferred} which fires on lock acquisition.
        @rtype: a L{Deferred}
        """
        d = Deferred(canceller=self._cancelAcquire)
        if self.locked:
            self.waiting.append(d)
        else:
            self.locked = True
            d.callback(self)
        return d


    def release(self):
        """
        Release the lock.  If there is a waiting list, then the first
        L{Deferred} in that waiting list will be called back.

        Should be called by whomever did the L{acquire}() when the shared
        resource is free.
        """
        assert self.locked, "Tried to release an unlocked lock"
        self.locked = False
        if self.waiting:
            # someone is waiting to acquire lock
            self.locked = True
            d = self.waiting.pop(0)
            d.callback(self)



class DeferredSemaphore(_ConcurrencyPrimitive):
    """
    A semaphore for event driven systems.

    If you are looking into this as a means of limiting parallelism, you might
    find L{twisted.internet.task.Cooperator} more useful.

    @ivar tokens: At most this many users may acquire this semaphore at
        once.
    @type tokens: C{int}

    @ivar limit: The difference between C{tokens} and the number of users
        which have currently acquired this semaphore.
    @type limit: C{int}
    """

    def __init__(self, tokens):
        _ConcurrencyPrimitive.__init__(self)
        if tokens < 1:
            raise ValueError("DeferredSemaphore requires tokens >= 1")
        self.tokens = tokens
        self.limit = tokens


    def _cancelAcquire(self, d):
        """
        Remove a deferred d from our waiting list, as the deferred has been
        canceled.

        Note: We do not need to wrap this in a try/except to catch d not
        being in self.waiting because this canceller will not be called if
        d has fired. release() pops a deferred out of self.waiting and
        calls it, so the canceller will no longer be called.

        @param d: The deferred that has been canceled.
        """
        self.waiting.remove(d)


    def acquire(self):
        """
        Attempt to acquire the token.

        @return: a L{Deferred} which fires on token acquisition.
        """
        assert self.tokens >= 0, "Internal inconsistency??  tokens should never be negative"
        d = Deferred(canceller=self._cancelAcquire)
        if not self.tokens:
            self.waiting.append(d)
        else:
            self.tokens = self.tokens - 1
            d.callback(self)
        return d


    def release(self):
        """
        Release the token.

        Should be called by whoever did the L{acquire}() when the shared
        resource is free.
        """
        assert self.tokens < self.limit, "Someone released me too many times: too many tokens!"
        self.tokens = self.tokens + 1
        if self.waiting:
            # someone is waiting to acquire token
            self.tokens = self.tokens - 1
            d = self.waiting.pop(0)
            d.callback(self)



class QueueOverflow(Exception):
    pass



class QueueUnderflow(Exception):
    pass



class DeferredQueue(object):
    """
    An event driven queue.

    Objects may be added as usual to this queue.  When an attempt is
    made to retrieve an object when the queue is empty, a L{Deferred} is
    returned which will fire when an object becomes available.

    @ivar size: The maximum number of objects to allow into the queue
    at a time.  When an attempt to add a new object would exceed this
    limit, L{QueueOverflow} is raised synchronously.  C{None} for no limit.

    @ivar backlog: The maximum number of L{Deferred} gets to allow at
    one time.  When an attempt is made to get an object which would
    exceed this limit, L{QueueUnderflow} is raised synchronously.  C{None}
    for no limit.
    """

    def __init__(self, size=None, backlog=None):
        self.waiting = []
        self.pending = []
        self.size = size
        self.backlog = backlog


    def _cancelGet(self, d):
        """
        Remove a deferred d from our waiting list, as the deferred has been
        canceled.

        Note: We do not need to wrap this in a try/except to catch d not
        being in self.waiting because this canceller will not be called if
        d has fired. put() pops a deferred out of self.waiting and calls
        it, so the canceller will no longer be called.

        @param d: The deferred that has been canceled.
        """
        self.waiting.remove(d)


    def put(self, obj):
        """
        Add an object to this queue.

        @raise QueueOverflow: Too many objects are in this queue.
        """
        if self.waiting:
            self.waiting.pop(0).callback(obj)
        elif self.size is None or len(self.pending) < self.size:
            self.pending.append(obj)
        else:
            raise QueueOverflow()


    def get(self):
        """
        Attempt to retrieve and remove an object from the queue.

        @return: a L{Deferred} which fires with the next object available in
        the queue.

        @raise QueueUnderflow: Too many (more than C{backlog})
        L{Deferred}s are already waiting for an object from this queue.
        """
        if self.pending:
            return succeed(self.pending.pop(0))
        elif self.backlog is None or len(self.waiting) < self.backlog:
            d = Deferred(canceller=self._cancelGet)
            self.waiting.append(d)
            return d
        else:
            raise QueueUnderflow()



class AlreadyTryingToLockError(Exception):
    """
    Raised when L{DeferredFilesystemLock.deferUntilLocked} is called twice on a
    single L{DeferredFilesystemLock}.
    """



class DeferredFilesystemLock(lockfile.FilesystemLock):
    """
    A L{FilesystemLock} that allows for a L{Deferred} to be fired when the lock is
    acquired.

    @ivar _scheduler: The object in charge of scheduling retries. In this
        implementation this is parameterized for testing.

    @ivar _interval: The retry interval for an L{IReactorTime} based scheduler.

    @ivar _tryLockCall: A L{DelayedCall} based on C{_interval} that will manage
        the next retry for aquiring the lock.

    @ivar _timeoutCall: A L{DelayedCall} based on C{deferUntilLocked}'s timeout
        argument.  This is in charge of timing out our attempt to acquire the
        lock.
    """
    _interval = 1
    _tryLockCall = None
    _timeoutCall = None


    def __init__(self, name, scheduler=None):
        """
        @param name: The name of the lock to acquire
        @param scheduler: An object which provides L{IReactorTime}
        """
        lockfile.FilesystemLock.__init__(self, name)

        if scheduler is None:
            from twisted.internet import reactor
            scheduler = reactor

        self._scheduler = scheduler


    def deferUntilLocked(self, timeout=None):
        """
        Wait until we acquire this lock.  This method is not safe for
        concurrent use.

        @type timeout: C{float} or C{int}
        @param timeout: the number of seconds after which to time out if the
            lock has not been acquired.

        @return: a L{Deferred} which will callback when the lock is acquired, or
            errback with a L{TimeoutError} after timing out or an
            L{AlreadyTryingToLockError} if the L{deferUntilLocked} has already
            been called and not successfully locked the file.
        """
        if self._tryLockCall is not None:
            return fail(
                AlreadyTryingToLockError(
                    "deferUntilLocked isn't safe for concurrent use."))

        d = Deferred()

        def _cancelLock():
            self._tryLockCall.cancel()
            self._tryLockCall = None
            self._timeoutCall = None

            if self.lock():
                d.callback(None)
            else:
                d.errback(failure.Failure(
                        TimeoutError("Timed out aquiring lock: %s after %fs" % (
                                self.name,
                                timeout))))

        def _tryLock():
            if self.lock():
                if self._timeoutCall is not None:
                    self._timeoutCall.cancel()
                    self._timeoutCall = None

                self._tryLockCall = None

                d.callback(None)
            else:
                if timeout is not None and self._timeoutCall is None:
                    self._timeoutCall = self._scheduler.callLater(
                        timeout, _cancelLock)

                self._tryLockCall = self._scheduler.callLater(
                    self._interval, _tryLock)

        _tryLock()

        return d



__all__ = ["Deferred", "DeferredList", "succeed", "fail", "FAILURE", "SUCCESS",
           "AlreadyCalledError", "TimeoutError", "gatherResults",
           "maybeDeferred",
           "waitForDeferred", "deferredGenerator", "inlineCallbacks",
           "returnValue",
           "DeferredLock", "DeferredSemaphore", "DeferredQueue",
           "DeferredFilesystemLock", "AlreadyTryingToLockError",
          ]