This file is indexed.

/usr/lib/python3/dist-packages/patsy/util.py is in python3-patsy 0.2.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# This file is part of Patsy
# Copyright (C) 2011-2013 Nathaniel Smith <njs@pobox.com>
# See file COPYING for license information.

# Some generic utilities.

__all__ = ["atleast_2d_column_default", "uniqueify_list",
           "widest_float", "widest_complex", "wide_dtype_for", "widen",
           "repr_pretty_delegate", "repr_pretty_impl",
           "SortAnythingKey", "safe_scalar_isnan", "safe_isnan",
           "iterable",
           ]

import sys
import numpy as np
from io import StringIO
from .compat import optional_dep_ok

try:
    import pandas
except ImportError:
    have_pandas = False
else:
    have_pandas = True

# Pandas versions < 0.9.0 don't have Categorical
# Can drop this guard whenever we drop support for such older versions of
# pandas.
have_pandas_categorical = (have_pandas and hasattr(pandas, "Categorical"))

# Passes through Series and DataFrames, call np.asarray() on everything else
def asarray_or_pandas(a, copy=False, dtype=None, subok=False):
    if have_pandas:
        if isinstance(a, (pandas.Series, pandas.DataFrame)):
            # The .name attribute on Series is discarded when passing through
            # the constructor:
            #   https://github.com/pydata/pandas/issues/1578
            extra_args = {}
            if hasattr(a, "name"):
                extra_args["name"] = a.name
            return a.__class__(a, copy=copy, dtype=dtype, **extra_args)
    return np.array(a, copy=copy, dtype=dtype, subok=subok)

def test_asarray_or_pandas():
    assert type(asarray_or_pandas([1, 2, 3])) is np.ndarray
    assert type(asarray_or_pandas(np.matrix([[1, 2, 3]]))) is np.ndarray
    assert type(asarray_or_pandas(np.matrix([[1, 2, 3]]), subok=True)) is np.matrix
    a = np.array([1, 2, 3])
    assert asarray_or_pandas(a) is a
    a_copy = asarray_or_pandas(a, copy=True)
    assert np.array_equal(a, a_copy)
    a_copy[0] = 100
    assert not np.array_equal(a, a_copy)
    assert np.allclose(asarray_or_pandas([1, 2, 3], dtype=float),
                       [1.0, 2.0, 3.0])
    assert asarray_or_pandas([1, 2, 3], dtype=float).dtype == np.dtype(float)
    a_view = asarray_or_pandas(a, dtype=a.dtype)
    a_view[0] = 99
    assert a[0] == 99
    global have_pandas
    if have_pandas:
        s = pandas.Series([1, 2, 3], name="A", index=[10, 20, 30])
        s_view1 = asarray_or_pandas(s)
        assert s_view1.name == "A"
        assert np.array_equal(s_view1.index, [10, 20, 30])
        s_view1[10] = 101
        assert s[10] == 101
        s_copy = asarray_or_pandas(s, copy=True)
        assert s_copy.name == "A"
        assert np.array_equal(s_copy.index, [10, 20, 30])
        assert np.array_equal(s_copy, s)
        s_copy[10] = 100
        assert not np.array_equal(s_copy, s)
        assert asarray_or_pandas(s, dtype=float).dtype == np.dtype(float)
        s_view2 = asarray_or_pandas(s, dtype=s.dtype)
        assert s_view2.name == "A"
        assert np.array_equal(s_view2.index, [10, 20, 30])
        s_view2[10] = 99
        assert s[10] == 99

        df = pandas.DataFrame([[1, 2, 3]],
                              columns=["A", "B", "C"],
                              index=[10])
        df_view1 = asarray_or_pandas(df)
        df_view1.ix[10, "A"] = 101
        assert np.array_equal(df_view1.columns, ["A", "B", "C"])
        assert np.array_equal(df_view1.index, [10])
        assert df.ix[10, "A"] == 101
        df_copy = asarray_or_pandas(df, copy=True)
        assert np.array_equal(df_copy, df)
        assert np.array_equal(df_copy.columns, ["A", "B", "C"])
        assert np.array_equal(df_copy.index, [10])
        df_copy.ix[10, "A"] = 100
        assert not np.array_equal(df_copy, df)
        df_converted = asarray_or_pandas(df, dtype=float)
        assert df_converted["A"].dtype == np.dtype(float)
        assert np.allclose(df_converted, df)
        assert np.array_equal(df_converted.columns, ["A", "B", "C"])
        assert np.array_equal(df_converted.index, [10])
        df_view2 = asarray_or_pandas(df, dtype=df["A"].dtype)
        assert np.array_equal(df_view2.columns, ["A", "B", "C"])
        assert np.array_equal(df_view2.index, [10])
        # This actually makes a copy, not a view, because of a pandas bug:
        #   https://github.com/pydata/pandas/issues/1572
        assert np.array_equal(df, df_view2)
        # df_view2[0][0] = 99
        # assert df[0][0] == 99

        had_pandas = have_pandas
        try:
            have_pandas = False
            assert (type(asarray_or_pandas(pandas.Series([1, 2, 3])))
                    is np.ndarray)
            assert (type(asarray_or_pandas(pandas.DataFrame([[1, 2, 3]])))
                    is np.ndarray)
        finally:
            have_pandas = had_pandas

# Like np.atleast_2d, but this converts lower-dimensional arrays into columns,
# instead of rows. It also converts ndarray subclasses into basic ndarrays,
# which makes it easier to guarantee correctness. However, there are many
# places in the code where we want to preserve pandas indexing information if
# present, so there is also an option 
def atleast_2d_column_default(a, preserve_pandas=False):
    if preserve_pandas and have_pandas:
        if isinstance(a, pandas.Series):
            return pandas.DataFrame(a)
        elif isinstance(a, pandas.DataFrame):
            return a
        # fall through
    a = np.asarray(a)
    a = np.atleast_1d(a)
    if a.ndim <= 1:
        a = a.reshape((-1, 1))
    assert a.ndim >= 2
    return a

def test_atleast_2d_column_default():
    assert np.all(atleast_2d_column_default([1, 2, 3]) == [[1], [2], [3]])

    assert atleast_2d_column_default(1).shape == (1, 1)
    assert atleast_2d_column_default([1]).shape == (1, 1)
    assert atleast_2d_column_default([[1]]).shape == (1, 1)
    assert atleast_2d_column_default([[[1]]]).shape == (1, 1, 1)

    assert atleast_2d_column_default([1, 2, 3]).shape == (3, 1)
    assert atleast_2d_column_default([[1], [2], [3]]).shape == (3, 1)

    assert type(atleast_2d_column_default(np.matrix(1))) == np.ndarray

    global have_pandas
    if have_pandas:
        assert (type(atleast_2d_column_default(pandas.Series([1, 2])))
                == np.ndarray)
        assert (type(atleast_2d_column_default(pandas.DataFrame([[1], [2]])))
                == np.ndarray)
        assert (type(atleast_2d_column_default(pandas.Series([1, 2]),
                                               preserve_pandas=True))
                == pandas.DataFrame)
        assert (type(atleast_2d_column_default(pandas.DataFrame([[1], [2]]),
                                               preserve_pandas=True))
                == pandas.DataFrame)
        s = pandas.Series([10, 11,12], name="hi", index=["a", "b", "c"])
        df = atleast_2d_column_default(s, preserve_pandas=True)
        assert isinstance(df, pandas.DataFrame)
        assert np.all(df.columns == ["hi"])
        assert np.all(df.index == ["a", "b", "c"])
    assert (type(atleast_2d_column_default(np.matrix(1),
                                           preserve_pandas=True))
            == np.ndarray)
    assert (type(atleast_2d_column_default([1, 2, 3],
                                           preserve_pandas=True))
            == np.ndarray)
        
    if have_pandas:
        had_pandas = have_pandas
        try:
            have_pandas = False
            assert (type(atleast_2d_column_default(pandas.Series([1, 2]),
                                                   preserve_pandas=True))
                    == np.ndarray)
            assert (type(atleast_2d_column_default(pandas.DataFrame([[1], [2]]),
                                                   preserve_pandas=True))
                    == np.ndarray)
        finally:
            have_pandas = had_pandas

# A version of .reshape() that knows how to down-convert a 1-column
# pandas.DataFrame into a pandas.Series. Useful for code that wants to be
# agnostic between 1d and 2d data, with the pattern:
#   new_a = atleast_2d_column_default(a, preserve_pandas=True)
#   # do stuff to new_a, which can assume it's always 2 dimensional
#   return pandas_friendly_reshape(new_a, a.shape)
def pandas_friendly_reshape(a, new_shape):
    if not have_pandas:
        return a.reshape(new_shape)
    if not isinstance(a, pandas.DataFrame):
        return a.reshape(new_shape)
    # we have a DataFrame. Only supported reshapes are no-op, and
    # single-column DataFrame -> Series.
    if new_shape == a.shape:
        return a
    if len(new_shape) == 1 and a.shape[1] == 1:
        if new_shape[0] != a.shape[0]:
            raise ValueError("arrays have incompatible sizes")
        return a[a.columns[0]]
    raise ValueError("cannot reshape a DataFrame with shape %s to shape %s"
                     % (a.shape, new_shape))

def test_pandas_friendly_reshape():
    from nose.tools import assert_raises
    global have_pandas
    assert np.allclose(pandas_friendly_reshape(np.arange(10).reshape(5, 2),
                                               (2, 5)),
                       np.arange(10).reshape(2, 5))
    if have_pandas:
        df = pandas.DataFrame({"x": [1, 2, 3]}, index=["a", "b", "c"])
        noop = pandas_friendly_reshape(df, (3, 1))
        assert isinstance(noop, pandas.DataFrame)
        assert np.array_equal(noop.index, ["a", "b", "c"])
        assert np.array_equal(noop.columns, ["x"])
        squozen = pandas_friendly_reshape(df, (3,))
        assert isinstance(squozen, pandas.Series)
        assert np.array_equal(squozen.index, ["a", "b", "c"])
        assert squozen.name == "x"

        assert_raises(ValueError, pandas_friendly_reshape, df, (4,))
        assert_raises(ValueError, pandas_friendly_reshape, df, (1, 3))
        assert_raises(ValueError, pandas_friendly_reshape, df, (3, 3))

        had_pandas = have_pandas
        try:
            have_pandas = False
            # this will try to do a reshape directly, and DataFrames *have* no
            # reshape method
            assert_raises(AttributeError, pandas_friendly_reshape, df, (3,))
        finally:
            have_pandas = had_pandas

def uniqueify_list(seq):
    seq_new = []
    seen = set()
    for obj in seq:
        if obj not in seen:
            seq_new.append(obj)
            seen.add(obj)
    return seq_new

def test_to_uniqueify_list():
    assert uniqueify_list([1, 2, 3]) == [1, 2, 3]
    assert uniqueify_list([1, 3, 3, 2, 3, 1]) == [1, 3, 2]
    assert uniqueify_list([3, 2, 1, 4, 1, 2, 3]) == [3, 2, 1, 4]

for float_type in ("float128", "float96", "float64"):
    if hasattr(np, float_type):
        widest_float = getattr(np, float_type)
        break
else: # pragma: no cover
    assert False
for complex_type in ("complex256", "complex196", "complex128"):
    if hasattr(np, complex_type):
        widest_complex = getattr(np, complex_type)
        break
else: # pragma: no cover
    assert False

def wide_dtype_for(arr):
    arr = np.asarray(arr)
    if (np.issubdtype(arr.dtype, np.integer)
        or np.issubdtype(arr.dtype, np.floating)):
        return widest_float
    elif np.issubdtype(arr.dtype, np.complexfloating):
        return widest_complex
    raise ValueError("cannot widen a non-numeric type %r" % (arr.dtype,))

def widen(arr):
    return np.asarray(arr, dtype=wide_dtype_for(arr))

def test_wide_dtype_for_and_widen():
    assert np.allclose(widen([1, 2, 3]), [1, 2, 3])
    assert widen([1, 2, 3]).dtype == widest_float
    assert np.allclose(widen([1.0, 2.0, 3.0]), [1, 2, 3])
    assert widen([1.0, 2.0, 3.0]).dtype == widest_float
    assert np.allclose(widen([1+0j, 2, 3]), [1, 2, 3])
    assert widen([1+0j, 2, 3]).dtype == widest_complex
    from nose.tools import assert_raises
    assert_raises(ValueError, widen, ["hi"])

class PushbackAdapter(object):
    def __init__(self, it):
        self._it = it
        self._pushed = []

    def __iter__(self):
        return self

    def push_back(self, obj):
        self._pushed.append(obj)

    def __next__(self):
        if self._pushed:
            return self._pushed.pop()
        else:
            # May raise StopIteration
            return next(self._it)

    def peek(self):
        try:
            obj = next(self)
        except StopIteration:
            raise ValueError("no more data")
        self.push_back(obj)
        return obj

    def has_more(self):
        try:
            self.peek()
        except ValueError:
            return False
        else:
            return True

def test_PushbackAdapter():
    it = PushbackAdapter(iter([1, 2, 3, 4]))
    assert it.has_more()
    assert next(it) == 1
    it.push_back(0)
    assert next(it) == 0
    assert next(it) == 2
    assert it.peek() == 3
    it.push_back(10)
    assert it.peek() == 10
    it.push_back(20)
    assert it.peek() == 20
    assert it.has_more()
    assert list(it) == [20, 10, 3, 4]
    assert not it.has_more()

# The IPython pretty-printer gives very nice output that is difficult to get
# otherwise, e.g., look how much more readable this is than if it were all
# smooshed onto one line:
# 
#    ModelDesc(input_code='y ~ x*asdf',
#              lhs_terms=[Term([EvalFactor('y')])],
#              rhs_terms=[Term([]),
#                         Term([EvalFactor('x')]),
#                         Term([EvalFactor('asdf')]),
#                         Term([EvalFactor('x'), EvalFactor('asdf')])],
#              )
#              
# But, we don't want to assume it always exists; nor do we want to be
# re-writing every repr function twice, once for regular repr and once for
# the pretty printer. So, here's an ugly fallback implementation that can be
# used unconditionally to implement __repr__ in terms of _pretty_repr_.
#
# Pretty printer docs:
#   http://ipython.org/ipython-doc/dev/api/generated/IPython.lib.pretty.html

from io import StringIO
class _MiniPPrinter(object):
    def __init__(self):
        self._out = StringIO()
        self.indentation = 0

    def text(self, text):
        self._out.write(text)

    def breakable(self, sep=" "):
        self._out.write(sep)

    def begin_group(self, _, text):
        self.text(text)

    def end_group(self, _, text):
        self.text(text)

    def pretty(self, obj):
        if hasattr(obj, "_repr_pretty_"):
            obj._repr_pretty_(self, False)
        else:
            self.text(repr(obj))

    def getvalue(self):
        return self._out.getvalue()

def _mini_pretty(obj):
   printer = _MiniPPrinter()
   printer.pretty(obj)
   return printer.getvalue()

def repr_pretty_delegate(obj):
    # If IPython is already loaded, then might as well use it. (Most commonly
    # this will occur if we are in an IPython session, but somehow someone has
    # called repr() directly. This can happen for example if printing an
    # container like a namedtuple that IPython lacks special code for
    # pretty-printing.)  But, if IPython is not already imported, we do not
    # attempt to import it. This makes patsy itself faster to import (as of
    # Nov. 2012 I measured the extra overhead from loading IPython as ~4
    # seconds on a cold cache), it prevents IPython from automatically
    # spawning a bunch of child processes (!) which may not be what you want
    # if you are not otherwise using IPython, and it avoids annoying the
    # pandas people who have some hack to tell whether you are using IPython
    # in their test suite (see patsy bug #12).
    if optional_dep_ok and "IPython" in sys.modules:
        from IPython.lib.pretty import pretty
        return pretty(obj)
    else:
        return _mini_pretty(obj)

def repr_pretty_impl(p, obj, args, kwargs=[]):
    name = obj.__class__.__name__
    p.begin_group(len(name) + 1, "%s(" % (name,))
    started = [False]
    def new_item():
        if started[0]:
            p.text(",")
            p.breakable()
        started[0] = True
    for arg in args:
        new_item()
        p.pretty(arg)
    for label, value in kwargs:
        new_item()
        p.begin_group(len(label) + 1, "%s=" % (label,))
        p.pretty(value)
        p.end_group(len(label) + 1, "")
    p.end_group(len(name) + 1, ")")

def test_repr_pretty():
    assert repr_pretty_delegate("asdf") == "'asdf'"
    printer = _MiniPPrinter()
    class MyClass(object):
        pass
    repr_pretty_impl(printer, MyClass(),
                     ["a", 1], [("foo", "bar"), ("asdf", "asdf")])
    assert printer.getvalue() == "MyClass('a', 1, foo='bar', asdf='asdf')"

# In Python 3, objects of different types are not generally comparable, so a
# list of heterogenous types cannot be sorted. This implements a Python 2
# style comparison for arbitrary types. (It works on Python 2 too, but just
# gives you the built-in ordering.) To understand why this is tricky, consider
# this example:
#   a = 1    # type 'int'
#   b = 1.5  # type 'float'
#   class gggg:
#       pass
#   c = gggg()
#   sorted([a, b, c])
# The fallback ordering sorts by class name, so according to the fallback
# ordering, we have b < c < a. But, of course, a and b are comparable (even
# though they're of different types), so we also have a < b. This is
# inconsistent. There is no general solution to this problem (which I guess is
# why Python 3 stopped trying), but the worst offender is all the different
# "numeric" classes (int, float, complex, decimal, rational...), so as a
# special-case, we sort all numeric objects to the start of the list.
# (In Python 2, there is also a similar special case for str and unicode, but
# we don't have to worry about that for Python 3.)
class SortAnythingKey(object):
    def __init__(self, obj):
        self.obj = obj

    def _python_lt(self, other_obj):
        # On Py2, < never raises an error, so this is just <. (Actually it
        # does raise a TypeError for comparing complex to numeric, but not for
        # comparisons of complex to other types. Sigh. Whatever.)
        # On Py3, this returns a bool if available, and otherwise returns
        # NotImplemented
        try:
            return self.obj < other_obj
        except TypeError:
            return NotImplemented

    def __lt__(self, other):
        assert isinstance(other, SortAnythingKey)
        result = self._python_lt(other.obj)
        if result is not NotImplemented:
            return result
        # Okay, that didn't work, time to fall back.
        # If one of these is a number, then it is smaller.
        if self._python_lt(0) is not NotImplemented:
            return True
        if other._python_lt(0) is not NotImplemented:
            return False
        # Also check ==, since it may well be defined for otherwise
        # unorderable objects, and if so then we should be consistent with
        # it:
        if self.obj == other.obj:
            return False
        # Otherwise, we break ties based on class name and memory position
        return ((self.obj.__class__.__name__, id(self.obj))
                < (other.obj.__class__.__name__, id(other.obj)))

def test_SortAnythingKey():
    assert sorted([20, 10, 0, 15], key=SortAnythingKey) == [0, 10, 15, 20]
    assert sorted([10, -1.5], key=SortAnythingKey) == [-1.5, 10]
    assert sorted([10, "a", 20.5, "b"], key=SortAnythingKey) == [10, 20.5, "a", "b"]
    class a(object):
        pass
    class b(object):
        pass
    class z(object):
        pass
    a_obj = a()
    b_obj = b()
    z_obj = z()
    o_obj = object()
    assert (sorted([z_obj, a_obj, 1, b_obj, o_obj], key=SortAnythingKey)
            == [1, a_obj, b_obj, o_obj, z_obj])

# NaN checking functions that work on arbitrary objects, on old Python
# versions (math.isnan is only in 2.6+), etc.
def safe_scalar_isnan(x):
    try:
        return np.isnan(float(x))
    except (TypeError, ValueError, NotImplementedError):
        return False
safe_isnan = np.vectorize(safe_scalar_isnan, otypes=[bool])

def test_safe_scalar_isnan():
    assert not safe_scalar_isnan(True)
    assert not safe_scalar_isnan(None)
    assert not safe_scalar_isnan("sadf")
    assert not safe_scalar_isnan((1, 2, 3))
    assert not safe_scalar_isnan(np.asarray([1, 2, 3]))
    assert not safe_scalar_isnan([np.nan])
    assert safe_scalar_isnan(np.nan)
    assert safe_scalar_isnan(np.float32(np.nan))
    assert safe_scalar_isnan(float(np.nan))

def test_safe_isnan():
    assert np.array_equal(safe_isnan([1, True, None, np.nan, "asdf"]),
                          [False, False, False, True, False])
    assert safe_isnan(np.nan).ndim == 0
    assert safe_isnan(np.nan)
    assert not safe_isnan(None)
    # raw isnan raises a *different* error for strings than for objects:
    assert not safe_isnan("asdf")
    
def iterable(obj):
    try:
        iter(obj)
    except Exception:
        return False
    return True

def test_iterable():
    assert iterable("asdf")
    assert iterable([])
    assert iterable({"a": 1})
    assert not iterable(1)
    assert not iterable(iterable)