/usr/lib/python3/dist-packages/patsy/build.py is in python3-patsy 0.2.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 | # This file is part of Patsy
# Copyright (C) 2011-2013 Nathaniel Smith <njs@pobox.com>
# See file COPYING for license information.
# This file defines the core design matrix building functions.
# These are made available in the patsy.* namespace
__all__ = ["design_matrix_builders", "DesignMatrixBuilder",
"build_design_matrices"]
import numpy as np
from patsy import PatsyError
from patsy.categorical import (guess_categorical,
CategoricalSniffer,
categorical_to_int)
from patsy.util import (atleast_2d_column_default,
have_pandas, have_pandas_categorical,
asarray_or_pandas)
from patsy.design_info import DesignMatrix, DesignInfo
from patsy.redundancy import pick_contrasts_for_term
from patsy.desc import ModelDesc
from patsy.eval import EvalEnvironment
from patsy.contrasts import code_contrast_matrix, Treatment
from patsy.compat import itertools_product, OrderedDict
from patsy.missing import NAAction
if have_pandas:
import pandas
class _MockFactor(object):
def __init__(self, name="MOCKMOCK"):
self._name = name
def eval(self, state, env):
return env["mock"]
def name(self):
return self._name
def _max_allowed_dim(dim, arr, factor):
if arr.ndim > dim:
msg = ("factor '%s' evaluates to an %s-dimensional array; I only "
"handle arrays with dimension <= %s"
% (factor.name(), arr.ndim, dim))
raise PatsyError(msg, factor)
def test__max_allowed_dim():
from nose.tools import assert_raises
f = _MockFactor()
_max_allowed_dim(1, np.array(1), f)
_max_allowed_dim(1, np.array([1]), f)
assert_raises(PatsyError, _max_allowed_dim, 1, np.array([[1]]), f)
assert_raises(PatsyError, _max_allowed_dim, 1, np.array([[[1]]]), f)
_max_allowed_dim(2, np.array(1), f)
_max_allowed_dim(2, np.array([1]), f)
_max_allowed_dim(2, np.array([[1]]), f)
assert_raises(PatsyError, _max_allowed_dim, 2, np.array([[[1]]]), f)
class _NumFactorEvaluator(object):
def __init__(self, factor, state, expected_columns):
# This one instance variable is part of our public API:
self.factor = factor
self._state = state
self._expected_columns = expected_columns
# Returns either a 2d ndarray, or a DataFrame, plus is_NA mask
def eval(self, data, NA_action):
result = self.factor.eval(self._state, data)
result = atleast_2d_column_default(result, preserve_pandas=True)
_max_allowed_dim(2, result, self.factor)
if result.shape[1] != self._expected_columns:
raise PatsyError("when evaluating factor %s, I got %s columns "
"instead of the %s I was expecting"
% (self.factor.name(), self._expected_columns,
result.shape[1]),
self.factor)
if not np.issubdtype(np.asarray(result).dtype, np.number):
raise PatsyError("when evaluating numeric factor %s, "
"I got non-numeric data of type '%s'"
% (self.factor.name(), result.dtype),
self.factor)
return result, NA_action.is_numerical_NA(result)
def test__NumFactorEvaluator():
from nose.tools import assert_raises
naa = NAAction()
f = _MockFactor()
nf1 = _NumFactorEvaluator(f, {}, 1)
assert nf1.factor is f
eval123, is_NA = nf1.eval({"mock": [1, 2, 3]}, naa)
assert eval123.shape == (3, 1)
assert np.all(eval123 == [[1], [2], [3]])
assert is_NA.shape == (3,)
assert np.all(~is_NA)
assert_raises(PatsyError, nf1.eval, {"mock": [[[1]]]}, naa)
assert_raises(PatsyError, nf1.eval, {"mock": [[1, 2]]}, naa)
assert_raises(PatsyError, nf1.eval, {"mock": ["a", "b"]}, naa)
assert_raises(PatsyError, nf1.eval, {"mock": [True, False]}, naa)
nf2 = _NumFactorEvaluator(_MockFactor(), {}, 2)
eval123321, is_NA = nf2.eval({"mock": [[1, 3], [2, 2], [3, 1]]}, naa)
assert eval123321.shape == (3, 2)
assert np.all(eval123321 == [[1, 3], [2, 2], [3, 1]])
assert is_NA.shape == (3,)
assert np.all(~is_NA)
assert_raises(PatsyError, nf2.eval, {"mock": [1, 2, 3]}, naa)
assert_raises(PatsyError, nf2.eval, {"mock": [[1, 2, 3]]}, naa)
ev_nan, is_NA = nf1.eval({"mock": [1, 2, np.nan]},
NAAction(NA_types=["NaN"]))
assert np.array_equal(is_NA, [False, False, True])
ev_nan, is_NA = nf1.eval({"mock": [1, 2, np.nan]},
NAAction(NA_types=[]))
assert np.array_equal(is_NA, [False, False, False])
if have_pandas:
eval_ser, _ = nf1.eval({"mock":
pandas.Series([1, 2, 3], index=[10, 20, 30])},
naa)
assert isinstance(eval_ser, pandas.DataFrame)
assert np.array_equal(eval_ser, [[1], [2], [3]])
assert np.array_equal(eval_ser.index, [10, 20, 30])
eval_df1, _ = nf1.eval({"mock":
pandas.DataFrame([[2], [1], [3]],
index=[20, 10, 30])},
naa)
assert isinstance(eval_df1, pandas.DataFrame)
assert np.array_equal(eval_df1, [[2], [1], [3]])
assert np.array_equal(eval_df1.index, [20, 10, 30])
eval_df2, _ = nf2.eval({"mock":
pandas.DataFrame([[2, 3], [1, 4], [3, -1]],
index=[20, 30, 10])},
naa)
assert isinstance(eval_df2, pandas.DataFrame)
assert np.array_equal(eval_df2, [[2, 3], [1, 4], [3, -1]])
assert np.array_equal(eval_df2.index, [20, 30, 10])
assert_raises(PatsyError,
nf2.eval,
{"mock": pandas.Series([1, 2, 3], index=[10, 20, 30])},
naa)
assert_raises(PatsyError,
nf1.eval,
{"mock":
pandas.DataFrame([[2, 3], [1, 4], [3, -1]],
index=[20, 30, 10])},
naa)
class _CatFactorEvaluator(object):
def __init__(self, factor, state, levels):
# This one instance variable is part of our public API:
self.factor = factor
self._state = state
self._levels = tuple(levels)
# returns either a 1d ndarray or a pandas.Series, plus is_NA mask
def eval(self, data, NA_action):
result = self.factor.eval(self._state, data)
result = categorical_to_int(result, self._levels, NA_action,
origin=self.factor)
assert result.ndim == 1
return result, np.asarray(result == -1)
def test__CatFactorEvaluator():
from nose.tools import assert_raises
from patsy.categorical import C
naa = NAAction()
f = _MockFactor()
cf1 = _CatFactorEvaluator(f, {}, ["a", "b"])
assert cf1.factor is f
cat1, _ = cf1.eval({"mock": ["b", "a", "b"]}, naa)
assert cat1.shape == (3,)
assert np.all(cat1 == [1, 0, 1])
assert_raises(PatsyError, cf1.eval, {"mock": ["c"]}, naa)
assert_raises(PatsyError, cf1.eval, {"mock": C(["a", "c"])}, naa)
assert_raises(PatsyError, cf1.eval,
{"mock": C(["a", "b"], levels=["b", "a"])}, naa)
assert_raises(PatsyError, cf1.eval, {"mock": [1, 0, 1]}, naa)
bad_cat = np.asarray(["b", "a", "a", "b"])
bad_cat.resize((2, 2))
assert_raises(PatsyError, cf1.eval, {"mock": bad_cat}, naa)
cat1_NA, is_NA = cf1.eval({"mock": ["a", None, "b"]},
NAAction(NA_types=["None"]))
assert np.array_equal(is_NA, [False, True, False])
assert np.array_equal(cat1_NA, [0, -1, 1])
assert_raises(PatsyError, cf1.eval,
{"mock": ["a", None, "b"]}, NAAction(NA_types=[]))
cf2 = _CatFactorEvaluator(_MockFactor(), {}, [False, True])
cat2, _ = cf2.eval({"mock": [True, False, False, True]}, naa)
assert cat2.shape == (4,)
assert np.all(cat2 == [1, 0, 0, 1])
if have_pandas:
s = pandas.Series(["b", "a"], index=[10, 20])
cat_s, _ = cf1.eval({"mock": s}, naa)
assert isinstance(cat_s, pandas.Series)
assert np.array_equal(cat_s, [1, 0])
assert np.array_equal(cat_s.index, [10, 20])
sbool = pandas.Series([True, False], index=[11, 21])
cat_sbool, _ = cf2.eval({"mock": sbool}, naa)
assert isinstance(cat_sbool, pandas.Series)
assert np.array_equal(cat_sbool, [1, 0])
assert np.array_equal(cat_sbool.index, [11, 21])
def _column_combinations(columns_per_factor):
# For consistency with R, the left-most item iterates fastest:
iterators = [range(n) for n in reversed(columns_per_factor)]
for reversed_combo in itertools_product(*iterators):
yield reversed_combo[::-1]
def test__column_combinations():
assert list(_column_combinations([2, 3])) == [(0, 0),
(1, 0),
(0, 1),
(1, 1),
(0, 2),
(1, 2)]
assert list(_column_combinations([3])) == [(0,), (1,), (2,)]
# This class is responsible for producing some columns in a final design
# matrix output:
class _ColumnBuilder(object):
def __init__(self, factors, num_columns, cat_contrasts):
self._factors = factors
self._num_columns = num_columns
self._cat_contrasts = cat_contrasts
self._columns_per_factor = []
for factor in self._factors:
if factor in self._cat_contrasts:
columns = self._cat_contrasts[factor].matrix.shape[1]
else:
columns = num_columns[factor]
self._columns_per_factor.append(columns)
self.total_columns = np.prod(self._columns_per_factor, dtype=int)
def column_names(self):
if not self._factors:
return ["Intercept"]
column_names = []
for i, column_idxs in enumerate(_column_combinations(self._columns_per_factor)):
name_pieces = []
for factor, column_idx in zip(self._factors, column_idxs):
if factor in self._num_columns:
if self._num_columns[factor] > 1:
name_pieces.append("%s[%s]"
% (factor.name(), column_idx))
else:
assert column_idx == 0
name_pieces.append(factor.name())
else:
contrast = self._cat_contrasts[factor]
suffix = contrast.column_suffixes[column_idx]
name_pieces.append("%s%s" % (factor.name(), suffix))
column_names.append(":".join(name_pieces))
assert len(column_names) == self.total_columns
return column_names
def build(self, factor_values, out):
assert self.total_columns == out.shape[1]
out[:] = 1
for i, column_idxs in enumerate(_column_combinations(self._columns_per_factor)):
for factor, column_idx in zip(self._factors, column_idxs):
if factor in self._cat_contrasts:
contrast = self._cat_contrasts[factor]
if np.any(factor_values[factor] < 0):
raise PatsyError("can't build a design matrix "
"containing missing values", factor)
out[:, i] *= contrast.matrix[factor_values[factor],
column_idx]
else:
assert (factor_values[factor].shape[1]
== self._num_columns[factor])
out[:, i] *= factor_values[factor][:, column_idx]
def test__ColumnBuilder():
from nose.tools import assert_raises
from patsy.contrasts import ContrastMatrix
from patsy.categorical import C
f1 = _MockFactor("f1")
f2 = _MockFactor("f2")
f3 = _MockFactor("f3")
contrast = ContrastMatrix(np.array([[0, 0.5],
[3, 0]]),
["[c1]", "[c2]"])
cb = _ColumnBuilder([f1, f2, f3], {f1: 1, f3: 1}, {f2: contrast})
mat = np.empty((3, 2))
assert cb.column_names() == ["f1:f2[c1]:f3", "f1:f2[c2]:f3"]
cb.build({f1: atleast_2d_column_default([1, 2, 3]),
f2: np.asarray([0, 0, 1]),
f3: atleast_2d_column_default([7.5, 2, -12])},
mat)
assert np.allclose(mat, [[0, 0.5 * 1 * 7.5],
[0, 0.5 * 2 * 2],
[3 * 3 * -12, 0]])
# Check that missing categorical values blow up
assert_raises(PatsyError, cb.build,
{f1: atleast_2d_column_default([1, 2, 3]),
f2: np.asarray([0, -1, 1]),
f3: atleast_2d_column_default([7.5, 2, -12])},
mat)
cb2 = _ColumnBuilder([f1, f2, f3], {f1: 2, f3: 1}, {f2: contrast})
mat2 = np.empty((3, 4))
cb2.build({f1: atleast_2d_column_default([[1, 2], [3, 4], [5, 6]]),
f2: np.asarray([0, 0, 1]),
f3: atleast_2d_column_default([7.5, 2, -12])},
mat2)
assert cb2.column_names() == ["f1[0]:f2[c1]:f3",
"f1[1]:f2[c1]:f3",
"f1[0]:f2[c2]:f3",
"f1[1]:f2[c2]:f3"]
assert np.allclose(mat2, [[0, 0, 0.5 * 1 * 7.5, 0.5 * 2 * 7.5],
[0, 0, 0.5 * 3 * 2, 0.5 * 4 * 2],
[3 * 5 * -12, 3 * 6 * -12, 0, 0]])
# Check intercept building:
cb_intercept = _ColumnBuilder([], {}, {})
assert cb_intercept.column_names() == ["Intercept"]
mat3 = np.empty((3, 1))
cb_intercept.build({f1: [1, 2, 3], f2: [1, 2, 3], f3: [1, 2, 3]}, mat3)
assert np.allclose(mat3, 1)
def _factors_memorize(factors, data_iter_maker):
# First, start off the memorization process by setting up each factor's
# state and finding out how many passes it will need:
factor_states = {}
passes_needed = {}
for factor in factors:
state = {}
which_pass = factor.memorize_passes_needed(state)
factor_states[factor] = state
passes_needed[factor] = which_pass
# Now, cycle through the data until all the factors have finished
# memorizing everything:
memorize_needed = set()
for factor, passes in passes_needed.items():
if passes > 0:
memorize_needed.add(factor)
which_pass = 0
while memorize_needed:
for data in data_iter_maker():
for factor in memorize_needed:
state = factor_states[factor]
factor.memorize_chunk(state, which_pass, data)
for factor in list(memorize_needed):
factor.memorize_finish(factor_states[factor], which_pass)
if which_pass == passes_needed[factor] - 1:
memorize_needed.remove(factor)
which_pass += 1
return factor_states
def test__factors_memorize():
class MockFactor(object):
def __init__(self, requested_passes, token):
self._requested_passes = requested_passes
self._token = token
self._chunk_in_pass = 0
self._seen_passes = 0
def memorize_passes_needed(self, state):
state["calls"] = []
state["token"] = self._token
return self._requested_passes
def memorize_chunk(self, state, which_pass, data):
state["calls"].append(("memorize_chunk", which_pass))
assert data["chunk"] == self._chunk_in_pass
self._chunk_in_pass += 1
def memorize_finish(self, state, which_pass):
state["calls"].append(("memorize_finish", which_pass))
self._chunk_in_pass = 0
class Data(object):
CHUNKS = 3
def __init__(self):
self.calls = 0
self.data = [{"chunk": i} for i in range(self.CHUNKS)]
def __call__(self):
self.calls += 1
return iter(self.data)
data = Data()
f0 = MockFactor(0, "f0")
f1 = MockFactor(1, "f1")
f2a = MockFactor(2, "f2a")
f2b = MockFactor(2, "f2b")
factor_states = _factors_memorize(set([f0, f1, f2a, f2b]), data)
assert data.calls == 2
mem_chunks0 = [("memorize_chunk", 0)] * data.CHUNKS
mem_chunks1 = [("memorize_chunk", 1)] * data.CHUNKS
expected = {
f0: {
"calls": [],
"token": "f0",
},
f1: {
"calls": mem_chunks0 + [("memorize_finish", 0)],
"token": "f1",
},
f2a: {
"calls": mem_chunks0 + [("memorize_finish", 0)]
+ mem_chunks1 + [("memorize_finish", 1)],
"token": "f2a",
},
f2b: {
"calls": mem_chunks0 + [("memorize_finish", 0)]
+ mem_chunks1 + [("memorize_finish", 1)],
"token": "f2b",
},
}
assert factor_states == expected
def _examine_factor_types(factors, factor_states, data_iter_maker, NA_action):
num_column_counts = {}
cat_sniffers = {}
examine_needed = set(factors)
for data in data_iter_maker():
for factor in list(examine_needed):
value = factor.eval(factor_states[factor], data)
if factor in cat_sniffers or guess_categorical(value):
if factor not in cat_sniffers:
cat_sniffers[factor] = CategoricalSniffer(NA_action,
factor.origin)
done = cat_sniffers[factor].sniff(value)
if done:
examine_needed.remove(factor)
else:
# Numeric
value = atleast_2d_column_default(value)
_max_allowed_dim(2, value, factor)
column_count = value.shape[1]
num_column_counts[factor] = column_count
examine_needed.remove(factor)
if not examine_needed:
break
# Pull out the levels
cat_levels_contrasts = {}
for factor, sniffer in cat_sniffers.items():
cat_levels_contrasts[factor] = sniffer.levels_contrast()
return (num_column_counts, cat_levels_contrasts)
def test__examine_factor_types():
from patsy.categorical import C
class MockFactor(object):
def __init__(self):
# You should check this using 'is', not '=='
from patsy.origin import Origin
self.origin = Origin("MOCK", 1, 2)
def eval(self, state, data):
return state[data]
def name(self):
return "MOCK MOCK"
# This hacky class can only be iterated over once, but it keeps track of
# how far it got.
class DataIterMaker(object):
def __init__(self):
self.i = -1
def __call__(self):
return self
def __iter__(self):
return self
def __next__(self):
self.i += 1
if self.i > 1:
raise StopIteration
return self.i
num_1dim = MockFactor()
num_1col = MockFactor()
num_4col = MockFactor()
categ_1col = MockFactor()
bool_1col = MockFactor()
string_1col = MockFactor()
object_1col = MockFactor()
object_levels = (object(), object(), object())
factor_states = {
num_1dim: ([1, 2, 3], [4, 5, 6]),
num_1col: ([[1], [2], [3]], [[4], [5], [6]]),
num_4col: (np.zeros((3, 4)), np.ones((3, 4))),
categ_1col: (C(["a", "b", "c"], levels=("a", "b", "c"),
contrast="MOCK CONTRAST"),
C(["c", "b", "a"], levels=("a", "b", "c"),
contrast="MOCK CONTRAST")),
bool_1col: ([True, True, False], [False, True, True]),
# It has to read through all the data to see all the possible levels:
string_1col: (["a", "a", "a"], ["c", "b", "a"]),
object_1col: ([object_levels[0]] * 3, object_levels),
}
it = DataIterMaker()
(num_column_counts, cat_levels_contrasts,
) = _examine_factor_types(list(factor_states.keys()), factor_states, it,
NAAction())
assert it.i == 2
iterations = 0
assert num_column_counts == {num_1dim: 1, num_1col: 1, num_4col: 4}
assert cat_levels_contrasts == {
categ_1col: (("a", "b", "c"), "MOCK CONTRAST"),
bool_1col: ((False, True), None),
string_1col: (("a", "b", "c"), None),
object_1col: (tuple(sorted(object_levels, key=id)), None),
}
# Check that it doesn't read through all the data if that's not necessary:
it = DataIterMaker()
no_read_necessary = [num_1dim, num_1col, num_4col, categ_1col, bool_1col]
(num_column_counts, cat_levels_contrasts,
) = _examine_factor_types(no_read_necessary, factor_states, it,
NAAction())
assert it.i == 0
assert num_column_counts == {num_1dim: 1, num_1col: 1, num_4col: 4}
assert cat_levels_contrasts == {
categ_1col: (("a", "b", "c"), "MOCK CONTRAST"),
bool_1col: ((False, True), None),
}
# Illegal inputs:
bool_3col = MockFactor()
num_3dim = MockFactor()
# no such thing as a multi-dimensional Categorical
# categ_3dim = MockFactor()
string_3col = MockFactor()
object_3col = MockFactor()
illegal_factor_states = {
bool_3col: (np.zeros((3, 3), dtype=bool), np.ones((3, 3), dtype=bool)),
num_3dim: (np.zeros((3, 3, 3)), np.ones((3, 3, 3))),
string_3col: ([["a", "b", "c"]], [["b", "c", "a"]]),
object_3col: ([[[object()]]], [[[object()]]]),
}
from nose.tools import assert_raises
for illegal_factor in illegal_factor_states:
it = DataIterMaker()
try:
_examine_factor_types([illegal_factor], illegal_factor_states, it,
NAAction())
except PatsyError as e:
assert e.origin is illegal_factor.origin
else:
assert False
def _make_term_column_builders(terms,
num_column_counts,
cat_levels_contrasts):
# Sort each term into a bucket based on the set of numeric factors it
# contains:
term_buckets = OrderedDict()
bucket_ordering = []
for term in terms:
num_factors = []
for factor in term.factors:
if factor in num_column_counts:
num_factors.append(factor)
bucket = frozenset(num_factors)
if bucket not in term_buckets:
bucket_ordering.append(bucket)
term_buckets.setdefault(bucket, []).append(term)
# Special rule: if there is a no-numerics bucket, then it always comes
# first:
if frozenset() in term_buckets:
bucket_ordering.remove(frozenset())
bucket_ordering.insert(0, frozenset())
term_to_column_builders = {}
new_term_order = []
# Then within each bucket, work out which sort of contrasts we want to use
# for each term to avoid redundancy
for bucket in bucket_ordering:
bucket_terms = term_buckets[bucket]
# Sort by degree of interaction
bucket_terms.sort(key=lambda t: len(t.factors))
new_term_order += bucket_terms
used_subterms = set()
for term in bucket_terms:
column_builders = []
factor_codings = pick_contrasts_for_term(term,
num_column_counts,
used_subterms)
# Construct one _ColumnBuilder for each subterm
for factor_coding in factor_codings:
builder_factors = []
num_columns = {}
cat_contrasts = {}
# In order to preserve factor ordering information, the
# coding_for_term just returns dicts, and we refer to
# the original factors to figure out which are included in
# each subterm, and in what order
for factor in term.factors:
# Numeric factors are included in every subterm
if factor in num_column_counts:
builder_factors.append(factor)
num_columns[factor] = num_column_counts[factor]
elif factor in factor_coding:
builder_factors.append(factor)
levels, contrast = cat_levels_contrasts[factor]
# This is where the default coding is set to
# Treatment:
coded = code_contrast_matrix(factor_coding[factor],
levels, contrast,
default=Treatment)
cat_contrasts[factor] = coded
column_builder = _ColumnBuilder(builder_factors,
num_columns,
cat_contrasts)
column_builders.append(column_builder)
term_to_column_builders[term] = column_builders
return new_term_order, term_to_column_builders
def design_matrix_builders(termlists, data_iter_maker, NA_action="drop"):
"""Construct several :class:`DesignMatrixBuilders` from termlists.
This is one of Patsy's fundamental functions. This function and
:func:`build_design_matrices` together form the API to the core formula
interpretation machinery.
:arg termlists: A list of termlists, where each termlist is a list of
:class:`Term` objects which together specify a design matrix.
:arg data_iter_maker: A zero-argument callable which returns an iterator
over dict-like data objects. This must be a callable rather than a
simple iterator because sufficiently complex formulas may require
multiple passes over the data (e.g. if there are nested stateful
transforms).
:arg NA_action: An :class:`NAAction` object or string, used to determine
what values count as 'missing' for purposes of determining the levels of
categorical factors.
:returns: A list of :class:`DesignMatrixBuilder` objects, one for each
termlist passed in.
This function performs zero or more iterations over the data in order to
sniff out any necessary information about factor types, set up stateful
transforms, pick column names, etc.
See :ref:`formulas` for details.
.. versionadded:: 0.2.0
The ``NA_action`` argument.
"""
if isinstance(NA_action, str):
NA_action = NAAction(NA_action)
all_factors = set()
for termlist in termlists:
for term in termlist:
all_factors.update(term.factors)
factor_states = _factors_memorize(all_factors, data_iter_maker)
# Now all the factors have working eval methods, so we can evaluate them
# on some data to find out what type of data they return.
(num_column_counts,
cat_levels_contrasts) = _examine_factor_types(all_factors,
factor_states,
data_iter_maker,
NA_action)
# Now we need the factor evaluators, which encapsulate the knowledge of
# how to turn any given factor into a chunk of data:
factor_evaluators = {}
for factor in all_factors:
if factor in num_column_counts:
evaluator = _NumFactorEvaluator(factor,
factor_states[factor],
num_column_counts[factor])
else:
assert factor in cat_levels_contrasts
levels = cat_levels_contrasts[factor][0]
evaluator = _CatFactorEvaluator(factor, factor_states[factor],
levels)
factor_evaluators[factor] = evaluator
# And now we can construct the DesignMatrixBuilder for each termlist:
builders = []
for termlist in termlists:
result = _make_term_column_builders(termlist,
num_column_counts,
cat_levels_contrasts)
new_term_order, term_to_column_builders = result
assert frozenset(new_term_order) == frozenset(termlist)
term_evaluators = set()
for term in termlist:
for factor in term.factors:
term_evaluators.add(factor_evaluators[factor])
builders.append(DesignMatrixBuilder(new_term_order,
term_evaluators,
term_to_column_builders))
return builders
class DesignMatrixBuilder(object):
"""An opaque class representing Patsy's knowledge about
how to build a specific design matrix.
You get these objects from :func:`design_matrix_builders`, and pass them
to :func:`build_design_matrices`.
"""
def __init__(self, terms, evaluators, term_to_column_builders):
self._termlist = terms
self._evaluators = evaluators
self._term_to_column_builders = term_to_column_builders
term_column_count = []
self._column_names = []
for term in self._termlist:
column_builders = self._term_to_column_builders[term]
this_count = 0
for column_builder in column_builders:
this_names = column_builder.column_names()
this_count += len(this_names)
self._column_names += this_names
term_column_count.append(this_count)
term_column_starts = np.concatenate(([0], np.cumsum(term_column_count)))
self._term_slices = []
for i, term in enumerate(self._termlist):
span = slice(term_column_starts[i], term_column_starts[i + 1])
self._term_slices.append((term, span))
self.total_columns = np.sum(term_column_count, dtype=int)
# Generate this on demand, to avoid a reference loop:
@property
def design_info(self):
"""A :class:`DesignInfo` object giving information about the design
matrices that this DesignMatrixBuilder can be used to create."""
return DesignInfo(self._column_names, self._term_slices,
builder=self)
def subset(self, which_terms):
"""Create a new :class:`DesignMatrixBuilder` that includes only a
subset of the terms that this object does.
For example, if `builder` has terms `x`, `y`, and `z`, then::
builder2 = builder.subset(["x", "z"])
will return a new builder that will return design matrices with only
the columns corresponding to the terms `x` and `z`. After we do this,
then in general these two expressions will return the same thing (here
we assume that `x`, `y`, and `z` each generate a single column of the
output)::
build_design_matrix([builder], data)[0][:, [0, 2]]
build_design_matrix([builder2], data)[0]
However, a critical difference is that in the second case, `data` need
not contain any values for `y`. This is very useful when doing
prediction using a subset of a model, in which situation R usually
forces you to specify dummy values for `y`.
If using a formula to specify the terms to include, remember that like
any formula, the intercept term will be included by default, so use
`0` or `-1` in your formula if you want to avoid this.
:arg which_terms: The terms which should be kept in the new
:class:`DesignMatrixBuilder`. If this is a string, then it is parsed
as a formula, and then the names of the resulting terms are taken as
the terms to keep. If it is a list, then it can contain a mixture of
term names (as strings) and :class:`Term` objects.
.. versionadded: 0.2.0
"""
factor_to_evaluators = {}
for evaluator in self._evaluators:
factor_to_evaluators[evaluator.factor] = evaluator
design_info = self.design_info
term_name_to_term = dict(list(zip(design_info.term_names,
design_info.terms)))
if isinstance(which_terms, str):
# We don't use this EvalEnvironment -- all we want to do is to
# find matching terms, and we can't do that use == on Term
# objects, because that calls == on factor objects, which in turn
# compares EvalEnvironments. So all we do with the parsed formula
# is pull out the term *names*, which the EvalEnvironment doesn't
# effect. This is just a placeholder then to allow the ModelDesc
# to be created:
env = EvalEnvironment({})
desc = ModelDesc.from_formula(which_terms, env)
if desc.lhs_termlist:
raise PatsyError("right-hand-side-only formula required")
which_terms = [term.name() for term in desc.rhs_termlist]
terms = []
evaluators = set()
term_to_column_builders = {}
for term_or_name in which_terms:
if isinstance(term_or_name, str):
if term_or_name not in term_name_to_term:
raise PatsyError("requested term %r not found in "
"this DesignMatrixBuilder"
% (term_or_name,))
term = term_name_to_term[term_or_name]
else:
term = term_or_name
if term not in self._termlist:
raise PatsyError("requested term '%s' not found in this "
"DesignMatrixBuilder" % (term,))
for factor in term.factors:
evaluators.add(factor_to_evaluators[factor])
terms.append(term)
column_builder = self._term_to_column_builders[term]
term_to_column_builders[term] = column_builder
return DesignMatrixBuilder(terms,
evaluators,
term_to_column_builders)
def _build(self, evaluator_to_values, dtype):
factor_to_values = {}
need_reshape = False
num_rows = None
for evaluator, value in evaluator_to_values.items():
if evaluator in self._evaluators:
factor_to_values[evaluator.factor] = value
if num_rows is not None:
assert num_rows == value.shape[0]
else:
num_rows = value.shape[0]
if num_rows is None:
# We have no dependence on the data -- e.g. an empty termlist, or
# only an intercept term.
num_rows = 1
need_reshape = True
m = DesignMatrix(np.empty((num_rows, self.total_columns), dtype=dtype),
self.design_info)
start_column = 0
for term in self._termlist:
for column_builder in self._term_to_column_builders[term]:
end_column = start_column + column_builder.total_columns
m_slice = m[:, start_column:end_column]
column_builder.build(factor_to_values, m_slice)
start_column = end_column
assert start_column == self.total_columns
return need_reshape, m
def build_design_matrices(builders, data,
NA_action="drop",
return_type="matrix",
dtype=np.dtype(float)):
"""Construct several design matrices from :class:`DesignMatrixBuilder`
objects.
This is one of Patsy's fundamental functions. This function and
:func:`design_matrix_builders` together form the API to the core formula
interpretation machinery.
:arg builders: A list of :class:`DesignMatrixBuilders` specifying the
design matrices to be built.
:arg data: A dict-like object which will be used to look up data.
:arg NA_action: What to do with rows that contain missing values. You can
``"drop"`` them, ``"raise"`` an error, or for customization, pass an
:class:`NAAction` object. See :class:`NAAction` for details on what
values count as 'missing' (and how to alter this).
:arg return_type: Either ``"matrix"`` or ``"dataframe"``. See below.
:arg dtype: The dtype of the returned matrix. Useful if you want to use
single-precision or extended-precision.
This function returns either a list of :class:`DesignMatrix` objects (for
``return_type="matrix"``) or a list of :class:`pandas.DataFrame` objects
(for ``return_type="dataframe"``). In the latter case, the DataFrames will
preserve any (row) indexes that were present in the input, which may be
useful for time-series models etc. In any case, all returned design
matrices will have ``.design_info`` attributes containing the appropriate
:class:`DesignInfo` objects.
Unlike :func:`design_matrix_builders`, this function takes only a simple
data argument, not any kind of iterator. That's because this function
doesn't need a global view of the data -- everything that depends on the
whole data set is already encapsulated in the `builders`. If you are
incrementally processing a large data set, simply call this function for
each chunk.
.. versionadded:: 0.2.0
The ``NA_action`` argument.
"""
if isinstance(NA_action, str):
NA_action = NAAction(NA_action)
if return_type == "dataframe" and not have_pandas:
raise PatsyError("pandas.DataFrame was requested, but pandas "
"is not installed")
if return_type not in ("matrix", "dataframe"):
raise PatsyError("unrecognized output type %r, should be "
"'matrix' or 'dataframe'" % (return_type,))
# Evaluate factors
evaluator_to_values = {}
evaluator_to_isNAs = {}
num_rows = None
pandas_index = None
for builder in builders:
# We look at evaluators rather than factors here, because it might
# happen that we have the same factor twice, but with different
# memorized state.
for evaluator in builder._evaluators:
if evaluator not in evaluator_to_values:
value, is_NA = evaluator.eval(data, NA_action)
evaluator_to_isNAs[evaluator] = is_NA
# value may now be a Series, DataFrame, or ndarray
if num_rows is None:
num_rows = value.shape[0]
else:
if num_rows != value.shape[0]:
msg = ("Row mismatch: factor %s had %s rows, when "
"previous factors had %s rows"
% (evaluator.factor.name(), value.shape[0],
num_rows))
raise PatsyError(msg, evaluator.factor)
if (have_pandas
and isinstance(value, (pandas.Series, pandas.DataFrame))):
if pandas_index is None:
pandas_index = value.index
else:
if not pandas_index.equals(value.index):
msg = ("Index mismatch: pandas objects must "
"have aligned indexes")
raise PatsyError(msg, evaluator.factor)
# Strategy: we work with raw ndarrays for doing the actual
# combining; DesignMatrixBuilder objects never sees pandas
# objects. Then at the end, if a DataFrame was requested, we
# convert. So every entry in this dict is either a 2-d array
# of floats, or a 1-d array of integers (representing
# categories).
value = np.asarray(value)
evaluator_to_values[evaluator] = value
# Handle NAs
values = list(evaluator_to_values.values())
is_NAs = list(evaluator_to_isNAs.values())
# num_rows is None iff evaluator_to_values (and associated sets like
# 'values') are empty, i.e., we have no actual evaluators involved
# (formulas like "~ 1").
if return_type == "dataframe" and num_rows is not None:
if pandas_index is None:
pandas_index = np.arange(num_rows)
values.append(pandas_index)
is_NAs.append(np.zeros(len(pandas_index), dtype=bool))
origins = [evaluator.factor.origin for evaluator in evaluator_to_values]
new_values = NA_action.handle_NA(values, is_NAs, origins)
# NA_action may have changed the number of rows.
if num_rows is not None:
num_rows = new_values[0].shape[0]
if return_type == "dataframe" and num_rows is not None:
pandas_index = new_values.pop()
evaluator_to_values = dict(list(zip(evaluator_to_values, new_values)))
# Build factor values into matrices
results = []
for builder in builders:
results.append(builder._build(evaluator_to_values, dtype))
matrices = []
for need_reshape, matrix in results:
if need_reshape and num_rows is not None:
assert matrix.shape[0] == 1
matrices.append(DesignMatrix(np.repeat(matrix, num_rows, axis=0),
matrix.design_info))
else:
# There is no data-dependence, at all -- a formula like "1 ~ 1". I
# guess we'll just return some single-row matrices. Perhaps it
# would be better to figure out how many rows are in the input
# data and broadcast to that size, but eh. Input data is optional
# in the first place, so even that would be no guarantee... let's
# wait until someone actually has a relevant use case before we
# worry about it.
matrices.append(matrix)
if return_type == "dataframe":
assert have_pandas
for i, matrix in enumerate(matrices):
di = matrix.design_info
matrices[i] = pandas.DataFrame(matrix,
columns=di.column_names,
index=pandas_index)
matrices[i].design_info = di
return matrices
# It should be possible to do just the factors -> factor evaluators stuff
# alone, since that, well, makes logical sense to do. though categorical
# coding has to happen afterwards, hmm.
|