This file is indexed.

/usr/lib/python3/dist-packages/patsy/build.py is in python3-patsy 0.2.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
# This file is part of Patsy
# Copyright (C) 2011-2013 Nathaniel Smith <njs@pobox.com>
# See file COPYING for license information.

# This file defines the core design matrix building functions.

# These are made available in the patsy.* namespace
__all__ = ["design_matrix_builders", "DesignMatrixBuilder",
           "build_design_matrices"]

import numpy as np
from patsy import PatsyError
from patsy.categorical import (guess_categorical,
                               CategoricalSniffer,
                               categorical_to_int)
from patsy.util import (atleast_2d_column_default,
                        have_pandas, have_pandas_categorical,
                        asarray_or_pandas)
from patsy.design_info import DesignMatrix, DesignInfo
from patsy.redundancy import pick_contrasts_for_term
from patsy.desc import ModelDesc
from patsy.eval import EvalEnvironment
from patsy.contrasts import code_contrast_matrix, Treatment
from patsy.compat import itertools_product, OrderedDict
from patsy.missing import NAAction

if have_pandas:
    import pandas

class _MockFactor(object):
    def __init__(self, name="MOCKMOCK"):
        self._name = name

    def eval(self, state, env):
        return env["mock"]

    def name(self):
        return self._name

def _max_allowed_dim(dim, arr, factor):
    if arr.ndim > dim:
        msg = ("factor '%s' evaluates to an %s-dimensional array; I only "
               "handle arrays with dimension <= %s"
               % (factor.name(), arr.ndim, dim))
        raise PatsyError(msg, factor)

def test__max_allowed_dim():
    from nose.tools import assert_raises
    f = _MockFactor()
    _max_allowed_dim(1, np.array(1), f)
    _max_allowed_dim(1, np.array([1]), f)
    assert_raises(PatsyError, _max_allowed_dim, 1, np.array([[1]]), f)
    assert_raises(PatsyError, _max_allowed_dim, 1, np.array([[[1]]]), f)
    _max_allowed_dim(2, np.array(1), f)
    _max_allowed_dim(2, np.array([1]), f)
    _max_allowed_dim(2, np.array([[1]]), f)
    assert_raises(PatsyError, _max_allowed_dim, 2, np.array([[[1]]]), f)

class _NumFactorEvaluator(object):
    def __init__(self, factor, state, expected_columns):
        # This one instance variable is part of our public API:
        self.factor = factor
        self._state = state
        self._expected_columns = expected_columns

    # Returns either a 2d ndarray, or a DataFrame, plus is_NA mask
    def eval(self, data, NA_action):
        result = self.factor.eval(self._state, data)
        result = atleast_2d_column_default(result, preserve_pandas=True)
        _max_allowed_dim(2, result, self.factor)
        if result.shape[1] != self._expected_columns:
            raise PatsyError("when evaluating factor %s, I got %s columns "
                                "instead of the %s I was expecting"
                                % (self.factor.name(), self._expected_columns,
                                   result.shape[1]),
                                self.factor)
        if not np.issubdtype(np.asarray(result).dtype, np.number):
            raise PatsyError("when evaluating numeric factor %s, "
                                "I got non-numeric data of type '%s'"
                                % (self.factor.name(), result.dtype),
                                self.factor)
        return result, NA_action.is_numerical_NA(result)

def test__NumFactorEvaluator():
    from nose.tools import assert_raises
    naa = NAAction()
    f = _MockFactor()
    nf1 = _NumFactorEvaluator(f, {}, 1)
    assert nf1.factor is f
    eval123, is_NA = nf1.eval({"mock": [1, 2, 3]}, naa)
    assert eval123.shape == (3, 1)
    assert np.all(eval123 == [[1], [2], [3]])
    assert is_NA.shape == (3,)
    assert np.all(~is_NA)
    assert_raises(PatsyError, nf1.eval, {"mock": [[[1]]]}, naa)
    assert_raises(PatsyError, nf1.eval, {"mock": [[1, 2]]}, naa)
    assert_raises(PatsyError, nf1.eval, {"mock": ["a", "b"]}, naa)
    assert_raises(PatsyError, nf1.eval, {"mock": [True, False]}, naa)
    nf2 = _NumFactorEvaluator(_MockFactor(), {}, 2)
    eval123321, is_NA = nf2.eval({"mock": [[1, 3], [2, 2], [3, 1]]}, naa)
    assert eval123321.shape == (3, 2)
    assert np.all(eval123321 == [[1, 3], [2, 2], [3, 1]])
    assert is_NA.shape == (3,)
    assert np.all(~is_NA)
    assert_raises(PatsyError, nf2.eval, {"mock": [1, 2, 3]}, naa)
    assert_raises(PatsyError, nf2.eval, {"mock": [[1, 2, 3]]}, naa)

    ev_nan, is_NA = nf1.eval({"mock": [1, 2, np.nan]},
                             NAAction(NA_types=["NaN"]))
    assert np.array_equal(is_NA, [False, False, True])
    ev_nan, is_NA = nf1.eval({"mock": [1, 2, np.nan]},
                             NAAction(NA_types=[]))
    assert np.array_equal(is_NA, [False, False, False])

    if have_pandas:
        eval_ser, _ = nf1.eval({"mock":
                                pandas.Series([1, 2, 3], index=[10, 20, 30])},
                               naa)
        assert isinstance(eval_ser, pandas.DataFrame)
        assert np.array_equal(eval_ser, [[1], [2], [3]])
        assert np.array_equal(eval_ser.index, [10, 20, 30])
        eval_df1, _ = nf1.eval({"mock":
                                    pandas.DataFrame([[2], [1], [3]],
                                                     index=[20, 10, 30])},
                               naa)
        assert isinstance(eval_df1, pandas.DataFrame)
        assert np.array_equal(eval_df1, [[2], [1], [3]])
        assert np.array_equal(eval_df1.index, [20, 10, 30])
        eval_df2, _ = nf2.eval({"mock":
                                    pandas.DataFrame([[2, 3], [1, 4], [3, -1]],
                                                     index=[20, 30, 10])},
                               naa)
        assert isinstance(eval_df2, pandas.DataFrame)
        assert np.array_equal(eval_df2, [[2, 3], [1, 4], [3, -1]])
        assert np.array_equal(eval_df2.index, [20, 30, 10])
        
        assert_raises(PatsyError,
                      nf2.eval,
                      {"mock": pandas.Series([1, 2, 3], index=[10, 20, 30])},
                      naa)
        assert_raises(PatsyError,
                      nf1.eval,
                      {"mock":
                       pandas.DataFrame([[2, 3], [1, 4], [3, -1]],
                                        index=[20, 30, 10])},
                      naa)


class _CatFactorEvaluator(object):
    def __init__(self, factor, state, levels):
        # This one instance variable is part of our public API:
        self.factor = factor
        self._state = state
        self._levels = tuple(levels)

    # returns either a 1d ndarray or a pandas.Series, plus is_NA mask
    def eval(self, data, NA_action):
        result = self.factor.eval(self._state, data)
        result = categorical_to_int(result, self._levels, NA_action,
                                    origin=self.factor)
        assert result.ndim == 1
        return result, np.asarray(result == -1)

def test__CatFactorEvaluator():
    from nose.tools import assert_raises
    from patsy.categorical import C
    naa = NAAction()
    f = _MockFactor()
    cf1 = _CatFactorEvaluator(f, {}, ["a", "b"])
    assert cf1.factor is f
    cat1, _ = cf1.eval({"mock": ["b", "a", "b"]}, naa)
    assert cat1.shape == (3,)
    assert np.all(cat1 == [1, 0, 1])
    assert_raises(PatsyError, cf1.eval, {"mock": ["c"]}, naa)
    assert_raises(PatsyError, cf1.eval, {"mock": C(["a", "c"])}, naa)
    assert_raises(PatsyError, cf1.eval,
                  {"mock": C(["a", "b"], levels=["b", "a"])}, naa)
    assert_raises(PatsyError, cf1.eval, {"mock": [1, 0, 1]}, naa)
    bad_cat = np.asarray(["b", "a", "a", "b"])
    bad_cat.resize((2, 2))
    assert_raises(PatsyError, cf1.eval, {"mock": bad_cat}, naa)

    cat1_NA, is_NA = cf1.eval({"mock": ["a", None, "b"]},
                              NAAction(NA_types=["None"]))
    assert np.array_equal(is_NA, [False, True, False])
    assert np.array_equal(cat1_NA, [0, -1, 1])
    assert_raises(PatsyError, cf1.eval,
                  {"mock": ["a", None, "b"]}, NAAction(NA_types=[]))

    cf2 = _CatFactorEvaluator(_MockFactor(), {}, [False, True])
    cat2, _ = cf2.eval({"mock": [True, False, False, True]}, naa)
    assert cat2.shape == (4,)
    assert np.all(cat2 == [1, 0, 0, 1])

    if have_pandas:
        s = pandas.Series(["b", "a"], index=[10, 20])
        cat_s, _ = cf1.eval({"mock": s}, naa)
        assert isinstance(cat_s, pandas.Series)
        assert np.array_equal(cat_s, [1, 0])
        assert np.array_equal(cat_s.index, [10, 20])
        sbool = pandas.Series([True, False], index=[11, 21])
        cat_sbool, _ = cf2.eval({"mock": sbool}, naa)
        assert isinstance(cat_sbool, pandas.Series)
        assert np.array_equal(cat_sbool, [1, 0])
        assert np.array_equal(cat_sbool.index, [11, 21])

def _column_combinations(columns_per_factor):
    # For consistency with R, the left-most item iterates fastest:
    iterators = [range(n) for n in reversed(columns_per_factor)]
    for reversed_combo in itertools_product(*iterators):
        yield reversed_combo[::-1]

def test__column_combinations():
    assert list(_column_combinations([2, 3])) == [(0, 0),
                                                  (1, 0),
                                                  (0, 1),
                                                  (1, 1),
                                                  (0, 2),
                                                  (1, 2)]
    assert list(_column_combinations([3])) == [(0,), (1,), (2,)]

# This class is responsible for producing some columns in a final design
# matrix output:
class _ColumnBuilder(object):
    def __init__(self, factors, num_columns, cat_contrasts):
        self._factors = factors
        self._num_columns = num_columns
        self._cat_contrasts = cat_contrasts
        self._columns_per_factor = []
        for factor in self._factors:
            if factor in self._cat_contrasts:
                columns = self._cat_contrasts[factor].matrix.shape[1]
            else:
                columns = num_columns[factor]
            self._columns_per_factor.append(columns)
        self.total_columns = np.prod(self._columns_per_factor, dtype=int)

    def column_names(self):
        if not self._factors:
            return ["Intercept"]
        column_names = []
        for i, column_idxs in enumerate(_column_combinations(self._columns_per_factor)):
            name_pieces = []
            for factor, column_idx in zip(self._factors, column_idxs):
                if factor in self._num_columns:
                    if self._num_columns[factor] > 1:
                        name_pieces.append("%s[%s]"
                                           % (factor.name(), column_idx))
                    else:
                        assert column_idx == 0
                        name_pieces.append(factor.name())
                else:
                    contrast = self._cat_contrasts[factor]
                    suffix = contrast.column_suffixes[column_idx]
                    name_pieces.append("%s%s" % (factor.name(), suffix))
            column_names.append(":".join(name_pieces))
        assert len(column_names) == self.total_columns
        return column_names

    def build(self, factor_values, out):
        assert self.total_columns == out.shape[1]
        out[:] = 1
        for i, column_idxs in enumerate(_column_combinations(self._columns_per_factor)):
            for factor, column_idx in zip(self._factors, column_idxs):
                if factor in self._cat_contrasts:
                    contrast = self._cat_contrasts[factor]
                    if np.any(factor_values[factor] < 0):
                        raise PatsyError("can't build a design matrix "
                                         "containing missing values", factor)
                    out[:, i] *= contrast.matrix[factor_values[factor],
                                                 column_idx]
                else:
                    assert (factor_values[factor].shape[1]
                            == self._num_columns[factor])
                    out[:, i] *= factor_values[factor][:, column_idx]

def test__ColumnBuilder():
    from nose.tools import assert_raises
    from patsy.contrasts import ContrastMatrix
    from patsy.categorical import C
    f1 = _MockFactor("f1")
    f2 = _MockFactor("f2")
    f3 = _MockFactor("f3")
    contrast = ContrastMatrix(np.array([[0, 0.5],
                                        [3, 0]]),
                              ["[c1]", "[c2]"])
                             
    cb = _ColumnBuilder([f1, f2, f3], {f1: 1, f3: 1}, {f2: contrast})
    mat = np.empty((3, 2))
    assert cb.column_names() == ["f1:f2[c1]:f3", "f1:f2[c2]:f3"]
    cb.build({f1: atleast_2d_column_default([1, 2, 3]),
              f2: np.asarray([0, 0, 1]),
              f3: atleast_2d_column_default([7.5, 2, -12])},
             mat)
    assert np.allclose(mat, [[0, 0.5 * 1 * 7.5],
                             [0, 0.5 * 2 * 2],
                             [3 * 3 * -12, 0]])
    # Check that missing categorical values blow up
    assert_raises(PatsyError, cb.build,
                  {f1: atleast_2d_column_default([1, 2, 3]),
                   f2: np.asarray([0, -1, 1]),
                   f3: atleast_2d_column_default([7.5, 2, -12])},
                  mat)

    cb2 = _ColumnBuilder([f1, f2, f3], {f1: 2, f3: 1}, {f2: contrast})
    mat2 = np.empty((3, 4))
    cb2.build({f1: atleast_2d_column_default([[1, 2], [3, 4], [5, 6]]),
               f2: np.asarray([0, 0, 1]),
               f3: atleast_2d_column_default([7.5, 2, -12])},
              mat2)
    assert cb2.column_names() == ["f1[0]:f2[c1]:f3",
                                  "f1[1]:f2[c1]:f3",
                                  "f1[0]:f2[c2]:f3",
                                  "f1[1]:f2[c2]:f3"]
    assert np.allclose(mat2, [[0, 0, 0.5 * 1 * 7.5, 0.5 * 2 * 7.5],
                              [0, 0, 0.5 * 3 * 2, 0.5 * 4 * 2],
                              [3 * 5 * -12, 3 * 6 * -12, 0, 0]])
    # Check intercept building:
    cb_intercept = _ColumnBuilder([], {}, {})
    assert cb_intercept.column_names() == ["Intercept"]
    mat3 = np.empty((3, 1))
    cb_intercept.build({f1: [1, 2, 3], f2: [1, 2, 3], f3: [1, 2, 3]}, mat3)
    assert np.allclose(mat3, 1)

def _factors_memorize(factors, data_iter_maker):
    # First, start off the memorization process by setting up each factor's
    # state and finding out how many passes it will need:
    factor_states = {}
    passes_needed = {}
    for factor in factors:
        state = {}
        which_pass = factor.memorize_passes_needed(state)
        factor_states[factor] = state
        passes_needed[factor] = which_pass
    # Now, cycle through the data until all the factors have finished
    # memorizing everything:
    memorize_needed = set()
    for factor, passes in passes_needed.items():
        if passes > 0:
            memorize_needed.add(factor)
    which_pass = 0
    while memorize_needed:
        for data in data_iter_maker():
            for factor in memorize_needed:
                state = factor_states[factor]
                factor.memorize_chunk(state, which_pass, data)
        for factor in list(memorize_needed):
            factor.memorize_finish(factor_states[factor], which_pass)
            if which_pass == passes_needed[factor] - 1:
                memorize_needed.remove(factor)
        which_pass += 1
    return factor_states

def test__factors_memorize():
    class MockFactor(object):
        def __init__(self, requested_passes, token):
            self._requested_passes = requested_passes
            self._token = token
            self._chunk_in_pass = 0
            self._seen_passes = 0

        def memorize_passes_needed(self, state):
            state["calls"] = []
            state["token"] = self._token
            return self._requested_passes

        def memorize_chunk(self, state, which_pass, data):
            state["calls"].append(("memorize_chunk", which_pass))
            assert data["chunk"] == self._chunk_in_pass
            self._chunk_in_pass += 1

        def memorize_finish(self, state, which_pass):
            state["calls"].append(("memorize_finish", which_pass))
            self._chunk_in_pass = 0

    class Data(object):
        CHUNKS = 3
        def __init__(self):
            self.calls = 0
            self.data = [{"chunk": i} for i in range(self.CHUNKS)]
        def __call__(self):
            self.calls += 1
            return iter(self.data)
    data = Data()
    f0 = MockFactor(0, "f0")
    f1 = MockFactor(1, "f1")
    f2a = MockFactor(2, "f2a")
    f2b = MockFactor(2, "f2b")
    factor_states = _factors_memorize(set([f0, f1, f2a, f2b]), data)
    assert data.calls == 2
    mem_chunks0 = [("memorize_chunk", 0)] * data.CHUNKS
    mem_chunks1 = [("memorize_chunk", 1)] * data.CHUNKS
    expected = {
        f0: {
            "calls": [],
            "token": "f0",
            },
        f1: {
            "calls": mem_chunks0 + [("memorize_finish", 0)],
            "token": "f1",
            },
        f2a: {
            "calls": mem_chunks0 + [("memorize_finish", 0)]
                     + mem_chunks1 + [("memorize_finish", 1)],
            "token": "f2a",
            },
        f2b: {
            "calls": mem_chunks0 + [("memorize_finish", 0)]
                     + mem_chunks1 + [("memorize_finish", 1)],
            "token": "f2b",
            },
        }
    assert factor_states == expected

def _examine_factor_types(factors, factor_states, data_iter_maker, NA_action):
    num_column_counts = {}
    cat_sniffers = {}
    examine_needed = set(factors)
    for data in data_iter_maker():
        for factor in list(examine_needed):
            value = factor.eval(factor_states[factor], data)
            if factor in cat_sniffers or guess_categorical(value):
                if factor not in cat_sniffers:
                    cat_sniffers[factor] = CategoricalSniffer(NA_action,
                                                              factor.origin)
                done = cat_sniffers[factor].sniff(value)
                if done:
                    examine_needed.remove(factor)
            else:
                # Numeric
                value = atleast_2d_column_default(value)
                _max_allowed_dim(2, value, factor)
                column_count = value.shape[1]
                num_column_counts[factor] = column_count
                examine_needed.remove(factor)
        if not examine_needed:
            break
    # Pull out the levels
    cat_levels_contrasts = {}
    for factor, sniffer in cat_sniffers.items():
        cat_levels_contrasts[factor] = sniffer.levels_contrast()
    return (num_column_counts, cat_levels_contrasts)

def test__examine_factor_types():
    from patsy.categorical import C
    class MockFactor(object):
        def __init__(self):
            # You should check this using 'is', not '=='
            from patsy.origin import Origin
            self.origin = Origin("MOCK", 1, 2)

        def eval(self, state, data):
            return state[data]

        def name(self):
            return "MOCK MOCK"

    # This hacky class can only be iterated over once, but it keeps track of
    # how far it got.
    class DataIterMaker(object):
        def __init__(self):
            self.i = -1

        def __call__(self):
            return self

        def __iter__(self):
            return self

        def __next__(self):
            self.i += 1
            if self.i > 1:
                raise StopIteration
            return self.i

    num_1dim = MockFactor()
    num_1col = MockFactor()
    num_4col = MockFactor()
    categ_1col = MockFactor()
    bool_1col = MockFactor()
    string_1col = MockFactor()
    object_1col = MockFactor()
    object_levels = (object(), object(), object())
    factor_states = {
        num_1dim: ([1, 2, 3], [4, 5, 6]),
        num_1col: ([[1], [2], [3]], [[4], [5], [6]]),
        num_4col: (np.zeros((3, 4)), np.ones((3, 4))),
        categ_1col: (C(["a", "b", "c"], levels=("a", "b", "c"),
                       contrast="MOCK CONTRAST"),
                     C(["c", "b", "a"], levels=("a", "b", "c"),
                       contrast="MOCK CONTRAST")),
        bool_1col: ([True, True, False], [False, True, True]),
        # It has to read through all the data to see all the possible levels:
        string_1col: (["a", "a", "a"], ["c", "b", "a"]),
        object_1col: ([object_levels[0]] * 3, object_levels),
        }

    it = DataIterMaker()
    (num_column_counts, cat_levels_contrasts,
     ) = _examine_factor_types(list(factor_states.keys()), factor_states, it,
                               NAAction())
    assert it.i == 2
    iterations = 0
    assert num_column_counts == {num_1dim: 1, num_1col: 1, num_4col: 4}
    assert cat_levels_contrasts == {
        categ_1col: (("a", "b", "c"), "MOCK CONTRAST"),
        bool_1col: ((False, True), None),
        string_1col: (("a", "b", "c"), None),
        object_1col: (tuple(sorted(object_levels, key=id)), None),
        }

    # Check that it doesn't read through all the data if that's not necessary:
    it = DataIterMaker()
    no_read_necessary = [num_1dim, num_1col, num_4col, categ_1col, bool_1col]
    (num_column_counts, cat_levels_contrasts,
     ) = _examine_factor_types(no_read_necessary, factor_states, it,
                               NAAction())
    assert it.i == 0
    assert num_column_counts == {num_1dim: 1, num_1col: 1, num_4col: 4}
    assert cat_levels_contrasts == {
        categ_1col: (("a", "b", "c"), "MOCK CONTRAST"),
        bool_1col: ((False, True), None),
        }

    # Illegal inputs:
    bool_3col = MockFactor()
    num_3dim = MockFactor()
    # no such thing as a multi-dimensional Categorical
    # categ_3dim = MockFactor()
    string_3col = MockFactor()
    object_3col = MockFactor()
    illegal_factor_states = {
        bool_3col: (np.zeros((3, 3), dtype=bool), np.ones((3, 3), dtype=bool)),
        num_3dim: (np.zeros((3, 3, 3)), np.ones((3, 3, 3))),
        string_3col: ([["a", "b", "c"]], [["b", "c", "a"]]),
        object_3col: ([[[object()]]], [[[object()]]]),
        }
    from nose.tools import assert_raises
    for illegal_factor in illegal_factor_states:
        it = DataIterMaker()
        try:
            _examine_factor_types([illegal_factor], illegal_factor_states, it,
                                  NAAction())
        except PatsyError as e:
            assert e.origin is illegal_factor.origin
        else:
            assert False

def _make_term_column_builders(terms,
                               num_column_counts,
                               cat_levels_contrasts):
    # Sort each term into a bucket based on the set of numeric factors it
    # contains:
    term_buckets = OrderedDict()
    bucket_ordering = []
    for term in terms:
        num_factors = []
        for factor in term.factors:
            if factor in num_column_counts:
                num_factors.append(factor)
        bucket = frozenset(num_factors)
        if bucket not in term_buckets:
            bucket_ordering.append(bucket)
        term_buckets.setdefault(bucket, []).append(term)
    # Special rule: if there is a no-numerics bucket, then it always comes
    # first:
    if frozenset() in term_buckets:
        bucket_ordering.remove(frozenset())
        bucket_ordering.insert(0, frozenset())
    term_to_column_builders = {}
    new_term_order = []
    # Then within each bucket, work out which sort of contrasts we want to use
    # for each term to avoid redundancy
    for bucket in bucket_ordering:
        bucket_terms = term_buckets[bucket]
        # Sort by degree of interaction
        bucket_terms.sort(key=lambda t: len(t.factors))
        new_term_order += bucket_terms
        used_subterms = set()
        for term in bucket_terms:
            column_builders = []
            factor_codings = pick_contrasts_for_term(term,
                                                     num_column_counts,
                                                     used_subterms)
            # Construct one _ColumnBuilder for each subterm
            for factor_coding in factor_codings:
                builder_factors = []
                num_columns = {}
                cat_contrasts = {}
                # In order to preserve factor ordering information, the
                # coding_for_term just returns dicts, and we refer to
                # the original factors to figure out which are included in
                # each subterm, and in what order
                for factor in term.factors:
                    # Numeric factors are included in every subterm
                    if factor in num_column_counts:
                        builder_factors.append(factor)
                        num_columns[factor] = num_column_counts[factor]
                    elif factor in factor_coding:
                        builder_factors.append(factor)
                        levels, contrast = cat_levels_contrasts[factor]
                        # This is where the default coding is set to
                        # Treatment:
                        coded = code_contrast_matrix(factor_coding[factor],
                                                     levels, contrast,
                                                     default=Treatment)
                        cat_contrasts[factor] = coded
                column_builder = _ColumnBuilder(builder_factors,
                                                num_columns,
                                                cat_contrasts)
                column_builders.append(column_builder)
            term_to_column_builders[term] = column_builders
    return new_term_order, term_to_column_builders

def design_matrix_builders(termlists, data_iter_maker, NA_action="drop"):
    """Construct several :class:`DesignMatrixBuilders` from termlists.

    This is one of Patsy's fundamental functions. This function and
    :func:`build_design_matrices` together form the API to the core formula
    interpretation machinery.

    :arg termlists: A list of termlists, where each termlist is a list of
      :class:`Term` objects which together specify a design matrix.
    :arg data_iter_maker: A zero-argument callable which returns an iterator
      over dict-like data objects. This must be a callable rather than a
      simple iterator because sufficiently complex formulas may require
      multiple passes over the data (e.g. if there are nested stateful
      transforms).
    :arg NA_action: An :class:`NAAction` object or string, used to determine
      what values count as 'missing' for purposes of determining the levels of
      categorical factors.
    :returns: A list of :class:`DesignMatrixBuilder` objects, one for each
      termlist passed in.

    This function performs zero or more iterations over the data in order to
    sniff out any necessary information about factor types, set up stateful
    transforms, pick column names, etc.

    See :ref:`formulas` for details.

    .. versionadded:: 0.2.0
       The ``NA_action`` argument.
    """
    if isinstance(NA_action, str):
        NA_action = NAAction(NA_action)
    all_factors = set()
    for termlist in termlists:
        for term in termlist:
            all_factors.update(term.factors)
    factor_states = _factors_memorize(all_factors, data_iter_maker)
    # Now all the factors have working eval methods, so we can evaluate them
    # on some data to find out what type of data they return.
    (num_column_counts,
     cat_levels_contrasts) = _examine_factor_types(all_factors,
                                                   factor_states,
                                                   data_iter_maker,
                                                   NA_action)
    # Now we need the factor evaluators, which encapsulate the knowledge of
    # how to turn any given factor into a chunk of data:
    factor_evaluators = {}
    for factor in all_factors:
        if factor in num_column_counts:
            evaluator = _NumFactorEvaluator(factor,
                                            factor_states[factor],
                                            num_column_counts[factor])
        else:
            assert factor in cat_levels_contrasts
            levels = cat_levels_contrasts[factor][0]
            evaluator = _CatFactorEvaluator(factor, factor_states[factor],
                                            levels)
        factor_evaluators[factor] = evaluator
    # And now we can construct the DesignMatrixBuilder for each termlist:
    builders = []
    for termlist in termlists:
        result = _make_term_column_builders(termlist,
                                            num_column_counts,
                                            cat_levels_contrasts)
        new_term_order, term_to_column_builders = result
        assert frozenset(new_term_order) == frozenset(termlist)
        term_evaluators = set()
        for term in termlist:
            for factor in term.factors:
                term_evaluators.add(factor_evaluators[factor])
        builders.append(DesignMatrixBuilder(new_term_order,
                                            term_evaluators,
                                            term_to_column_builders))
    return builders

class DesignMatrixBuilder(object):
    """An opaque class representing Patsy's knowledge about
    how to build a specific design matrix.

    You get these objects from :func:`design_matrix_builders`, and pass them
    to :func:`build_design_matrices`.
    """
    def __init__(self, terms, evaluators, term_to_column_builders):
        self._termlist = terms
        self._evaluators = evaluators
        self._term_to_column_builders = term_to_column_builders
        term_column_count = []
        self._column_names = []
        for term in self._termlist:
            column_builders = self._term_to_column_builders[term]
            this_count = 0
            for column_builder in column_builders:
                this_names = column_builder.column_names()
                this_count += len(this_names)
                self._column_names += this_names
            term_column_count.append(this_count)
        term_column_starts = np.concatenate(([0], np.cumsum(term_column_count)))
        self._term_slices = []
        for i, term in enumerate(self._termlist):
            span = slice(term_column_starts[i], term_column_starts[i + 1])
            self._term_slices.append((term, span))
        self.total_columns = np.sum(term_column_count, dtype=int)

    # Generate this on demand, to avoid a reference loop:
    @property
    def design_info(self):
        """A :class:`DesignInfo` object giving information about the design
        matrices that this DesignMatrixBuilder can be used to create."""
        return DesignInfo(self._column_names, self._term_slices,
                          builder=self)

    def subset(self, which_terms):
        """Create a new :class:`DesignMatrixBuilder` that includes only a
        subset of the terms that this object does.

        For example, if `builder` has terms `x`, `y`, and `z`, then::

          builder2 = builder.subset(["x", "z"])

        will return a new builder that will return design matrices with only
        the columns corresponding to the terms `x` and `z`. After we do this,
        then in general these two expressions will return the same thing (here
        we assume that `x`, `y`, and `z` each generate a single column of the
        output)::

          build_design_matrix([builder], data)[0][:, [0, 2]]
          build_design_matrix([builder2], data)[0]

        However, a critical difference is that in the second case, `data` need
        not contain any values for `y`. This is very useful when doing
        prediction using a subset of a model, in which situation R usually
        forces you to specify dummy values for `y`.

        If using a formula to specify the terms to include, remember that like
        any formula, the intercept term will be included by default, so use
        `0` or `-1` in your formula if you want to avoid this.

        :arg which_terms: The terms which should be kept in the new
          :class:`DesignMatrixBuilder`. If this is a string, then it is parsed
          as a formula, and then the names of the resulting terms are taken as
          the terms to keep. If it is a list, then it can contain a mixture of
          term names (as strings) and :class:`Term` objects.

        .. versionadded: 0.2.0
        """
        factor_to_evaluators = {}
        for evaluator in self._evaluators:
            factor_to_evaluators[evaluator.factor] = evaluator
        design_info = self.design_info
        term_name_to_term = dict(list(zip(design_info.term_names,
                                     design_info.terms)))
        if isinstance(which_terms, str):
            # We don't use this EvalEnvironment -- all we want to do is to
            # find matching terms, and we can't do that use == on Term
            # objects, because that calls == on factor objects, which in turn
            # compares EvalEnvironments. So all we do with the parsed formula
            # is pull out the term *names*, which the EvalEnvironment doesn't
            # effect. This is just a placeholder then to allow the ModelDesc
            # to be created:
            env = EvalEnvironment({})
            desc = ModelDesc.from_formula(which_terms, env)
            if desc.lhs_termlist:
                raise PatsyError("right-hand-side-only formula required")
            which_terms = [term.name() for term in desc.rhs_termlist]
        terms = []
        evaluators = set()
        term_to_column_builders = {}
        for term_or_name in which_terms:
            if isinstance(term_or_name, str):
                if term_or_name not in term_name_to_term:
                    raise PatsyError("requested term %r not found in "
                                     "this DesignMatrixBuilder"
                                     % (term_or_name,))
                term = term_name_to_term[term_or_name]
            else:
                term = term_or_name
            if term not in self._termlist:
                raise PatsyError("requested term '%s' not found in this "
                                 "DesignMatrixBuilder" % (term,))
            for factor in term.factors:
                evaluators.add(factor_to_evaluators[factor])
            terms.append(term)
            column_builder = self._term_to_column_builders[term]
            term_to_column_builders[term] = column_builder
        return DesignMatrixBuilder(terms,
                                   evaluators,
                                   term_to_column_builders)

    def _build(self, evaluator_to_values, dtype):
        factor_to_values = {}
        need_reshape = False
        num_rows = None
        for evaluator, value in evaluator_to_values.items():
            if evaluator in self._evaluators:
                factor_to_values[evaluator.factor] = value
                if num_rows is not None:
                    assert num_rows == value.shape[0]
                else:
                    num_rows = value.shape[0]
        if num_rows is None:
            # We have no dependence on the data -- e.g. an empty termlist, or
            # only an intercept term.
            num_rows = 1
            need_reshape = True
        m = DesignMatrix(np.empty((num_rows, self.total_columns), dtype=dtype),
                         self.design_info)
        start_column = 0
        for term in self._termlist:
            for column_builder in self._term_to_column_builders[term]:
                end_column = start_column + column_builder.total_columns
                m_slice = m[:, start_column:end_column]
                column_builder.build(factor_to_values, m_slice)
                start_column = end_column
        assert start_column == self.total_columns
        return need_reshape, m

def build_design_matrices(builders, data,
                          NA_action="drop",
                          return_type="matrix",
                          dtype=np.dtype(float)):
    """Construct several design matrices from :class:`DesignMatrixBuilder`
    objects.

    This is one of Patsy's fundamental functions. This function and
    :func:`design_matrix_builders` together form the API to the core formula
    interpretation machinery.

    :arg builders: A list of :class:`DesignMatrixBuilders` specifying the
      design matrices to be built.
    :arg data: A dict-like object which will be used to look up data.
    :arg NA_action: What to do with rows that contain missing values. You can
      ``"drop"`` them, ``"raise"`` an error, or for customization, pass an
      :class:`NAAction` object. See :class:`NAAction` for details on what
      values count as 'missing' (and how to alter this).
    :arg return_type: Either ``"matrix"`` or ``"dataframe"``. See below.
    :arg dtype: The dtype of the returned matrix. Useful if you want to use
      single-precision or extended-precision.

    This function returns either a list of :class:`DesignMatrix` objects (for
    ``return_type="matrix"``) or a list of :class:`pandas.DataFrame` objects
    (for ``return_type="dataframe"``). In the latter case, the DataFrames will
    preserve any (row) indexes that were present in the input, which may be
    useful for time-series models etc. In any case, all returned design
    matrices will have ``.design_info`` attributes containing the appropriate
    :class:`DesignInfo` objects.

    Unlike :func:`design_matrix_builders`, this function takes only a simple
    data argument, not any kind of iterator. That's because this function
    doesn't need a global view of the data -- everything that depends on the
    whole data set is already encapsulated in the `builders`. If you are
    incrementally processing a large data set, simply call this function for
    each chunk.

    .. versionadded:: 0.2.0
       The ``NA_action`` argument.
    """
    if isinstance(NA_action, str):
        NA_action = NAAction(NA_action)
    if return_type == "dataframe" and not have_pandas:
        raise PatsyError("pandas.DataFrame was requested, but pandas "
                            "is not installed")
    if return_type not in ("matrix", "dataframe"):
        raise PatsyError("unrecognized output type %r, should be "
                            "'matrix' or 'dataframe'" % (return_type,))
    # Evaluate factors
    evaluator_to_values = {}
    evaluator_to_isNAs = {}
    num_rows = None
    pandas_index = None
    for builder in builders:
        # We look at evaluators rather than factors here, because it might
        # happen that we have the same factor twice, but with different
        # memorized state.
        for evaluator in builder._evaluators:
            if evaluator not in evaluator_to_values:
                value, is_NA = evaluator.eval(data, NA_action)
                evaluator_to_isNAs[evaluator] = is_NA
                # value may now be a Series, DataFrame, or ndarray
                if num_rows is None:
                    num_rows = value.shape[0]
                else:
                    if num_rows != value.shape[0]:
                        msg = ("Row mismatch: factor %s had %s rows, when "
                               "previous factors had %s rows"
                               % (evaluator.factor.name(), value.shape[0],
                                  num_rows))
                        raise PatsyError(msg, evaluator.factor)
                if (have_pandas
                    and isinstance(value, (pandas.Series, pandas.DataFrame))):
                    if pandas_index is None:
                        pandas_index = value.index
                    else:
                        if not pandas_index.equals(value.index):
                            msg = ("Index mismatch: pandas objects must "
                                   "have aligned indexes")
                            raise PatsyError(msg, evaluator.factor)
                # Strategy: we work with raw ndarrays for doing the actual
                # combining; DesignMatrixBuilder objects never sees pandas
                # objects. Then at the end, if a DataFrame was requested, we
                # convert. So every entry in this dict is either a 2-d array
                # of floats, or a 1-d array of integers (representing
                # categories).
                value = np.asarray(value)
                evaluator_to_values[evaluator] = value
    # Handle NAs
    values = list(evaluator_to_values.values())
    is_NAs = list(evaluator_to_isNAs.values())
    # num_rows is None iff evaluator_to_values (and associated sets like
    # 'values') are empty, i.e., we have no actual evaluators involved
    # (formulas like "~ 1").
    if return_type == "dataframe" and num_rows is not None:
        if pandas_index is None:
            pandas_index = np.arange(num_rows)
        values.append(pandas_index)
        is_NAs.append(np.zeros(len(pandas_index), dtype=bool))
    origins = [evaluator.factor.origin for evaluator in evaluator_to_values]
    new_values = NA_action.handle_NA(values, is_NAs, origins)
    # NA_action may have changed the number of rows.
    if num_rows is not None:
        num_rows = new_values[0].shape[0]
    if return_type == "dataframe" and num_rows is not None:
        pandas_index = new_values.pop()
    evaluator_to_values = dict(list(zip(evaluator_to_values, new_values)))
    # Build factor values into matrices
    results = []
    for builder in builders:
        results.append(builder._build(evaluator_to_values, dtype))
    matrices = []
    for need_reshape, matrix in results:
        if need_reshape and num_rows is not None:
            assert matrix.shape[0] == 1
            matrices.append(DesignMatrix(np.repeat(matrix, num_rows, axis=0),
                                         matrix.design_info))
        else:
            # There is no data-dependence, at all -- a formula like "1 ~ 1". I
            # guess we'll just return some single-row matrices. Perhaps it
            # would be better to figure out how many rows are in the input
            # data and broadcast to that size, but eh. Input data is optional
            # in the first place, so even that would be no guarantee... let's
            # wait until someone actually has a relevant use case before we
            # worry about it.
            matrices.append(matrix)
    if return_type == "dataframe":
        assert have_pandas
        for i, matrix in enumerate(matrices):
            di = matrix.design_info
            matrices[i] = pandas.DataFrame(matrix,
                                           columns=di.column_names,
                                           index=pandas_index)
            matrices[i].design_info = di
    return matrices

# It should be possible to do just the factors -> factor evaluators stuff
# alone, since that, well, makes logical sense to do. though categorical
# coding has to happen afterwards, hmm.