This file is indexed.

/usr/lib/python3/dist-packages/pandas/stats/plm.py is in python3-pandas 0.13.1-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
"""
Linear regression objects for panel data
"""

# pylint: disable-msg=W0231
# pylint: disable-msg=E1101,E1103

from __future__ import division
from pandas.compat import range
from pandas import compat
import warnings

import numpy as np

from pandas.core.panel import Panel
from pandas.core.frame import DataFrame
from pandas.core.reshape import get_dummies
from pandas.core.series import Series
from pandas.core.sparse import SparsePanel
from pandas.stats.ols import OLS, MovingOLS
import pandas.stats.common as com
import pandas.stats.math as math
from pandas.util.decorators import cache_readonly


class PanelOLS(OLS):
    """Implements panel OLS.

    See ols function docs
    """
    _panel_model = True

    def __init__(self, y, x, weights=None, intercept=True, nw_lags=None,
                 entity_effects=False, time_effects=False, x_effects=None,
                 cluster=None, dropped_dummies=None, verbose=False,
                 nw_overlap=False):
        self._x_orig = x
        self._y_orig = y
        self._weights = weights

        self._intercept = intercept
        self._nw_lags = nw_lags
        self._nw_overlap = nw_overlap
        self._entity_effects = entity_effects
        self._time_effects = time_effects
        self._x_effects = x_effects
        self._dropped_dummies = dropped_dummies or {}
        self._cluster = com._get_cluster_type(cluster)
        self._verbose = verbose

        (self._x, self._x_trans,
         self._x_filtered, self._y,
         self._y_trans) = self._prepare_data()

        self._index = self._x.index.levels[0]

        self._T = len(self._index)

    def log(self, msg):
        if self._verbose:  # pragma: no cover
            print(msg)

    def _prepare_data(self):
        """Cleans and stacks input data into DataFrame objects

        If time effects is True, then we turn off intercepts and omit an item
        from every (entity and x) fixed effect.

        Otherwise:
           - If we have an intercept, we omit an item from every fixed effect.
           - Else, we omit an item from every fixed effect except one of them.

        The categorical variables will get dropped from x.
        """
        (x, x_filtered, y, weights, cat_mapping) = self._filter_data()

        self.log('Adding dummies to X variables')
        x = self._add_dummies(x, cat_mapping)

        self.log('Adding dummies to filtered X variables')
        x_filtered = self._add_dummies(x_filtered, cat_mapping)

        if self._x_effects:
            x = x.drop(self._x_effects, axis=1)
            x_filtered = x_filtered.drop(self._x_effects, axis=1)

        if self._time_effects:
            x_regressor = x.sub(x.mean(level=0), level=0)

            unstacked_y = y.unstack()
            y_regressor = unstacked_y.sub(unstacked_y.mean(1), axis=0).stack()
            y_regressor.index = y.index

        elif self._intercept:
            # only add intercept when no time effects
            self.log('Adding intercept')
            x = x_regressor = add_intercept(x)
            x_filtered = add_intercept(x_filtered)
            y_regressor = y
        else:
            self.log('No intercept added')
            x_regressor = x
            y_regressor = y

        if weights is not None:
            if not y_regressor.index.equals(weights.index):
                raise AssertionError("y_regressor and weights must have the "
                                     "same index")
            if not x_regressor.index.equals(weights.index):
                raise AssertionError("x_regressor and weights must have the "
                                     "same index")

            rt_weights = np.sqrt(weights)
            y_regressor = y_regressor * rt_weights
            x_regressor = x_regressor.mul(rt_weights, axis=0)

        return x, x_regressor, x_filtered, y, y_regressor

    def _filter_data(self):
        """

        """
        data = self._x_orig
        cat_mapping = {}

        if isinstance(data, DataFrame):
            data = data.to_panel()
        else:
            if isinstance(data, Panel):
                data = data.copy()

            if not isinstance(data, SparsePanel):
                data, cat_mapping = self._convert_x(data)

            if not isinstance(data, Panel):
                data = Panel.from_dict(data, intersect=True)

        x_names = data.items

        if self._weights is not None:
            data['__weights__'] = self._weights

        # Filter x's without y (so we can make a prediction)
        filtered = data.to_frame()

        # Filter all data together using to_frame

        # convert to DataFrame
        y = self._y_orig
        if isinstance(y, Series):
            y = y.unstack()

        data['__y__'] = y
        data_long = data.to_frame()

        x_filt = filtered.filter(x_names)
        x = data_long.filter(x_names)
        y = data_long['__y__']

        if self._weights is not None and not self._weights.empty:
            weights = data_long['__weights__']
        else:
            weights = None

        return x, x_filt, y, weights, cat_mapping

    def _convert_x(self, x):
        # Converts non-numeric data in x to floats. x_converted is the
        # DataFrame with converted values, and x_conversion is a dict that
        # provides the reverse mapping.  For example, if 'A' was converted to 0
        # for x named 'variety', then x_conversion['variety'][0] is 'A'.
        x_converted = {}
        cat_mapping = {}
        # x can be either a dict or a Panel, but in Python 3, dicts don't have
        # .iteritems
        iteritems = getattr(x, 'iteritems', x.items)
        for key, df in iteritems():
            if not isinstance(df, DataFrame):
                raise AssertionError("all input items must be DataFrames, "
                                     "at least one is of "
                                     "type {0}".format(type(df)))

            if _is_numeric(df):
                x_converted[key] = df
            else:
                try:
                    df = df.astype(float)
                except (TypeError, ValueError):
                    values = df.values
                    distinct_values = sorted(set(values.flat))
                    cat_mapping[key] = dict(enumerate(distinct_values))
                    new_values = np.searchsorted(distinct_values, values)
                    x_converted[key] = DataFrame(new_values, index=df.index,
                                                 columns=df.columns)

        if len(cat_mapping) == 0:
            x_converted = x

        return x_converted, cat_mapping

    def _add_dummies(self, panel, mapping):
        """
        Add entity and / or categorical dummies to input X DataFrame

        Returns
        -------
        DataFrame
        """
        panel = self._add_entity_effects(panel)
        panel = self._add_categorical_dummies(panel, mapping)

        return panel

    def _add_entity_effects(self, panel):
        """
        Add entity dummies to panel

        Returns
        -------
        DataFrame
        """
        from pandas.core.reshape import make_axis_dummies

        if not self._entity_effects:
            return panel

        self.log('-- Adding entity fixed effect dummies')

        dummies = make_axis_dummies(panel, 'minor')

        if not self._use_all_dummies:
            if 'entity' in self._dropped_dummies:
                to_exclude = str(self._dropped_dummies.get('entity'))
            else:
                to_exclude = dummies.columns[0]

            if to_exclude not in dummies.columns:
                raise Exception('%s not in %s' % (to_exclude,
                                                  dummies.columns))

            self.log('-- Excluding dummy for entity: %s' % to_exclude)

            dummies = dummies.filter(dummies.columns - [to_exclude])

        dummies = dummies.add_prefix('FE_')
        panel = panel.join(dummies)

        return panel

    def _add_categorical_dummies(self, panel, cat_mappings):
        """
        Add categorical dummies to panel

        Returns
        -------
        DataFrame
        """
        if not self._x_effects:
            return panel

        dropped_dummy = (self._entity_effects and not self._use_all_dummies)

        for effect in self._x_effects:
            self.log('-- Adding fixed effect dummies for %s' % effect)

            dummies = get_dummies(panel[effect])

            val_map = cat_mappings.get(effect)
            if val_map:
                val_map = dict((v, k) for k, v in compat.iteritems(val_map))

            if dropped_dummy or not self._use_all_dummies:
                if effect in self._dropped_dummies:
                    to_exclude = mapped_name = self._dropped_dummies.get(
                        effect)

                    if val_map:
                        mapped_name = val_map[to_exclude]
                else:
                    to_exclude = mapped_name = dummies.columns[0]

                if mapped_name not in dummies.columns:  # pragma: no cover
                    raise Exception('%s not in %s' % (to_exclude,
                                                      dummies.columns))

                self.log(
                    '-- Excluding dummy for %s: %s' % (effect, to_exclude))

                dummies = dummies.filter(dummies.columns - [mapped_name])
                dropped_dummy = True

            dummies = _convertDummies(dummies, cat_mappings.get(effect))
            dummies = dummies.add_prefix('%s_' % effect)
            panel = panel.join(dummies)

        return panel

    @property
    def _use_all_dummies(self):
        """
        In the case of using an intercept or including time fixed
        effects, completely partitioning the sample would make the X
        not full rank.
        """
        return (not self._intercept and not self._time_effects)

    @cache_readonly
    def _beta_raw(self):
        """Runs the regression and returns the beta."""
        X = self._x_trans.values
        Y = self._y_trans.values.squeeze()

        beta, _, _, _ = np.linalg.lstsq(X, Y)

        return beta

    @cache_readonly
    def beta(self):
        return Series(self._beta_raw, index=self._x.columns)

    @cache_readonly
    def _df_model_raw(self):
        """Returns the raw model degrees of freedom."""
        return self._df_raw - 1

    @cache_readonly
    def _df_resid_raw(self):
        """Returns the raw residual degrees of freedom."""
        return self._nobs - self._df_raw

    @cache_readonly
    def _df_raw(self):
        """Returns the degrees of freedom."""
        df = math.rank(self._x_trans.values)
        if self._time_effects:
            df += self._total_times

        return df

    @cache_readonly
    def _r2_raw(self):
        Y = self._y_trans.values.squeeze()
        X = self._x_trans.values

        resid = Y - np.dot(X, self._beta_raw)

        SSE = (resid ** 2).sum()

        if self._use_centered_tss:
            SST = ((Y - np.mean(Y)) ** 2).sum()
        else:
            SST = (Y ** 2).sum()

        return 1 - SSE / SST

    @property
    def _use_centered_tss(self):
        # has_intercept = np.abs(self._resid_raw.sum()) < _FP_ERR
        return self._intercept or self._entity_effects or self._time_effects

    @cache_readonly
    def _r2_adj_raw(self):
        """Returns the raw r-squared adjusted values."""
        nobs = self._nobs
        factors = (nobs - 1) / (nobs - self._df_raw)
        return 1 - (1 - self._r2_raw) * factors

    @cache_readonly
    def _resid_raw(self):
        Y = self._y.values.squeeze()
        X = self._x.values
        return Y - np.dot(X, self._beta_raw)

    @cache_readonly
    def resid(self):
        return self._unstack_vector(self._resid_raw)

    @cache_readonly
    def _rmse_raw(self):
        """Returns the raw rmse values."""
        # X = self._x.values
        # Y = self._y.values.squeeze()

        X = self._x_trans.values
        Y = self._y_trans.values.squeeze()

        resid = Y - np.dot(X, self._beta_raw)
        ss = (resid ** 2).sum()
        return np.sqrt(ss / (self._nobs - self._df_raw))

    @cache_readonly
    def _var_beta_raw(self):
        cluster_axis = None
        if self._cluster == 'time':
            cluster_axis = 0
        elif self._cluster == 'entity':
            cluster_axis = 1

        x = self._x
        y = self._y

        if self._time_effects:
            xx = _xx_time_effects(x, y)
        else:
            xx = np.dot(x.values.T, x.values)

        return _var_beta_panel(y, x, self._beta_raw, xx,
                               self._rmse_raw, cluster_axis, self._nw_lags,
                               self._nobs, self._df_raw, self._nw_overlap)

    @cache_readonly
    def _y_fitted_raw(self):
        """Returns the raw fitted y values."""
        return np.dot(self._x.values, self._beta_raw)

    @cache_readonly
    def y_fitted(self):
        return self._unstack_vector(self._y_fitted_raw, index=self._x.index)

    def _unstack_vector(self, vec, index=None):
        if index is None:
            index = self._y_trans.index
        panel = DataFrame(vec, index=index, columns=['dummy'])
        return panel.to_panel()['dummy']

    def _unstack_y(self, vec):
        unstacked = self._unstack_vector(vec)
        return unstacked.reindex(self.beta.index)

    @cache_readonly
    def _time_obs_count(self):
        return self._y_trans.count(level=0).values

    @cache_readonly
    def _time_has_obs(self):
        return self._time_obs_count > 0

    @property
    def _nobs(self):
        return len(self._y)


def _convertDummies(dummies, mapping):
    # cleans up the names of the generated dummies
    new_items = []
    for item in dummies.columns:
        if not mapping:
            var = str(item)
            if isinstance(item, float):
                var = '%g' % item

            new_items.append(var)
        else:
            # renames the dummies if a conversion dict is provided
            new_items.append(mapping[int(item)])

    dummies = DataFrame(dummies.values, index=dummies.index,
                        columns=new_items)

    return dummies


def _is_numeric(df):
    for col in df:
        if df[col].dtype.name == 'object':
            return False

    return True


def add_intercept(panel, name='intercept'):
    """
    Add column of ones to input panel

    Parameters
    ----------
    panel: Panel / DataFrame
    name: string, default 'intercept']

    Returns
    -------
    New object (same type as input)
    """
    panel = panel.copy()
    panel[name] = 1.

    return panel.consolidate()


class MovingPanelOLS(MovingOLS, PanelOLS):
    """Implements rolling/expanding panel OLS.

    See ols function docs
    """
    _panel_model = True

    def __init__(self, y, x, weights=None,
                 window_type='expanding', window=None,
                 min_periods=None,
                 min_obs=None,
                 intercept=True,
                 nw_lags=None, nw_overlap=False,
                 entity_effects=False,
                 time_effects=False,
                 x_effects=None,
                 cluster=None,
                 dropped_dummies=None,
                 verbose=False):

        self._args = dict(intercept=intercept,
                          nw_lags=nw_lags,
                          nw_overlap=nw_overlap,
                          entity_effects=entity_effects,
                          time_effects=time_effects,
                          x_effects=x_effects,
                          cluster=cluster,
                          dropped_dummies=dropped_dummies,
                          verbose=verbose)

        PanelOLS.__init__(self, y=y, x=x, weights=weights,
                          **self._args)

        self._set_window(window_type, window, min_periods)

        if min_obs is None:
            min_obs = len(self._x.columns) + 1

        self._min_obs = min_obs

    @cache_readonly
    def resid(self):
        return self._unstack_y(self._resid_raw)

    @cache_readonly
    def y_fitted(self):
        return self._unstack_y(self._y_fitted_raw)

    @cache_readonly
    def y_predict(self):
        """Returns the predicted y values."""
        return self._unstack_y(self._y_predict_raw)

    def lagged_y_predict(self, lag=1):
        """
        Compute forecast Y value lagging coefficient by input number
        of time periods

        Parameters
        ----------
        lag : int

        Returns
        -------
        DataFrame
        """
        x = self._x.values
        betas = self._beta_matrix(lag=lag)
        return self._unstack_y((betas * x).sum(1))

    @cache_readonly
    def _rolling_ols_call(self):
        return self._calc_betas(self._x_trans, self._y_trans)

    @cache_readonly
    def _df_raw(self):
        """Returns the degrees of freedom."""
        df = self._rolling_rank()

        if self._time_effects:
            df += self._window_time_obs

        return df[self._valid_indices]

    @cache_readonly
    def _var_beta_raw(self):
        """Returns the raw covariance of beta."""
        x = self._x
        y = self._y

        dates = x.index.levels[0]

        cluster_axis = None
        if self._cluster == 'time':
            cluster_axis = 0
        elif self._cluster == 'entity':
            cluster_axis = 1

        nobs = self._nobs
        rmse = self._rmse_raw
        beta = self._beta_raw
        df = self._df_raw
        window = self._window

        if not self._time_effects:
            # Non-transformed X
            cum_xx = self._cum_xx(x)

        results = []
        for n, i in enumerate(self._valid_indices):
            if self._is_rolling and i >= window:
                prior_date = dates[i - window + 1]
            else:
                prior_date = dates[0]

            date = dates[i]

            x_slice = x.truncate(prior_date, date)
            y_slice = y.truncate(prior_date, date)

            if self._time_effects:
                xx = _xx_time_effects(x_slice, y_slice)
            else:
                xx = cum_xx[i]
                if self._is_rolling and i >= window:
                    xx = xx - cum_xx[i - window]

            result = _var_beta_panel(y_slice, x_slice, beta[n], xx, rmse[n],
                                     cluster_axis, self._nw_lags,
                                     nobs[n], df[n], self._nw_overlap)

            results.append(result)

        return np.array(results)

    @cache_readonly
    def _resid_raw(self):
        beta_matrix = self._beta_matrix(lag=0)

        Y = self._y.values.squeeze()
        X = self._x.values
        resid = Y - (X * beta_matrix).sum(1)

        return resid

    @cache_readonly
    def _y_fitted_raw(self):
        x = self._x.values
        betas = self._beta_matrix(lag=0)
        return (betas * x).sum(1)

    @cache_readonly
    def _y_predict_raw(self):
        """Returns the raw predicted y values."""
        x = self._x.values
        betas = self._beta_matrix(lag=1)
        return (betas * x).sum(1)

    def _beta_matrix(self, lag=0):
        if lag < 0:
            raise AssertionError("'lag' must be greater than or equal to 0, "
                                 "input was {0}".format(lag))

        index = self._y_trans.index
        major_labels = index.labels[0]
        labels = major_labels - lag
        indexer = self._valid_indices.searchsorted(labels, side='left')

        beta_matrix = self._beta_raw[indexer]
        beta_matrix[labels < self._valid_indices[0]] = np.NaN

        return beta_matrix

    @cache_readonly
    def _enough_obs(self):
        # XXX: what's the best way to determine where to start?
        # TODO: write unit tests for this

        rank_threshold = len(self._x.columns) + 1
        if self._min_obs < rank_threshold:  # pragma: no cover
            warnings.warn('min_obs is smaller than rank of X matrix')

        enough_observations = self._nobs_raw >= self._min_obs
        enough_time_periods = self._window_time_obs >= self._min_periods
        return enough_time_periods & enough_observations


def create_ols_dict(attr):
    def attr_getter(self):
        d = {}
        for k, v in compat.iteritems(self.results):
            result = getattr(v, attr)
            d[k] = result

        return d

    return attr_getter


def create_ols_attr(attr):
    return property(create_ols_dict(attr))


class NonPooledPanelOLS(object):
    """Implements non-pooled panel OLS.

    Parameters
    ----------
    y : DataFrame
    x : Series, DataFrame, or dict of Series
    intercept : bool
        True if you want an intercept.
    nw_lags : None or int
        Number of Newey-West lags.
    window_type : {'full_sample', 'rolling', 'expanding'}
        'full_sample' by default
    window : int
        size of window (for rolling/expanding OLS)
    """

    ATTRIBUTES = [
        'beta',
        'df',
        'df_model',
        'df_resid',
        'f_stat',
        'p_value',
        'r2',
        'r2_adj',
        'resid',
        'rmse',
        'std_err',
        'summary_as_matrix',
        't_stat',
        'var_beta',
        'x',
        'y',
        'y_fitted',
        'y_predict'
    ]

    def __init__(self, y, x, window_type='full_sample', window=None,
                 min_periods=None, intercept=True, nw_lags=None,
                 nw_overlap=False):

        for attr in self.ATTRIBUTES:
            setattr(self.__class__, attr, create_ols_attr(attr))

        results = {}

        for entity in y:
            entity_y = y[entity]

            entity_x = {}
            for x_var in x:
                entity_x[x_var] = x[x_var][entity]

            from pandas.stats.interface import ols
            results[entity] = ols(y=entity_y,
                                  x=entity_x,
                                  window_type=window_type,
                                  window=window,
                                  min_periods=min_periods,
                                  intercept=intercept,
                                  nw_lags=nw_lags,
                                  nw_overlap=nw_overlap)

        self.results = results


def _var_beta_panel(y, x, beta, xx, rmse, cluster_axis,
                    nw_lags, nobs, df, nw_overlap):
    from pandas.core.frame import group_agg
    xx_inv = math.inv(xx)

    yv = y.values

    if cluster_axis is None:
        if nw_lags is None:
            return xx_inv * (rmse ** 2)
        else:
            resid = yv - np.dot(x.values, beta)
            m = (x.values.T * resid).T

            xeps = math.newey_west(m, nw_lags, nobs, df, nw_overlap)

            return np.dot(xx_inv, np.dot(xeps, xx_inv))
    else:
        Xb = np.dot(x.values, beta).reshape((len(x.values), 1))
        resid = DataFrame(yv[:, None] - Xb, index=y.index, columns=['resid'])

        if cluster_axis == 1:
            x = x.swaplevel(0, 1).sortlevel(0)
            resid = resid.swaplevel(0, 1).sortlevel(0)

        m = group_agg(x.values * resid.values, x.index._bounds,
                      lambda x: np.sum(x, axis=0))

        if nw_lags is None:
            nw_lags = 0

        xox = 0
        for i in range(len(x.index.levels[0])):
            xox += math.newey_west(m[i: i + 1], nw_lags,
                                   nobs, df, nw_overlap)

        return np.dot(xx_inv, np.dot(xox, xx_inv))


def _xx_time_effects(x, y):
    """
    Returns X'X - (X'T) (T'T)^-1 (T'X)
    """
    # X'X
    xx = np.dot(x.values.T, x.values)
    xt = x.sum(level=0).values

    count = y.unstack().count(1).values
    selector = count > 0

    # X'X - (T'T)^-1 (T'X)
    xt = xt[selector]
    count = count[selector]

    return xx - np.dot(xt.T / count, xt)