/usr/lib/python3/dist-packages/jedi/evaluate.py is in python3-jedi 0.7.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 | """
Evaluation of Python code in |jedi| is based on three assumptions:
* Code is recursive (to weaken this assumption, the :mod:`dynamic` module
exists).
* No magic is being used:
- metaclasses
- ``setattr()`` / ``__import__()``
- writing to ``globals()``, ``locals()``, ``object.__dict__``
* The programmer is not a total dick, e.g. like `this
<https://github.com/davidhalter/jedi/issues/24>`_ :-)
That said, there's mainly one entry point in this script: ``follow_statement``.
This is where autocompletion starts. Everything you want to complete is either
a ``Statement`` or some special name like ``class``, which is easy to complete.
Therefore you need to understand what follows after ``follow_statement``. Let's
make an example::
import datetime
datetime.date.toda# <-- cursor here
First of all, this module doesn't care about completion. It really just cares
about ``datetime.date``. At the end of the procedure ``follow_statement`` will
return the ``datetime`` class.
To *visualize* this (simplified):
- ``follow_statement`` - ``<Statement: datetime.date>``
- Unpacking of the statement into ``[[<Call: datetime.date>]]``
- ``follow_call_list``, calls ``follow_call`` with ``<Call: datetime.date>``
- ``follow_call`` - searches the ``datetime`` name within the module.
This is exactly where it starts to get complicated. Now recursions start to
kick in. The statement has not been resolved fully, but now we need to resolve
the datetime import. So it continues
- follow import, which happens in the :mod:`imports` module.
- now the same ``follow_call`` as above calls ``follow_paths`` to follow the
second part of the statement ``date``.
- After ``follow_paths`` returns with the desired ``datetime.date`` class, the
result is being returned and the recursion finishes.
Now what would happen if we wanted ``datetime.date.foo.bar``? Just two more
calls to ``follow_paths`` (which calls itself with a recursion). What if the
import would contain another Statement like this::
from foo import bar
Date = bar.baz
Well... You get it. Just another ``follow_statement`` recursion. It's really
easy. Just that Python is not that easy sometimes. To understand tuple
assignments and different class scopes, a lot more code had to be written. Yet
we're still not talking about Descriptors and Nested List Comprehensions, just
the simple stuff.
So if you want to change something, write a test and then just change what you
want. This module has been tested by about 600 tests. Don't be afraid to break
something. The tests are good enough.
I need to mention now that this recursive approach is really good because it
only *evaluates* what needs to be *evaluated*. All the statements and modules
that are not used are just being ignored. It's a little bit similar to the
backtracking algorithm.
.. todo:: nonlocal statement, needed or can be ignored? (py3k)
"""
from __future__ import with_statement
import sys
import itertools
from jedi._compatibility import next, hasattr, is_py3k, unicode, reraise, u
from jedi import common
from jedi import cache
from jedi import parsing_representation as pr
from jedi import debug
import evaluate_representation as er
import recursion
import docstrings
import builtin
import imports
import dynamic
def get_defined_names_for_position(scope, position=None, start_scope=None):
"""
Return filtered version of ``scope.get_defined_names()``.
This function basically does what :meth:`scope.get_defined_names
<parsing_representation.Scope.get_defined_names>` does.
- If `position` is given, delete all names defined after `position`.
- For special objects like instances, `position` is ignored and all
names are returned.
:type scope: :class:`parsing_representation.IsScope`
:param scope: Scope in which names are searched.
:param position: the position as a line/column tuple, default is infinity.
"""
names = scope.get_defined_names()
# Instances have special rules, always return all the possible completions,
# because class variables are always valid and the `self.` variables, too.
if (not position or isinstance(scope, (er.Array, er.Instance))
or start_scope != scope
and isinstance(start_scope, (pr.Function, er.Execution))):
return names
names_new = []
for n in names:
if n.start_pos[0] is not None and n.start_pos < position:
names_new.append(n)
return names_new
def get_names_of_scope(scope, position=None, star_search=True,
include_builtin=True):
"""
Get all completions (names) possible for the current scope.
The star search option is only here to provide an optimization. Otherwise
the whole thing would probably start a little recursive madness.
This function is used to include names from outer scopes. For example,
when the current scope is function:
>>> from jedi.parsing import Parser
>>> parser = Parser('''
... x = ['a', 'b', 'c']
... def func():
... y = None
... ''')
>>> scope = parser.module.subscopes[0]
>>> scope
<Function: func@3-4>
`get_names_of_scope` is a generator. First it yields names from
most inner scope.
>>> pairs = list(get_names_of_scope(scope))
>>> pairs[0]
(<Function: func@3-4>, [<Name: y@4,4>])
Then it yield the names from one level outer scope. For this
example, this is the most outer scope.
>>> pairs[1]
(<SubModule: None@1-4>, [<Name: x@2,0>, <Name: func@3,4>])
Finally, it yields names from builtin, if `include_builtin` is
true (default).
>>> pairs[2] #doctest: +ELLIPSIS
(<Module: ...builtin...>, [<Name: ...>, ...])
:rtype: [(pr.Scope, [pr.Name])]
:return: Return an generator that yields a pair of scope and names.
"""
in_func_scope = scope
non_flow = scope.get_parent_until(pr.Flow, reverse=True)
while scope:
if isinstance(scope, pr.SubModule) and scope.parent:
# we don't want submodules to report if we have modules.
scope = scope.parent
continue
# `pr.Class` is used, because the parent is never `Class`.
# Ignore the Flows, because the classes and functions care for that.
# InstanceElement of Class is ignored, if it is not the start scope.
if not (scope != non_flow and scope.isinstance(pr.Class)
or scope.isinstance(pr.Flow)
or scope.isinstance(er.Instance)
and non_flow.isinstance(er.Function)):
try:
if isinstance(scope, er.Instance):
for g in scope.scope_generator():
yield g
else:
yield scope, get_defined_names_for_position(scope,
position, in_func_scope)
except StopIteration:
reraise(common.MultiLevelStopIteration, sys.exc_info()[2])
if scope.isinstance(pr.ForFlow) and scope.is_list_comp:
# is a list comprehension
yield scope, scope.get_set_vars(is_internal_call=True)
scope = scope.parent
# This is used, because subscopes (Flow scopes) would distort the
# results.
if scope and scope.isinstance(er.Function, pr.Function, er.Execution):
in_func_scope = scope
# Add star imports.
if star_search:
for s in imports.remove_star_imports(non_flow.get_parent_until()):
for g in get_names_of_scope(s, star_search=False):
yield g
# Add builtins to the global scope.
if include_builtin:
builtin_scope = builtin.Builtin.scope
yield builtin_scope, builtin_scope.get_defined_names()
def find_name(scope, name_str, position=None, search_global=False,
is_goto=False, resolve_decorator=True):
"""
This is the search function. The most important part to debug.
`remove_statements` and `filter_statements` really are the core part of
this completion.
:param position: Position of the last statement -> tuple of line, column
:return: List of Names. Their parents are the scopes, they are defined in.
:rtype: list
"""
def remove_statements(result):
"""
This is the part where statements are being stripped.
Due to lazy evaluation, statements like a = func; b = a; b() have to be
evaluated.
"""
res_new = []
for r in result:
add = []
if r.isinstance(pr.Statement):
check_instance = None
if isinstance(r, er.InstanceElement) and r.is_class_var:
check_instance = r.instance
r = r.var
# Global variables handling.
if r.is_global():
for token_name in r.token_list[1:]:
if isinstance(token_name, pr.Name):
add = find_name(r.parent, str(token_name))
else:
# generated objects are used within executions, but these
# objects are in functions, and we have to dynamically
# execute first.
if isinstance(r, pr.Param):
func = r.parent
# Instances are typically faked, if the instance is not
# called from outside. Here we check it for __init__
# functions and return.
if isinstance(func, er.InstanceElement) \
and func.instance.is_generated \
and hasattr(func, 'name') \
and str(func.name) == '__init__' \
and r.position_nr > 0: # 0 would be self
r = func.var.params[r.position_nr]
# add docstring knowledge
doc_params = docstrings.follow_param(r)
if doc_params:
res_new += doc_params
continue
if not r.is_generated:
res_new += dynamic.search_params(r)
if not res_new:
c = r.get_commands()[0]
if c in ('*', '**'):
t = 'tuple' if c == '*' else 'dict'
res_new = [er.Instance(
find_name(builtin.Builtin.scope, t)[0])
]
if not r.assignment_details:
# this means that there are no default params,
# so just ignore it.
continue
# Remove the statement docstr stuff for now, that has to be
# implemented with the evaluator class.
#if r.docstr:
#res_new.append(r)
scopes = follow_statement(r, seek_name=name_str)
add += remove_statements(scopes)
if check_instance is not None:
# class renames
add = [er.InstanceElement(check_instance, a, True)
if isinstance(a, (er.Function, pr.Function))
else a for a in add]
res_new += add
else:
if isinstance(r, pr.Class):
r = er.Class(r)
elif isinstance(r, pr.Function):
r = er.Function(r)
if r.isinstance(er.Function) and resolve_decorator:
r = r.get_decorated_func()
res_new.append(r)
debug.dbg('sfn remove, new: %s, old: %s' % (res_new, result))
return res_new
def filter_name(scope_generator):
"""
Filters all variables of a scope (which are defined in the
`scope_generator`), until the name fits.
"""
def handle_for_loops(loop):
# Take the first statement (for has always only
# one, remember `in`). And follow it.
if not loop.inputs:
return []
result = get_iterator_types(follow_statement(loop.inputs[0]))
if len(loop.set_vars) > 1:
commands = loop.set_stmt.get_commands()
# loops with loop.set_vars > 0 only have one command
result = assign_tuples(commands[0], result, name_str)
return result
def process(name):
"""
Returns the parent of a name, which means the element which stands
behind a name.
"""
result = []
no_break_scope = False
par = name.parent
exc = pr.Class, pr.Function
until = lambda: par.parent.parent.get_parent_until(exc)
is_array_assignment = False
if par is None:
pass
elif par.isinstance(pr.Flow):
if par.command == 'for':
result += handle_for_loops(par)
else:
debug.warning('Flow: Why are you here? %s' % par.command)
elif par.isinstance(pr.Param) \
and par.parent is not None \
and isinstance(until(), pr.Class) \
and par.position_nr == 0:
# This is where self gets added - this happens at another
# place, if the var_args are clear. But sometimes the class is
# not known. Therefore add a new instance for self. Otherwise
# take the existing.
if isinstance(scope, er.InstanceElement):
inst = scope.instance
else:
inst = er.Instance(er.Class(until()))
inst.is_generated = True
result.append(inst)
elif par.isinstance(pr.Statement):
def is_execution(calls):
for c in calls:
if isinstance(c, (unicode, str)):
continue
if c.isinstance(pr.Array):
if is_execution(c):
return True
elif c.isinstance(pr.Call):
# Compare start_pos, because names may be different
# because of executions.
if c.name.start_pos == name.start_pos \
and c.execution:
return True
return False
is_exe = False
for assignee, op in par.assignment_details:
is_exe |= is_execution(assignee)
if is_exe:
# filter array[3] = ...
# TODO check executions for dict contents
is_array_assignment = True
else:
details = par.assignment_details
if details and details[0][1] != '=':
no_break_scope = True
# TODO this makes self variables non-breakable. wanted?
if isinstance(name, er.InstanceElement) \
and not name.is_class_var:
no_break_scope = True
result.append(par)
else:
# TODO multi-level import non-breakable
if isinstance(par, pr.Import) and len(par.namespace) > 1:
no_break_scope = True
result.append(par)
return result, no_break_scope, is_array_assignment
flow_scope = scope
result = []
# compare func uses the tuple of line/indent = line/column
comparison_func = lambda name: (name.start_pos)
for nscope, name_list in scope_generator:
break_scopes = []
# here is the position stuff happening (sorting of variables)
for name in sorted(name_list, key=comparison_func, reverse=True):
p = name.parent.parent if name.parent else None
if isinstance(p, er.InstanceElement) \
and isinstance(p.var, pr.Class):
p = p.var
if name_str == name.get_code() and p not in break_scopes:
r, no_break_scope, is_array_assignment = process(name)
if is_goto:
if not is_array_assignment: # shouldn't goto arr[1] =
result.append(name)
else:
result += r
# for comparison we need the raw class
s = nscope.base if isinstance(nscope, er.Class) else nscope
# this means that a definition was found and is not e.g.
# in if/else.
if result and not no_break_scope:
if not name.parent or p == s:
break
break_scopes.append(p)
while flow_scope:
# TODO check if result is in scope -> no evaluation necessary
n = dynamic.check_flow_information(flow_scope, name_str,
position)
if n:
result = n
break
if result:
break
if flow_scope == nscope:
break
flow_scope = flow_scope.parent
flow_scope = nscope
if result:
break
if not result and isinstance(nscope, er.Instance):
# __getattr__ / __getattribute__
result += check_getattr(nscope, name_str)
debug.dbg('sfn filter "%s" in (%s-%s): %s@%s' % (name_str, scope,
nscope, u(result), position))
return result
def descriptor_check(result):
"""Processes descriptors"""
res_new = []
for r in result:
if isinstance(scope, (er.Instance, er.Class)) \
and hasattr(r, 'get_descriptor_return'):
# handle descriptors
with common.ignored(KeyError):
res_new += r.get_descriptor_return(scope)
continue
res_new.append(r)
return res_new
if search_global:
scope_generator = get_names_of_scope(scope, position=position)
else:
if isinstance(scope, er.Instance):
scope_generator = scope.scope_generator()
else:
if isinstance(scope, (er.Class, pr.Module)):
# classes are only available directly via chaining?
# strange stuff...
names = scope.get_defined_names()
else:
names = get_defined_names_for_position(scope, position)
scope_generator = iter([(scope, names)])
if is_goto:
return filter_name(scope_generator)
return descriptor_check(remove_statements(filter_name(scope_generator)))
def check_getattr(inst, name_str):
"""Checks for both __getattr__ and __getattribute__ methods"""
result = []
# str is important to lose the NamePart!
module = builtin.Builtin.scope
name = pr.Call(module, str(name_str), pr.Call.STRING, (0, 0), (0, 0), inst)
with common.ignored(KeyError):
result = inst.execute_subscope_by_name('__getattr__', [name])
if not result:
# this is a little bit special. `__getattribute__` is executed
# before anything else. But: I know no use case, where this
# could be practical and the jedi would return wrong types. If
# you ever have something, let me know!
with common.ignored(KeyError):
result = inst.execute_subscope_by_name('__getattribute__', [name])
return result
def get_iterator_types(inputs):
"""Returns the types of any iterator (arrays, yields, __iter__, etc)."""
iterators = []
# Take the first statement (for has always only
# one, remember `in`). And follow it.
for it in inputs:
if isinstance(it, (er.Generator, er.Array, dynamic.ArrayInstance)):
iterators.append(it)
else:
if not hasattr(it, 'execute_subscope_by_name'):
debug.warning('iterator/for loop input wrong', it)
continue
try:
iterators += it.execute_subscope_by_name('__iter__')
except KeyError:
debug.warning('iterators: No __iter__ method found.')
result = []
for gen in iterators:
if isinstance(gen, er.Array):
# Array is a little bit special, since this is an internal
# array, but there's also the list builtin, which is
# another thing.
result += gen.get_index_types()
elif isinstance(gen, er.Instance):
# __iter__ returned an instance.
name = '__next__' if is_py3k else 'next'
try:
result += gen.execute_subscope_by_name(name)
except KeyError:
debug.warning('Instance has no __next__ function', gen)
else:
# is a generator
result += gen.iter_content()
return result
def assign_tuples(tup, results, seek_name):
"""
This is a normal assignment checker. In python functions and other things
can return tuples:
>>> a, b = 1, ""
>>> a, (b, c) = 1, ("", 1.0)
Here, if `seek_name` is "a", the number type will be returned.
The first part (before `=`) is the param tuples, the second one result.
:type tup: pr.Array
"""
def eval_results(index):
types = []
for r in results:
try:
func = r.get_exact_index_types
except AttributeError:
debug.warning("invalid tuple lookup %s of result %s in %s"
% (tup, results, seek_name))
else:
with common.ignored(IndexError):
types += func(index)
return types
result = []
for i, stmt in enumerate(tup):
# Used in assignments. There is just one call and no other things,
# therefore we can just assume, that the first part is important.
command = stmt.get_commands()[0]
if tup.type == pr.Array.NOARRAY:
# unnessecary braces -> just remove.
r = results
else:
r = eval_results(i)
# LHS of tuples can be nested, so resolve it recursively
result += find_assignments(command, r, seek_name)
return result
def find_assignments(lhs, results, seek_name):
"""
Check if `seek_name` is in the left hand side `lhs` of assignment.
`lhs` can simply be a variable (`pr.Call`) or a tuple/list (`pr.Array`)
representing the following cases::
a = 1 # lhs is pr.Call
(a, b) = 2 # lhs is pr.Array
:type lhs: pr.Call
:type results: list
:type seek_name: str
"""
if isinstance(lhs, pr.Array):
return assign_tuples(lhs, results, seek_name)
elif lhs.name.names[-1] == seek_name:
return results
else:
return []
@recursion.RecursionDecorator
@cache.memoize_default(default=())
def follow_statement(stmt, seek_name=None):
"""
The starting point of the completion. A statement always owns a call list,
which are the calls, that a statement does.
In case multiple names are defined in the statement, `seek_name` returns
the result for this name.
:param stmt: A `pr.Statement`.
:param seek_name: A string.
"""
debug.dbg('follow_stmt %s (%s)' % (stmt, seek_name))
commands = stmt.get_commands()
debug.dbg('calls: %s' % commands)
result = follow_call_list(commands)
# Assignment checking is only important if the statement defines multiple
# variables.
if len(stmt.get_set_vars()) > 1 and seek_name and stmt.assignment_details:
new_result = []
for ass_commands, op in stmt.assignment_details:
new_result += find_assignments(ass_commands[0], result, seek_name)
result = new_result
return set(result)
@common.rethrow_uncaught
def follow_call_list(call_list, follow_array=False):
"""
`call_list` can be either `pr.Array` or `list of list`.
It is used to evaluate a two dimensional object, that has calls, arrays and
operators in it.
"""
def evaluate_list_comprehension(lc, parent=None):
input = lc.input
nested_lc = lc.input.token_list[0]
if isinstance(nested_lc, pr.ListComprehension):
# is nested LC
input = nested_lc.stmt
module = input.get_parent_until()
# create a for loop, which does the same as list comprehensions
loop = pr.ForFlow(module, [input], lc.stmt.start_pos, lc.middle, True)
loop.parent = parent or lc.get_parent_until(pr.IsScope)
if isinstance(nested_lc, pr.ListComprehension):
loop = evaluate_list_comprehension(nested_lc, loop)
return loop
result = []
calls_iterator = iter(call_list)
for call in calls_iterator:
if pr.Array.is_type(call, pr.Array.NOARRAY):
r = list(itertools.chain.from_iterable(follow_statement(s)
for s in call))
call_path = call.generate_call_path()
next(call_path, None) # the first one has been used already
result += follow_paths(call_path, r, call.parent,
position=call.start_pos)
elif isinstance(call, pr.ListComprehension):
loop = evaluate_list_comprehension(call)
# Caveat: parents are being changed, but this doesn't matter,
# because nothing else uses it.
call.stmt.parent = loop
result += follow_statement(call.stmt)
else:
if isinstance(call, pr.Lambda):
result.append(er.Function(call))
# With things like params, these can also be functions...
elif isinstance(call, pr.Base) and call.isinstance(er.Function,
er.Class, er.Instance, dynamic.ArrayInstance):
result.append(call)
# The string tokens are just operations (+, -, etc.)
elif not isinstance(call, (str, unicode)):
if str(call.name) == 'if':
# Ternary operators.
while True:
try:
call = next(calls_iterator)
except StopIteration:
break
with common.ignored(AttributeError):
if str(call.name) == 'else':
break
continue
result += follow_call(call)
elif call == '*':
if [r for r in result if isinstance(r, er.Array)
or isinstance(r, er.Instance)
and str(r.name) == 'str']:
# if it is an iterable, ignore * operations
next(calls_iterator)
return set(result)
def follow_call(call):
"""Follow a call is following a function, variable, string, etc."""
path = call.generate_call_path()
# find the statement of the Scope
s = call
while not s.parent.isinstance(pr.IsScope):
s = s.parent
return follow_call_path(path, s.parent, s.start_pos)
def follow_call_path(path, scope, position):
"""Follows a path generated by `pr.Call.generate_call_path()`"""
current = next(path)
if isinstance(current, pr.Array):
result = [er.Array(current)]
else:
if isinstance(current, pr.NamePart):
# This is the first global lookup.
scopes = find_name(scope, current, position=position,
search_global=True)
else:
if current.type in (pr.Call.STRING, pr.Call.NUMBER):
t = type(current.name).__name__
scopes = find_name(builtin.Builtin.scope, t)
else:
debug.warning('unknown type:', current.type, current)
scopes = []
# Make instances of those number/string objects.
scopes = [er.Instance(s, (current.name,)) for s in scopes]
result = imports.strip_imports(scopes)
return follow_paths(path, result, scope, position=position)
def follow_paths(path, results, call_scope, position=None):
"""
In each result, `path` must be followed. Copies the path iterator.
"""
results_new = []
if results:
if len(results) > 1:
iter_paths = itertools.tee(path, len(results))
else:
iter_paths = [path]
for i, r in enumerate(results):
fp = follow_path(iter_paths[i], r, call_scope, position=position)
if fp is not None:
results_new += fp
else:
# This means stop iteration.
return results
return results_new
def follow_path(path, scope, call_scope, position=None):
"""
Uses a generator and tries to complete the path, e.g.::
foo.bar.baz
`follow_path` is only responsible for completing `.bar.baz`, the rest is
done in the `follow_call` function.
"""
# current is either an Array or a Scope.
try:
current = next(path)
except StopIteration:
return None
debug.dbg('follow %s in scope %s' % (current, scope))
result = []
if isinstance(current, pr.Array):
# This must be an execution, either () or [].
if current.type == pr.Array.LIST:
if hasattr(scope, 'get_index_types'):
result = scope.get_index_types(current)
elif current.type not in [pr.Array.DICT]:
# Scope must be a class or func - make an instance or execution.
debug.dbg('exe', scope)
result = er.Execution(scope, current).get_return_types()
else:
# Curly braces are not allowed, because they make no sense.
debug.warning('strange function call with {}', current, scope)
else:
# The function must not be decorated with something else.
if scope.isinstance(er.Function):
scope = scope.get_magic_method_scope()
else:
# This is the typical lookup while chaining things.
if filter_private_variable(scope, call_scope, current):
return []
result = imports.strip_imports(find_name(scope, current,
position=position))
return follow_paths(path, set(result), call_scope, position=position)
def filter_private_variable(scope, call_scope, var_name):
"""private variables begin with a double underline `__`"""
if isinstance(var_name, (str, unicode)) and isinstance(scope, er.Instance)\
and var_name.startswith('__') and not var_name.endswith('__'):
s = call_scope.get_parent_until((pr.Class, er.Instance))
if s != scope and s != scope.base.base:
return True
return False
def goto(stmt, call_path=None):
if call_path is None:
commands = stmt.get_commands()
if len(commands) == 0:
return [], ''
# Only the first command is important, the rest should basically not
# happen except in broken code (e.g. docstrings that aren't code).
call = commands[0]
if isinstance(call, (str, unicode)):
call_path = [call]
else:
call_path = list(call.generate_call_path())
scope = stmt.get_parent_until(pr.IsScope)
pos = stmt.start_pos
call_path, search = call_path[:-1], call_path[-1]
pos = pos[0], pos[1] + 1
if call_path:
scopes = follow_call_path(iter(call_path), scope, pos)
search_global = False
pos = None
else:
scopes = [scope]
search_global = True
follow_res = []
for s in scopes:
follow_res += find_name(s, search, pos,
search_global=search_global, is_goto=True)
return follow_res, search
|