/usr/lib/python3/dist-packages/geopy/distance.py is in python3-geopy 0.95.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 | from math import atan, tan, sin, cos, pi, sqrt, atan2, acos, asin
from geopy.units import radians
from geopy import units, util
from geopy.point import Point
# Average great-circle radius in kilometers, from Wikipedia.
# Using a sphere with this radius results in an error of up to about 0.5%.
EARTH_RADIUS = 6372.795
# From http://www.movable-type.co.uk/scripts/LatLongVincenty.html:
# The most accurate and widely used globally-applicable model for the earth
# ellipsoid is WGS-84, used in this script. Other ellipsoids offering a
# better fit to the local geoid include Airy (1830) in the UK, International
# 1924 in much of Europe, Clarke (1880) in Africa, and GRS-67 in South
# America. America (NAD83) and Australia (GDA) use GRS-80, functionally
# equivalent to the WGS-84 ellipsoid.
ELLIPSOIDS = {
# model major (km) minor (km) flattening
'WGS-84': (6378.137, 6356.7523142, 1 / 298.257223563),
'GRS-80': (6378.137, 6356.7523141, 1 / 298.257222101),
'Airy (1830)': (6377.563396, 6356.256909, 1 / 299.3249646),
'Intl 1924': (6378.388, 6356.911946, 1 / 297.0),
'Clarke (1880)': (6378.249145, 6356.51486955, 1 / 293.465),
'GRS-67': (6378.1600, 6356.774719, 1 / 298.25)
}
class Distance(object):
def __init__(self, *args, **kwargs):
kilometers = kwargs.pop('kilometers', 0)
if len(args) == 1:
# if we only get one argument we assume
# it's a known distance instead of
# calculating it first
kilometers += args[0]
elif len(args) > 1:
for a, b in util.pairwise(args):
kilometers += self.measure(a, b)
kilometers += units.kilometers(**kwargs)
self.__kilometers = kilometers
def __add__(self, other):
if isinstance(other, Distance):
return self.__class__(self.kilometers + other.kilometers)
else:
raise TypeError(
"Distance instance must be added with Distance instance."
)
def __neg__(self):
return self.__class__(-self.kilometers)
def __sub__(self, other):
return self + -other
def __mul__(self, other):
return self.__class__(self.kilometers * other)
def __div__(self, other):
if isinstance(other, Distance):
return self.kilometers / other.kilometers
else:
return self.__class__(self.kilometers / other)
def __abs__(self):
return self.__class__(abs(self.kilometers))
def __bool__(self):
return bool(self.kilometers)
def measure(self, a, b):
raise NotImplementedError
def __repr__(self):
return 'Distance(%s)' % self.kilometers
def __str__(self):
return '%s km' % self.__kilometers
def __lt__(self, other):
if isinstance(other, Distance):
return self.kilometers < other.kilometers
else:
return self.kilometers < other
def __eq__(self, other):
if isinstance(other, Distance):
return self.kilometers == other.kilometers
else:
return self.kilometers == other
@property
def kilometers(self):
return self.__kilometers
@property
def km(self):
return self.kilometers
@property
def meters(self):
return units.meters(kilometers=self.kilometers)
@property
def m(self):
return self.meters
@property
def miles(self):
return units.miles(kilometers=self.kilometers)
@property
def mi(self):
return self.miles
@property
def feet(self):
return units.feet(kilometers=self.kilometers)
@property
def ft(self):
return self.feet
@property
def nautical(self):
return units.nautical(kilometers=self.kilometers)
@property
def nm(self):
return self.nautical
class GreatCircleDistance(Distance):
"""
Use spherical geometry to calculate the surface distance between two
geodesic points. This formula can be written many different ways,
including just the use of the spherical law of cosines or the haversine
formula.
The class attribute `RADIUS` indicates which radius of the earth to use,
in kilometers. The default is to use the module constant `EARTH_RADIUS`,
which uses the average great-circle radius.
"""
RADIUS = EARTH_RADIUS
def measure(self, a, b):
a, b = Point(a), Point(b)
lat1, lng1 = radians(degrees=a.latitude), radians(degrees=a.longitude)
lat2, lng2 = radians(degrees=b.latitude), radians(degrees=b.longitude)
sin_lat1, cos_lat1 = sin(lat1), cos(lat1)
sin_lat2, cos_lat2 = sin(lat2), cos(lat2)
delta_lng = lng2 - lng1
cos_delta_lng, sin_delta_lng = cos(delta_lng), sin(delta_lng)
central_angle = acos(
# We're correcting from floating point rounding errors on very-near and exact points here
min(1.0, sin_lat1 * sin_lat2 +
cos_lat1 * cos_lat2 * cos_delta_lng))
# From http://en.wikipedia.org/wiki/Great_circle_distance:
# Historically, the use of this formula was simplified by the
# availability of tables for the haversine function. Although this
# formula is accurate for most distances, it too suffers from
# rounding errors for the special (and somewhat unusual) case of
# antipodal points (on opposite ends of the sphere). A more
# complicated formula that is accurate for all distances is: (below)
d = atan2(sqrt((cos_lat2 * sin_delta_lng) ** 2 +
(cos_lat1 * sin_lat2 -
sin_lat1 * cos_lat2 * cos_delta_lng) ** 2),
sin_lat1 * sin_lat2 + cos_lat1 * cos_lat2 * cos_delta_lng)
return self.RADIUS * d
def destination(self, point, bearing, distance=None):
point = Point(point)
lat1 = units.radians(degrees=point.latitude)
lng1 = units.radians(degrees=point.longitude)
bearing = units.radians(degrees=bearing)
if distance is None:
distance = self
if isinstance(distance, Distance):
distance = distance.kilometers
d_div_r = float(distance) / self.RADIUS
lat2 = asin(
sin(lat1) * cos(d_div_r) +
cos(lat1) * sin(d_div_r) * cos(bearing)
)
lng2 = lng1 + atan2(
sin(bearing) * sin(d_div_r) * cos(lat1),
cos(d_div_r) - sin(lat1) * sin(lat2)
)
return Point(units.degrees(radians=lat2), units.degrees(radians=lng2))
class VincentyDistance(Distance):
"""
Calculate the geodesic distance between two points using the formula
devised by Thaddeus Vincenty, with an accurate ellipsoidal model of the
earth.
The class attribute `ELLIPSOID` indicates which ellipsoidal model of the
earth to use. If it is a string, it is looked up in the `ELLIPSOIDS`
dictionary to obtain the major and minor semiaxes and the flattening.
Otherwise, it should be a tuple with those values. The most globally
accurate model is WGS-84. See the comments above the `ELLIPSOIDS`
dictionary for more information.
"""
ELLIPSOID = 'WGS-84'
def measure(self, a, b):
a, b = Point(a), Point(b)
lat1, lng1 = radians(degrees=a.latitude), radians(degrees=a.longitude)
lat2, lng2 = radians(degrees=b.latitude), radians(degrees=b.longitude)
if isinstance(self.ELLIPSOID, str):
major, minor, f = ELLIPSOIDS[self.ELLIPSOID]
else:
major, minor, f = self.ELLIPSOID
delta_lng = lng2 - lng1
reduced_lat1 = atan((1 - f) * tan(lat1))
reduced_lat2 = atan((1 - f) * tan(lat2))
sin_reduced1, cos_reduced1 = sin(reduced_lat1), cos(reduced_lat1)
sin_reduced2, cos_reduced2 = sin(reduced_lat2), cos(reduced_lat2)
lambda_lng = delta_lng
lambda_prime = 2 * pi
iter_limit = 20
while abs(lambda_lng - lambda_prime) > 10e-12 and iter_limit > 0:
sin_lambda_lng, cos_lambda_lng = sin(lambda_lng), cos(lambda_lng)
sin_sigma = sqrt(
(cos_reduced2 * sin_lambda_lng) ** 2 +
(cos_reduced1 * sin_reduced2 -
sin_reduced1 * cos_reduced2 * cos_lambda_lng) ** 2
)
if sin_sigma == 0:
return 0 # Coincident points
cos_sigma = (
sin_reduced1 * sin_reduced2 +
cos_reduced1 * cos_reduced2 * cos_lambda_lng
)
sigma = atan2(sin_sigma, cos_sigma)
sin_alpha = (
cos_reduced1 * cos_reduced2 * sin_lambda_lng / sin_sigma
)
cos_sq_alpha = 1 - sin_alpha ** 2
if cos_sq_alpha != 0:
cos2_sigma_m = cos_sigma - 2 * (
sin_reduced1 * sin_reduced2 / cos_sq_alpha
)
else:
cos2_sigma_m = 0.0 # Equatorial line
C = f / 16. * cos_sq_alpha * (4 + f * (4 - 3 * cos_sq_alpha))
lambda_prime = lambda_lng
lambda_lng = (
delta_lng + (1 - C) * f * sin_alpha * (
sigma + C * sin_sigma * (
cos2_sigma_m + C * cos_sigma * (
-1 + 2 * cos2_sigma_m ** 2
)
)
)
)
iter_limit -= 1
if iter_limit == 0:
raise ValueError("Vincenty formula failed to converge!")
u_sq = cos_sq_alpha * (major ** 2 - minor ** 2) / minor ** 2
A = 1 + u_sq / 16384. * (
4096 + u_sq * (-768 + u_sq * (320 - 175 * u_sq))
)
B = u_sq / 1024. * (256 + u_sq * (-128 + u_sq * (74 - 47 * u_sq)))
delta_sigma = (
B * sin_sigma * (
cos2_sigma_m + B / 4. * (
cos_sigma * (
-1 + 2 * cos2_sigma_m ** 2
) - B / 6. * cos2_sigma_m * (
-3 + 4 * sin_sigma ** 2
) * (
-3 + 4 * cos2_sigma_m ** 2
)
)
)
)
s = minor * A * (sigma - delta_sigma)
return s
def destination(self, point, bearing, distance=None):
point = Point(point)
lat1 = units.radians(degrees=point.latitude)
lng1 = units.radians(degrees=point.longitude)
bearing = units.radians(degrees=bearing)
if distance is None:
distance = self
if isinstance(distance, Distance):
distance = distance.kilometers
ellipsoid = self.ELLIPSOID
if isinstance(ellipsoid, str):
ellipsoid = ELLIPSOIDS[ellipsoid]
major, minor, f = ellipsoid
tan_reduced1 = (1 - f) * tan(lat1)
cos_reduced1 = 1 / sqrt(1 + tan_reduced1 ** 2)
sin_reduced1 = tan_reduced1 * cos_reduced1
sin_bearing, cos_bearing = sin(bearing), cos(bearing)
sigma1 = atan2(tan_reduced1, cos_bearing)
sin_alpha = cos_reduced1 * sin_bearing
cos_sq_alpha = 1 - sin_alpha ** 2
u_sq = cos_sq_alpha * (major ** 2 - minor ** 2) / minor ** 2
A = 1 + u_sq / 16384. * (
4096 + u_sq * (-768 + u_sq * (320 - 175 * u_sq))
)
B = u_sq / 1024. * (256 + u_sq * (-128 + u_sq * (74 - 47 * u_sq)))
sigma = distance / (minor * A)
sigma_prime = 2 * pi
while abs(sigma - sigma_prime) > 10e-12:
cos2_sigma_m = cos(2 * sigma1 + sigma)
sin_sigma, cos_sigma = sin(sigma), cos(sigma)
delta_sigma = B * sin_sigma * (
cos2_sigma_m + B / 4. * (
cos_sigma * (
-1 + 2 * cos2_sigma_m
) - B / 6. * cos2_sigma_m * (
-3 + 4 * sin_sigma ** 2) * (
-3 + 4 * cos2_sigma_m ** 2
)
)
)
sigma_prime = sigma
sigma = distance / (minor * A) + delta_sigma
sin_sigma, cos_sigma = sin(sigma), cos(sigma)
lat2 = atan2(
sin_reduced1 * cos_sigma + cos_reduced1 * sin_sigma * cos_bearing,
(1 - f) * sqrt(
sin_alpha ** 2 + (
sin_reduced1 * sin_sigma -
cos_reduced1 * cos_sigma * cos_bearing
) ** 2
)
)
lambda_lng = atan2(
sin_sigma * sin_bearing,
cos_reduced1 * cos_sigma - sin_reduced1 * sin_sigma * cos_bearing
)
C = f / 16. * cos_sq_alpha * (4 + f * (4 - 3 * cos_sq_alpha))
delta_lng = (
lambda_lng - (1 - C) * f * sin_alpha * (
sigma + C * sin_sigma * (
cos2_sigma_m + C * cos_sigma * (
-1 + 2 * cos2_sigma_m ** 2
)
)
)
)
final_bearing = atan2(
sin_alpha,
cos_reduced1 * cos_sigma * cos_bearing - sin_reduced1 * sin_sigma
)
lng2 = lng1 + delta_lng
return Point(units.degrees(radians=lat2), units.degrees(radians=lng2))
# Set the default distance formula to the most generally accurate.
distance = VincentyDistance
|