/usr/lib/python2.7/dist-packages/whoosh/fields.py is in python-whoosh 2.5.7-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 | # Copyright 2007 Matt Chaput. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Matt Chaput.
""" Contains functions and classes related to fields.
"""
import datetime, fnmatch, re, struct, sys
from array import array
from decimal import Decimal
from whoosh import analysis, columns, formats
from whoosh.compat import u, b, PY3
from whoosh.compat import with_metaclass
from whoosh.compat import itervalues, xrange
from whoosh.compat import bytes_type, string_type, integer_types, text_type
from whoosh.system import emptybytes
from whoosh.system import pack_byte, unpack_byte
from whoosh.util.numeric import to_sortable, from_sortable
from whoosh.util.numeric import typecode_max, NaN
from whoosh.util.text import utf8encode, utf8decode
from whoosh.util.times import datetime_to_long, long_to_datetime
# Exceptions
class FieldConfigurationError(Exception):
pass
class UnknownFieldError(Exception):
pass
# Field Types
class FieldType(object):
"""Represents a field configuration.
The FieldType object supports the following attributes:
* format (formats.Format): the storage format for the field's contents.
* analyzer (analysis.Analyzer): the analyzer to use to turn text into
terms.
* vector (formats.Format): the storage format for the field's vectors
(forward index), or None if the field should not store vectors.
* scorable (boolean): whether searches against this field may be scored.
This controls whether the index stores per-document field lengths for
this field.
* stored (boolean): whether the content of this field is stored for each
document. For example, in addition to indexing the title of a document,
you usually want to store the title so it can be presented as part of
the search results.
* unique (boolean): whether this field's value is unique to each document.
For example, 'path' or 'ID'. IndexWriter.update_document() will use
fields marked as 'unique' to find the previous version of a document
being updated.
* multitoken_query is a string indicating what kind of query to use when
a "word" in a user query parses into multiple tokens. The string is
interpreted by the query parser. The strings understood by the default
query parser are "first" (use first token only), "and" (join the tokens
with an AND query), "or" (join the tokens with OR), "phrase" (join
the tokens with a phrase query), and "default" (use the query parser's
default join type).
The constructor for the base field type simply lets you supply your own
configured field format, vector format, and scorable and stored values.
Subclasses may configure some or all of this for you.
"""
analyzer = format = vector = scorable = stored = unique = None
indexed = True
multitoken_query = "default"
sortable_typecode = None
spelling = False
column_type = None
def __init__(self, format, analyzer, vector=None, scorable=False,
stored=False, unique=False, multitoken_query="default",
sortable=False):
assert isinstance(format, formats.Format)
self.format = format
self.analyzer = analyzer
self.vector = vector
self.scorable = scorable
self.stored = stored
self.unique = unique
self.multitoken_query = multitoken_query
self.set_sortable(sortable)
def __repr__(self):
temp = "%s(format=%r, vector=%r, scorable=%s, stored=%s, unique=%s)"
return temp % (self.__class__.__name__, self.format, self.vector,
self.scorable, self.stored, self.unique)
def __eq__(self, other):
return all((isinstance(other, FieldType),
(self.format == other.format),
(self.vector == other.vector),
(self.scorable == other.scorable),
(self.stored == other.stored),
(self.unique == other.unique),
(self.column_type == other.column_type)))
def __ne__(self, other):
return not(self.__eq__(other))
# Column methods
def set_sortable(self, sortable):
if sortable:
if isinstance(sortable, columns.Column):
self.column_type = sortable
else:
self.column_type = self.default_column()
else:
self.column_type = None
def default_column(self):
return columns.VarBytesColumn()
# Methods for converting input into indexing information
def index(self, value, **kwargs):
"""Returns an iterator of (btext, frequency, weight, encoded_value)
tuples for each unique word in the input value.
The default implementation uses the ``analyzer`` attribute to tokenize
the value into strings, then encodes them into bytes using UTF-8.
"""
if not self.format:
raise Exception("%s field %r cannot index without a format"
% (self.__class__.__name__, self))
if not isinstance(value, (text_type, list, tuple)):
raise ValueError("%r is not unicode or sequence" % value)
assert isinstance(self.format, formats.Format)
if "mode" not in kwargs:
kwargs["mode"] = "index"
word_values = self.format.word_values
ana = self.analyzer
for tstring, freq, wt, vbytes in word_values(value, ana, **kwargs):
yield (utf8encode(tstring)[0], freq, wt, vbytes)
def process_text(self, qstring, mode='', **kwargs):
"""Analyzes the given string and returns an iterator of token texts.
>>> field = fields.TEXT()
>>> list(field.process_text("The ides of March"))
["ides", "march"]
"""
if not self.format:
raise Exception("%s field has no format" % self)
return (t.text for t in self.tokenize(qstring, mode=mode, **kwargs))
def tokenize(self, value, **kwargs):
"""Analyzes the given string and returns an iterator of Token objects
(note: for performance reasons, actually the same token yielded over
and over with different attributes).
"""
if not self.analyzer:
raise Exception("%s field has no analyzer" % self.__class__)
return self.analyzer(value, **kwargs)
def to_bytes(self, value):
"""Returns a bytes representation of the given value, appropriate to be
written to disk. The default implementation assumes a unicode value and
encodes it using UTF-8.
"""
if isinstance(value, (list, tuple)):
value = value[0]
if not isinstance(value, bytes_type):
value = utf8encode(value)[0]
return value
def to_column_value(self, value):
"""Returns an object suitable to be inserted into the document values
column for this field. The default implementation simply calls
``self.to_bytes(value)``.
"""
return self.to_bytes(value)
def from_column_value(self, value):
return self.from_bytes(value)
def from_bytes(self, bs):
return utf8decode(bs)[0]
# Methods related to query parsing
def self_parsing(self):
"""Subclasses should override this method to return True if they want
the query parser to call the field's ``parse_query()`` method instead
of running the analyzer on text in this field. This is useful where
the field needs full control over how queries are interpreted, such
as in the numeric field type.
"""
return False
def parse_query(self, fieldname, qstring, boost=1.0):
"""When ``self_parsing()`` returns True, the query parser will call
this method to parse basic query text.
"""
raise NotImplementedError(self.__class__.__name__)
def parse_range(self, fieldname, start, end, startexcl, endexcl,
boost=1.0):
"""When ``self_parsing()`` returns True, the query parser will call
this method to parse range query text. If this method returns None
instead of a query object, the parser will fall back to parsing the
start and end terms using process_text().
"""
return None
# Methods related to sortings
def sortable_terms(self, ixreader, fieldname):
"""Returns an iterator of the "sortable" tokens in the given reader and
field. These values can be used for sorting. The default implementation
simply returns all tokens in the field.
This can be overridden by field types such as NUMERIC where some values
in a field are not useful for sorting.
"""
return ixreader.lexicon(fieldname)
# Methods related to spelling
def separate_spelling(self):
"""Returns True if this field requires special handling of the words
that go into the field's word graph.
The default behavior is to return True if the field is "spelled" but
not indexed, or if the field is indexed but the analyzer has
morphological transformations (e.g. stemming). Exotic field types may
need to override this behavior.
This method should return False if the field does not support spelling
(i.e. the ``spelling`` attribute is False).
"""
return self.spelling and self.analyzer.has_morph()
def spellable_words(self, value):
"""Returns an iterator of each unique word (in sorted order) in the
input value, suitable for inclusion in the field's word graph.
The default behavior is to call the field analyzer with the keyword
argument ``no_morph=True``, which should make the analyzer skip any
morphological transformation filters (e.g. stemming) to preserve the
original form of the words. Exotic field types may need to override
this behavior.
"""
if isinstance(value, (list, tuple)):
words = value
else:
words = [token.text for token
in self.analyzer(value, no_morph=True)]
return iter(sorted(set(words)))
def has_morph(self):
"""Returns True if this field by default performs morphological
transformations on its terms, e.g. stemming.
"""
if self.analyzer:
return self.analyzer.has_morph()
else:
return False
# Methods related to the posting/vector formats
def supports(self, name):
"""Returns True if the underlying format supports the given posting
value type.
>>> field = TEXT()
>>> field.supports("positions")
True
>>> field.supports("characters")
False
"""
return self.format.supports(name)
def clean(self):
"""Clears any cached information in the field and any child objects.
"""
if self.format and hasattr(self.format, "clean"):
self.format.clean()
if self.vector and hasattr(self.vector, "clean"):
self.vector.clean()
# Event methods
def on_add(self, schema, fieldname):
pass
def on_remove(self, schema, fieldname):
pass
class ID(FieldType):
"""Configured field type that indexes the entire value of the field as one
token. This is useful for data you don't want to tokenize, such as the path
of a file.
"""
__inittypes__ = dict(stored=bool, unique=bool, field_boost=float)
def __init__(self, stored=False, unique=False, field_boost=1.0,
spelling=False, sortable=False, analyzer=None):
"""
:param stored: Whether the value of this field is stored with the
document.
"""
self.analyzer = analyzer or analysis.IDAnalyzer()
self.format = formats.Existence(field_boost=field_boost)
self.stored = stored
self.unique = unique
self.spelling = spelling
self.set_sortable(sortable)
class IDLIST(FieldType):
"""Configured field type for fields containing IDs separated by whitespace
and/or punctuation (or anything else, using the expression param).
"""
__inittypes__ = dict(stored=bool, unique=bool, expression=bool,
field_boost=float)
def __init__(self, stored=False, unique=False, expression=None,
field_boost=1.0, spelling=False):
"""
:param stored: Whether the value of this field is stored with the
document.
:param unique: Whether the value of this field is unique per-document.
:param expression: The regular expression object to use to extract
tokens. The default expression breaks tokens on CRs, LFs, tabs,
spaces, commas, and semicolons.
"""
expression = expression or re.compile(r"[^\r\n\t ,;]+")
self.analyzer = analysis.RegexAnalyzer(expression=expression)
self.format = formats.Existence(field_boost=field_boost)
self.stored = stored
self.unique = unique
self.spelling = spelling
class NUMERIC(FieldType):
"""Special field type that lets you index integer or floating point
numbers in relatively short fixed-width terms. The field converts numbers
to sortable bytes for you before indexing.
You specify the numeric type of the field (``int`` or ``float``) when you
create the ``NUMERIC`` object. The default is ``int``. For ``int``, you can
specify a size in bits (``32`` or ``64``). For both ``int`` and ``float``
you can specify a ``signed`` keyword argument (default is ``True``).
>>> schema = Schema(path=STORED, position=NUMERIC(int, 64, signed=False))
>>> ix = storage.create_index(schema)
>>> with ix.writer() as w:
... w.add_document(path="/a", position=5820402204)
...
You can also use the NUMERIC field to store Decimal instances by specifying
a type of ``int`` or ``long`` and the ``decimal_places`` keyword argument.
This simply multiplies each number by ``(10 ** decimal_places)`` before
storing it as an integer. Of course this may throw away decimal prcesision
(by truncating, not rounding) and imposes the same maximum value limits as
``int``/``long``, but these may be acceptable for certain applications.
>>> from decimal import Decimal
>>> schema = Schema(path=STORED, position=NUMERIC(int, decimal_places=4))
>>> ix = storage.create_index(schema)
>>> with ix.writer() as w:
... w.add_document(path="/a", position=Decimal("123.45")
...
"""
def __init__(self, numtype=int, bits=32, stored=False, unique=False,
field_boost=1.0, decimal_places=0, shift_step=4, signed=True,
sortable=False, default=None):
"""
:param numtype: the type of numbers that can be stored in this field,
either ``int``, ``float``. If you use ``Decimal``,
use the ``decimal_places`` argument to control how many decimal
places the field will store.
:param bits: When ``numtype`` is ``int``, the number of bits to use to
store the number: 8, 16, 32, or 64.
:param stored: Whether the value of this field is stored with the
document.
:param unique: Whether the value of this field is unique per-document.
:param decimal_places: specifies the number of decimal places to save
when storing Decimal instances. If you set this, you will always
get Decimal instances back from the field.
:param shift_steps: The number of bits of precision to shift away at
each tiered indexing level. Values should generally be 1-8. Lower
values yield faster searches but take up more space. A value
of `0` means no tiered indexing.
:param signed: Whether the numbers stored in this field may be
negative.
"""
# Allow users to specify strings instead of Python types in case
# docstring isn't clear
if numtype == "int":
numtype = int
if numtype == "float":
numtype = float
# Raise an error if the user tries to use a type other than int or
# float
if numtype is Decimal:
numtype = int
if not decimal_places:
raise TypeError("To store Decimal instances, you must set the "
"decimal_places argument")
elif numtype not in (int, float):
raise TypeError("Can't use %r as a type, use int or float"
% numtype)
# Sanity check
if numtype is float and decimal_places:
raise Exception("A float type and decimal_places argument %r are "
"incompatible" % decimal_places)
intsizes = [8, 16, 32, 64]
intcodes = ["B", "H", "I", "Q"]
# Set up field configuration based on type and size
if numtype is float:
bits = 64 # Floats are converted to 64 bit ints
else:
if bits not in intsizes:
raise Exception("Invalid bits %r, use 8, 16, 32, or 64"
% bits)
# Type code for the *sortable* representation
self.sortable_typecode = intcodes[intsizes.index(bits)]
self._struct = struct.Struct(">" + self.sortable_typecode)
self.numtype = numtype
self.bits = bits
self.stored = stored
self.unique = unique
self.decimal_places = decimal_places
self.shift_step = shift_step
self.signed = signed
self.analyzer = analysis.IDAnalyzer()
self.format = formats.Existence(field_boost=field_boost)
self.min_value, self.max_value = self._min_max()
# Column configuration
if default is None:
if numtype is int:
default = typecode_max[self.sortable_typecode]
else:
default = NaN
elif not self.is_valid(default):
raise Exception("The default %r is not a valid number for this "
"field" % default)
self.default = default
self.set_sortable(sortable)
def __getstate__(self):
d = self.__dict__.copy()
if "_struct" in d:
del d["_struct"]
return d
def __setstate__(self, d):
self.__dict__.update(d)
self._struct = struct.Struct(">" + self.sortable_typecode)
if "min_value" not in d:
d["min_value"], d["max_value"] = self._min_max()
def _min_max(self):
numtype = self.numtype
bits = self.bits
signed = self.signed
# Calculate the minimum and maximum possible values for error checking
min_value = from_sortable(numtype, bits, signed, 0)
max_value = from_sortable(numtype, bits, signed, 2 ** bits - 1)
return min_value, max_value
def default_column(self):
return columns.NumericColumn(self.sortable_typecode,
default=self.default)
def is_valid(self, x):
try:
x = self.to_bytes(x)
except ValueError:
return False
except OverflowError:
return False
return True
def index(self, num, **kwargs):
# If the user gave us a list of numbers, recurse on the list
if isinstance(num, (list, tuple)):
for n in num:
for item in self.index(n):
yield item
return
# word, freq, weight, valuestring
if self.shift_step:
for shift in xrange(0, self.bits, self.shift_step):
yield (self.to_bytes(num, shift), 1, 1.0, emptybytes)
else:
yield (self.to_bytes(num), 1, 1.0, emptybytes)
def prepare_number(self, x):
if x == emptybytes or x is None:
return x
dc = self.decimal_places
if dc and isinstance(x, (string_type, Decimal)):
x = Decimal(x) * (10 ** dc)
elif isinstance(x, Decimal):
raise TypeError("Can't index a Decimal object unless you specified "
"decimal_places on the field")
try:
x = self.numtype(x)
except OverflowError:
raise ValueError("Value %r overflowed number type %r"
% (x, self.numtype))
if x < self.min_value or x > self.max_value:
raise ValueError("Numeric field value %s out of range [%s, %s]"
% (x, self.min_value, self.max_value))
return x
def unprepare_number(self, x):
dc = self.decimal_places
if dc:
s = str(x)
x = Decimal(s[:-dc] + "." + s[-dc:])
return x
def to_column_value(self, x):
if isinstance(x, (list, tuple, array)):
x = x[0]
x = self.prepare_number(x)
return to_sortable(self.numtype, self.bits, self.signed, x)
def from_column_value(self, x):
x = from_sortable(self.numtype, self.bits, self.signed, x)
return self.unprepare_number(x)
def to_bytes(self, x, shift=0):
# Try to avoid re-encoding; this sucks because on Python 2 we can't
# tell the difference between a string and encoded bytes, so we have
# to require the user use unicode when they mean string
if isinstance(x, bytes_type):
return x
if x == emptybytes or x is None:
return self.sortable_to_bytes(0)
x = self.prepare_number(x)
x = to_sortable(self.numtype, self.bits, self.signed, x)
return self.sortable_to_bytes(x, shift)
def sortable_to_bytes(self, x, shift=0):
if shift:
x >>= shift
return pack_byte(shift) + self._struct.pack(x)
def from_bytes(self, bs):
x = self._struct.unpack(bs[1:])[0]
x = from_sortable(self.numtype, self.bits, self.signed, x)
x = self.unprepare_number(x)
return x
def process_text(self, text, **kwargs):
return (self.to_bytes(text),)
def self_parsing(self):
return True
def parse_query(self, fieldname, qstring, boost=1.0):
from whoosh import query
from whoosh.qparser.common import QueryParserError
if qstring == "*":
return query.Every(fieldname, boost=boost)
if not self.is_valid(qstring):
raise QueryParserError("%r is not a valid number" % qstring)
token = self.to_bytes(qstring)
return query.Term(fieldname, token, boost=boost)
def parse_range(self, fieldname, start, end, startexcl, endexcl,
boost=1.0):
from whoosh import query
from whoosh.qparser.common import QueryParserError
if start is not None:
if not self.is_valid(start):
raise QueryParserError("Range start %r is not a valid number"
% start)
start = self.prepare_number(start)
if end is not None:
if not self.is_valid(end):
raise QueryParserError("Range end %r is not a valid number"
% end)
end = self.prepare_number(end)
return query.NumericRange(fieldname, start, end, startexcl, endexcl,
boost=boost)
def sortable_terms(self, ixreader, fieldname):
zero = b("\x00")
for token in ixreader.lexicon(fieldname):
if token[0:1] != zero:
# Only yield the full-precision values
break
yield token
class DATETIME(NUMERIC):
"""Special field type that lets you index datetime objects. The field
converts the datetime objects to sortable text for you before indexing.
Since this field is based on Python's datetime module it shares all the
limitations of that module, such as the inability to represent dates before
year 1 in the proleptic Gregorian calendar. However, since this field
stores datetimes as an integer number of microseconds, it could easily
represent a much wider range of dates if the Python datetime implementation
ever supports them.
>>> schema = Schema(path=STORED, date=DATETIME)
>>> ix = storage.create_index(schema)
>>> w = ix.writer()
>>> w.add_document(path="/a", date=datetime.now())
>>> w.commit()
"""
__inittypes__ = dict(stored=bool, unique=bool)
def __init__(self, stored=False, unique=False, sortable=False):
"""
:param stored: Whether the value of this field is stored with the
document.
:param unique: Whether the value of this field is unique per-document.
"""
super(DATETIME, self).__init__(int, 64, stored=stored,
unique=unique, shift_step=8,
sortable=sortable)
def prepare_datetime(self, x):
from whoosh.util.times import floor
if isinstance(x, text_type):
# For indexing, support same strings as for query parsing --
# convert unicode to datetime object
x = self._parse_datestring(x)
x = floor(x) # this makes most sense (unspecified = lowest)
if isinstance(x, datetime.datetime):
return datetime_to_long(x)
elif isinstance(x, bytes_type):
return x
else:
raise Exception("%r is not a datetime" % (x,))
def to_column_value(self, x):
if isinstance(x, bytes_type):
raise Exception("%r is not a datetime" % (x,))
if isinstance(x, (list, tuple)):
x = x[0]
return self.prepare_datetime(x)
def from_column_value(self, x):
return long_to_datetime(x)
def to_bytes(self, x, shift=0):
x = self.prepare_datetime(x)
return NUMERIC.to_bytes(self, x, shift=shift)
def from_bytes(self, bs):
x = NUMERIC.from_bytes(self, bs)
return long_to_datetime(x)
def _parse_datestring(self, qstring):
# This method parses a very simple datetime representation of the form
# YYYY[MM[DD[hh[mm[ss[uuuuuu]]]]]]
from whoosh.util.times import adatetime, fix, is_void
qstring = qstring.replace(" ", "").replace("-", "").replace(".", "")
year = month = day = hour = minute = second = microsecond = None
if len(qstring) >= 4:
year = int(qstring[:4])
if len(qstring) >= 6:
month = int(qstring[4:6])
if len(qstring) >= 8:
day = int(qstring[6:8])
if len(qstring) >= 10:
hour = int(qstring[8:10])
if len(qstring) >= 12:
minute = int(qstring[10:12])
if len(qstring) >= 14:
second = int(qstring[12:14])
if len(qstring) == 20:
microsecond = int(qstring[14:])
at = fix(adatetime(year, month, day, hour, minute, second,
microsecond))
if is_void(at):
raise Exception("%r is not a parseable date" % qstring)
return at
def parse_query(self, fieldname, qstring, boost=1.0):
from whoosh import query
from whoosh.util.times import is_ambiguous
try:
at = self._parse_datestring(qstring)
except:
e = sys.exc_info()[1]
return query.error_query(e)
if is_ambiguous(at):
startnum = datetime_to_long(at.floor())
endnum = datetime_to_long(at.ceil())
return query.NumericRange(fieldname, startnum, endnum)
else:
return query.Term(fieldname, at, boost=boost)
def parse_range(self, fieldname, start, end, startexcl, endexcl,
boost=1.0):
from whoosh import query
if start is None and end is None:
return query.Every(fieldname, boost=boost)
if start is not None:
startdt = self._parse_datestring(start).floor()
start = datetime_to_long(startdt)
if end is not None:
enddt = self._parse_datestring(end).ceil()
end = datetime_to_long(enddt)
return query.NumericRange(fieldname, start, end, boost=boost)
class BOOLEAN(FieldType):
"""Special field type that lets you index boolean values (True and False).
The field converts the boolean values to text for you before indexing.
>>> schema = Schema(path=STORED, done=BOOLEAN)
>>> ix = storage.create_index(schema)
>>> w = ix.writer()
>>> w.add_document(path="/a", done=False)
>>> w.commit()
"""
bytestrings = (b("f"), b("t"))
trues = frozenset(u("t true yes 1").split())
falses = frozenset(u("f false no 0").split())
__inittypes__ = dict(stored=bool, field_boost=float)
def __init__(self, stored=False, field_boost=1.0):
"""
:param stored: Whether the value of this field is stored with the
document.
"""
self.stored = stored
self.field_boost = field_boost
self.format = formats.Existence(field_boost=field_boost)
def _obj_to_bool(self, x):
# We special case strings such as "true", "false", "yes", "no", but
# otherwise call bool() on the query value. This lets you pass objects
# as query values and do the right thing.
if isinstance(x, string_type) and x.lower() in self.trues:
x = True
elif isinstance(x, string_type) and x.lower() in self.falses:
x = False
else:
x = bool(x)
return x
def to_bytes(self, x):
if isinstance(x, bytes_type):
return x
elif isinstance(x, string_type):
x = x.lower() in self.trues
else:
x = bool(x)
bs = self.bytestrings[int(x)]
return bs
def index(self, bit, **kwargs):
if isinstance(bit, string_type):
bit = bit.lower() in self.trues
else:
bit = bool(bit)
# word, freq, weight, valuestring
return [(self.bytestrings[int(bit)], 1, 1.0, emptybytes)]
def self_parsing(self):
return True
def parse_query(self, fieldname, qstring, boost=1.0):
from whoosh import query
if qstring == "*":
return query.Every(fieldname, boost=boost)
return query.Term(fieldname, self._obj_to_bool(qstring), boost=boost)
class STORED(FieldType):
"""Configured field type for fields you want to store but not index.
"""
indexed = False
stored = True
def __init__(self):
pass
class COLUMN(FieldType):
"""Configured field type for fields you want to store as a per-document
value column but not index.
"""
indexed = False
stored = False
def __init__(self, columnobj=None):
if columnobj is None:
columnobj = columns.VarBytesColumn()
if not isinstance(columnobj, columns.Column):
raise TypeError("%r is not a column object" % (columnobj,))
self.column_type = columnobj
def to_bytes(self, v):
return v
def from_bytes(self, b):
return b
class KEYWORD(FieldType):
"""Configured field type for fields containing space-separated or
comma-separated keyword-like data (such as tags). The default is to not
store positional information (so phrase searching is not allowed in this
field) and to not make the field scorable.
"""
__inittypes__ = dict(stored=bool, lowercase=bool, commas=bool,
scorable=bool, unique=bool, field_boost=float)
def __init__(self, stored=False, lowercase=False, commas=False,
vector=None, scorable=False, unique=False, field_boost=1.0,
spelling=False, sortable=False):
"""
:param stored: Whether to store the value of the field with the
document.
:param comma: Whether this is a comma-separated field. If this is False
(the default), it is treated as a space-separated field.
:param scorable: Whether this field is scorable.
"""
self.analyzer = analysis.KeywordAnalyzer(lowercase=lowercase,
commas=commas)
self.format = formats.Frequency(field_boost=field_boost)
self.scorable = scorable
self.stored = stored
self.unique = unique
self.spelling = spelling
if vector:
if type(vector) is type:
vector = vector()
elif isinstance(vector, formats.Format):
pass
else:
vector = self.format
else:
vector = None
self.vector = vector
if sortable:
self.column_type = self.default_column()
class TEXT(FieldType):
"""Configured field type for text fields (for example, the body text of an
article). The default is to store positional information to allow phrase
searching. This field type is always scorable.
"""
__inittypes__ = dict(analyzer=analysis.Analyzer, phrase=bool,
vector=object, stored=bool, field_boost=float)
def __init__(self, analyzer=None, phrase=True, chars=False, vector=None,
stored=False, field_boost=1.0, multitoken_query="default",
spelling=False, sortable=False, lang=None):
"""
:param analyzer: The analysis.Analyzer to use to index the field
contents. See the analysis module for more information. If you omit
this argument, the field uses analysis.StandardAnalyzer.
:param phrase: Whether the store positional information to allow phrase
searching.
:param chars: Whether to store character ranges along with positions.
If this is True, "phrase" is also implied.
:param vector: A :class:`whoosh.formats.Format` object to use to store
term vectors, or ``True`` to store vectors using the same format as
the inverted index, or ``None`` or ``False`` to not store vectors.
By default, fields do not store term vectors.
:param stored: Whether to store the value of this field with the
document. Since this field type generally contains a lot of text,
you should avoid storing it with the document unless you need to,
for example to allow fast excerpts in the search results.
:param spelling: Whether to generate word graphs for this field to make
spelling suggestions much faster.
:param sortable: If True, make this field sortable using the default
column type. If you pass a :class:`whoosh.columns.Column` instance
instead of True, the field will use the given column type.
:param lang: automaticaly configure a
:class:`whoosh.analysis.LanguageAnalyzer` for the given language.
This is ignored if you also specify an ``analyzer``.
"""
if analyzer:
self.analyzer = analyzer
elif lang:
self.analyzer = analysis.LanguageAnalyzer(lang)
else:
self.analyzer = analysis.StandardAnalyzer()
if chars:
formatclass = formats.Characters
elif phrase:
formatclass = formats.Positions
else:
formatclass = formats.Frequency
self.format = formatclass(field_boost=field_boost)
if vector:
if type(vector) is type:
vector = vector()
elif isinstance(vector, formats.Format):
pass
else:
vector = formatclass()
else:
vector = None
self.vector = vector
if sortable:
if isinstance(sortable, columns.Column):
self.column_type = sortable
else:
self.column_type = columns.VarBytesColumn()
else:
self.column_type = None
self.multitoken_query = multitoken_query
self.scorable = True
self.stored = stored
self.spelling = spelling
class NGRAM(FieldType):
"""Configured field that indexes text as N-grams. For example, with a field
type NGRAM(3,4), the value "hello" will be indexed as tokens
"hel", "hell", "ell", "ello", "llo". This field type chops the entire text
into N-grams, including whitespace and punctuation. See :class:`NGRAMWORDS`
for a field type that breaks the text into words first before chopping the
words into N-grams.
"""
__inittypes__ = dict(minsize=int, maxsize=int, stored=bool,
field_boost=float, queryor=bool, phrase=bool)
scorable = True
def __init__(self, minsize=2, maxsize=4, stored=False, field_boost=1.0,
queryor=False, phrase=False, sortable=False):
"""
:param minsize: The minimum length of the N-grams.
:param maxsize: The maximum length of the N-grams.
:param stored: Whether to store the value of this field with the
document. Since this field type generally contains a lot of text,
you should avoid storing it with the document unless you need to,
for example to allow fast excerpts in the search results.
:param queryor: if True, combine the N-grams with an Or query. The
default is to combine N-grams with an And query.
:param phrase: store positions on the N-grams to allow exact phrase
searching. The default is off.
"""
formatclass = formats.Frequency
if phrase:
formatclass = formats.Positions
self.analyzer = analysis.NgramAnalyzer(minsize, maxsize)
self.format = formatclass(field_boost=field_boost)
self.stored = stored
self.queryor = queryor
self.set_sortable(sortable)
def self_parsing(self):
return True
def parse_query(self, fieldname, qstring, boost=1.0):
from whoosh import query
terms = [query.Term(fieldname, g)
for g in self.process_text(qstring, mode='query')]
cls = query.Or if self.queryor else query.And
return cls(terms, boost=boost)
class NGRAMWORDS(NGRAM):
"""Configured field that chops text into words using a tokenizer,
lowercases the words, and then chops the words into N-grams.
"""
__inittypes__ = dict(minsize=int, maxsize=int, stored=bool,
field_boost=float, tokenizer=analysis.Tokenizer,
at=str, queryor=bool)
scorable = True
def __init__(self, minsize=2, maxsize=4, stored=False, field_boost=1.0,
tokenizer=None, at=None, queryor=False, sortable=False):
"""
:param minsize: The minimum length of the N-grams.
:param maxsize: The maximum length of the N-grams.
:param stored: Whether to store the value of this field with the
document. Since this field type generally contains a lot of text,
you should avoid storing it with the document unless you need to,
for example to allow fast excerpts in the search results.
:param tokenizer: an instance of :class:`whoosh.analysis.Tokenizer`
used to break the text into words.
:param at: if 'start', only takes N-grams from the start of the word.
If 'end', only takes N-grams from the end. Otherwise the default
is to take all N-grams from each word.
:param queryor: if True, combine the N-grams with an Or query. The
default is to combine N-grams with an And query.
"""
self.analyzer = analysis.NgramWordAnalyzer(minsize, maxsize, tokenizer,
at=at)
self.format = formats.Frequency(field_boost=field_boost)
self.stored = stored
self.queryor = queryor
self.set_sortable(sortable)
# Schema class
class MetaSchema(type):
def __new__(cls, name, bases, attrs):
super_new = super(MetaSchema, cls).__new__
if not any(b for b in bases if isinstance(b, MetaSchema)):
# If this isn't a subclass of MetaSchema, don't do anything special
return super_new(cls, name, bases, attrs)
# Create the class
special_attrs = {}
for key in list(attrs.keys()):
if key.startswith("__"):
special_attrs[key] = attrs.pop(key)
new_class = super_new(cls, name, bases, special_attrs)
fields = {}
for b in bases:
if hasattr(b, "_clsfields"):
fields.update(b._clsfields)
fields.update(attrs)
new_class._clsfields = fields
return new_class
def schema(self):
return Schema(**self._clsfields)
class Schema(object):
"""Represents the collection of fields in an index. Maps field names to
FieldType objects which define the behavior of each field.
Low-level parts of the index use field numbers instead of field names for
compactness. This class has several methods for converting between the
field name, field number, and field object itself.
"""
def __init__(self, **fields):
""" All keyword arguments to the constructor are treated as fieldname =
fieldtype pairs. The fieldtype can be an instantiated FieldType object,
or a FieldType sub-class (in which case the Schema will instantiate it
with the default constructor before adding it).
For example::
s = Schema(content = TEXT,
title = TEXT(stored = True),
tags = KEYWORD(stored = True))
"""
self._fields = {}
self._dyn_fields = {}
for name in sorted(fields.keys()):
self.add(name, fields[name])
def copy(self):
"""Returns a shallow copy of the schema. The field instances are not
deep copied, so they are shared between schema copies.
"""
return self.__class__(**self._fields)
def __eq__(self, other):
return (other.__class__ is self.__class__
and list(self.items()) == list(other.items()))
def __ne__(self, other):
return not(self.__eq__(other))
def __repr__(self):
return "<%s: %r>" % (self.__class__.__name__, self.names())
def __iter__(self):
"""Returns the field objects in this schema.
"""
return iter(self._fields.values())
def __getitem__(self, name):
"""Returns the field associated with the given field name.
"""
if name in self._fields:
return self._fields[name]
for expr, fieldtype in itervalues(self._dyn_fields):
if expr.match(name):
return fieldtype
raise KeyError("No field named %r" % (name,))
def __len__(self):
"""Returns the number of fields in this schema.
"""
return len(self._fields)
def __contains__(self, fieldname):
"""Returns True if a field by the given name is in this schema.
"""
# Defined in terms of __getitem__ so that there's only one method to
# override to provide dynamic fields
try:
field = self[fieldname]
return field is not None
except KeyError:
return False
def items(self):
"""Returns a list of ("fieldname", field_object) pairs for the fields
in this schema.
"""
return sorted(self._fields.items())
def names(self, check_names=None):
"""Returns a list of the names of the fields in this schema.
:param check_names: (optional) sequence of field names to check
whether the schema accepts them as (dynamic) field names -
acceptable names will also be in the result list.
Note: You may also have static field names in check_names, that
won't create duplicates in the result list. Unsupported names
will not be in the result list.
"""
fieldnames = set(self._fields.keys())
if check_names is not None:
check_names = set(check_names) - fieldnames
fieldnames.update(fieldname for fieldname in check_names
if fieldname in self)
return sorted(fieldnames)
def clean(self):
for field in self:
field.clean()
def add(self, name, fieldtype, glob=False):
"""Adds a field to this schema.
:param name: The name of the field.
:param fieldtype: An instantiated fields.FieldType object, or a
FieldType subclass. If you pass an instantiated object, the schema
will use that as the field configuration for this field. If you
pass a FieldType subclass, the schema will automatically
instantiate it with the default constructor.
"""
# Check field name
if name.startswith("_"):
raise FieldConfigurationError("Field names cannot start with an "
"underscore")
if " " in name:
raise FieldConfigurationError("Field names cannot contain spaces")
if name in self._fields or (glob and name in self._dyn_fields):
raise FieldConfigurationError("Schema already has a field %r"
% name)
# If the user passed a type rather than an instantiated field object,
# instantiate it automatically
if type(fieldtype) is type:
try:
fieldtype = fieldtype()
except:
e = sys.exc_info()[1]
raise FieldConfigurationError("Error: %s instantiating field "
"%r: %r" % (e, name, fieldtype))
if not isinstance(fieldtype, FieldType):
raise FieldConfigurationError("%r is not a FieldType object"
% fieldtype)
if glob:
expr = re.compile(fnmatch.translate(name))
self._dyn_fields[name] = (expr, fieldtype)
else:
fieldtype.on_add(self, name)
self._fields[name] = fieldtype
def remove(self, fieldname):
if fieldname in self._fields:
self._fields[fieldname].on_remove(self, fieldname)
del self._fields[fieldname]
elif fieldname in self._dyn_fields:
del self._dyn_fields[fieldname]
else:
raise KeyError("No field named %r" % fieldname)
def has_vectored_fields(self):
"""Returns True if any of the fields in this schema store term vectors.
"""
return any(ftype.vector for ftype in self)
def has_scorable_fields(self):
return any(ftype.scorable for ftype in self)
def stored_names(self):
"""Returns a list of the names of fields that are stored.
"""
return [name for name, field in self.items() if field.stored]
def scorable_names(self):
"""Returns a list of the names of fields that store field
lengths.
"""
return [name for name, field in self.items() if field.scorable]
def vector_names(self):
"""Returns a list of the names of fields that store vectors.
"""
return [name for name, field in self.items() if field.vector]
def separate_spelling_names(self):
"""Returns a list of the names of fields that require special handling
for generating spelling graphs... either because they store graphs but
aren't indexed, or because the analyzer is stemmed.
"""
return [name for name, field in self.items()
if field.spelling and field.separate_spelling()]
class SchemaClass(with_metaclass(MetaSchema, Schema)):
"""Allows you to define a schema using declarative syntax, similar to
Django models::
class MySchema(SchemaClass):
path = ID
date = DATETIME
content = TEXT
You can use inheritance to share common fields between schemas::
class Parent(SchemaClass):
path = ID(stored=True)
date = DATETIME
class Child1(Parent):
content = TEXT(positions=False)
class Child2(Parent):
tags = KEYWORD
This class overrides ``__new__`` so instantiating your sub-class always
results in an instance of ``Schema``.
>>> class MySchema(SchemaClass):
... title = TEXT(stored=True)
... content = TEXT
...
>>> s = MySchema()
>>> type(s)
<class 'whoosh.fields.Schema'>
"""
def __new__(cls, *args, **kwargs):
obj = super(Schema, cls).__new__(Schema)
kw = getattr(cls, "_clsfields", {})
kw.update(kwargs)
obj.__init__(*args, **kw)
return obj
def ensure_schema(schema):
if isinstance(schema, type) and issubclass(schema, Schema):
schema = schema.schema()
if not isinstance(schema, Schema):
raise FieldConfigurationError("%r is not a Schema" % schema)
return schema
def merge_fielddict(d1, d2):
keyset = set(d1.keys()) | set(d2.keys())
out = {}
for name in keyset:
field1 = d1.get(name)
field2 = d2.get(name)
if field1 and field2 and field1 != field2:
raise Exception("Inconsistent field %r: %r != %r"
% (name, field1, field2))
out[name] = field1 or field2
return out
def merge_schema(s1, s2):
schema = Schema()
schema._fields = merge_fielddict(s1._fields, s2._fields)
schema._dyn_fields = merge_fielddict(s1._dyn_fields, s2._dyn_fields)
return schema
def merge_schemas(schemas):
schema = schemas[0]
for i in xrange(1, len(schemas)):
schema = merge_schema(schema, schemas[i])
return schema
|