/usr/lib/python2.7/dist-packages/ufl/algebra.py is in python-ufl 1.3.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 | "Basic algebra operations."
# Copyright (C) 2008-2013 Martin Sandve Alnes
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2008
#
# First added: 2008-05-20
# Last changed: 2013-01-02
from itertools import chain
from ufl.log import error, warning
from ufl.assertions import ufl_assert
from ufl.common import product, mergedicts, subdict, EmptyDict
from ufl.expr import Expr
from ufl.operatorbase import AlgebraOperator
from ufl.constantvalue import Zero, zero, ScalarValue, IntValue, is_ufl_scalar, is_true_ufl_scalar, as_ufl
from ufl.indexutils import unique_indices
from ufl.sorting import sorted_expr
from ufl.precedence import parstr
#--- Algebraic operators ---
class Sum(AlgebraOperator):
__slots__ = ("_operands",)
def __new__(cls, *operands): # TODO: This whole thing seems a bit complicated... Can it be simplified? Maybe we can merge some loops for efficiency?
ufl_assert(operands, "Can't take sum of nothing.")
#if not operands:
# return Zero() # Allowing this leads to zeros with invalid type information in other places, need indices and shape
# make sure everything is an Expr
operands = [as_ufl(o) for o in operands]
# Got one operand only? Do nothing then.
if len(operands) == 1:
return operands[0]
# assert consistent tensor properties
sh = operands[0].shape()
fi = operands[0].free_indices()
fid = operands[0].index_dimensions()
#ufl_assert(all(sh == o.shape() for o in operands[1:]),
# "Shape mismatch in Sum.")
#ufl_assert(not any((set(fi) ^ set(o.free_indices())) for o in operands[1:]),
# "Can't add expressions with different free indices.")
if any(sh != o.shape() for o in operands[1:]):
error("Shape mismatch in Sum.")
if any((set(fi) ^ set(o.free_indices())) for o in operands[1:]):
error("Can't add expressions with different free indices.")
# sort operands in a canonical order
operands = sorted_expr(operands)
# purge zeros
operands = [o for o in operands if not isinstance(o, Zero)]
# sort scalars to beginning and merge them
scalars = [o for o in operands if isinstance(o, ScalarValue)]
if scalars:
# exploiting Pythons built-in coersion rules
f = as_ufl(sum(f._value for f in scalars))
nonscalars = [o for o in operands if not isinstance(o, ScalarValue)]
if not nonscalars:
return f
if isinstance(f, Zero):
operands = nonscalars
else:
operands = [f] + nonscalars
# have we purged everything?
if not operands:
return Zero(sh, fi, fid)
# left with one operand only?
if len(operands) == 1:
return operands[0]
# Replace n-repeated operands foo with n*foo
newoperands = []
op = operands[0]
n = 1
for o in operands[1:] + [None]:
if o == op:
n += 1
else:
newoperands.append(op if n == 1 else n*op)
op = o
n = 1
operands = newoperands
# left with one operand only?
if len(operands) == 1:
return operands[0]
# construct and initialize a new Sum object
self = AlgebraOperator.__new__(cls)
self._init(*operands)
return self
def _init(self, *operands):
self._operands = operands
def __init__(self, *operands):
AlgebraOperator.__init__(self)
def operands(self):
return self._operands
def free_indices(self):
return self._operands[0].free_indices()
def index_dimensions(self):
return self._operands[0].index_dimensions()
def shape(self):
return self._operands[0].shape()
def evaluate(self, x, mapping, component, index_values):
return sum(o.evaluate(x, mapping, component, index_values) for o in self.operands())
def __str__(self):
ops = [parstr(o, self) for o in self._operands]
if False:
# Implementation with line splitting:
limit = 70
delimop = " + \\\n + "
op = " + "
s = ops[0]
n = len(s)
for o in ops[1:]:
m = len(o)
if n+m > limit:
s += delimop
n = m
else:
s += op
n += m
s += o
return s
# Implementation with no line splitting:
return "%s" % " + ".join(ops)
def __repr__(self):
return "Sum(%s)" % ", ".join(repr(o) for o in self._operands)
class Product(AlgebraOperator):
"""The product of two or more UFL objects."""
__slots__ = ("_operands", "_free_indices", "_index_dimensions",)
def __new__(cls, *operands):
# Make sure everything is an Expr
operands = [as_ufl(o) for o in operands]
# Make sure everything is scalar
#ufl_assert(not any(o.shape() for o in operands),
# "Product can only represent products of scalars.")
if any(o.shape() for o in operands):
error("Product can only represent products of scalars.")
# No operands? Return one.
if not operands:
return IntValue(1)
# Got one operand only? Just return it.
if len(operands) == 1:
return operands[0]
# Got any zeros? Return zero.
if any(isinstance(o, Zero) for o in operands):
free_indices = unique_indices(tuple(chain(*(o.free_indices() for o in operands))))
index_dimensions = subdict(mergedicts([o.index_dimensions() for o in operands]), free_indices)
return Zero((), free_indices, index_dimensions)
# Merge scalars, but keep nonscalars sorted
scalars = []
nonscalars = []
for o in operands:
if isinstance(o, ScalarValue):
scalars.append(o)
else:
nonscalars.append(o)
if scalars:
# merge scalars
p = as_ufl(product(s._value for s in scalars))
# only scalars?
if not nonscalars:
return p
# merged scalar is unity?
if p == 1:
scalars = []
# Left with one nonscalar operand only after merging scalars?
if len(nonscalars) == 1:
return nonscalars[0]
else:
scalars = [p]
# Sort operands in a canonical order (NB! This is fragile! Small changes here can have large effects.)
operands = scalars + sorted_expr(nonscalars)
# Replace n-repeated operands foo with foo**n
newoperands = []
op, nop = operands[0], 1
for o in operands[1:] + [None]:
if o == op:
# op is repeated, count number of repetitions
nop += 1
else:
if nop == 1:
# op is not repeated
newoperands.append(op)
elif op.free_indices():
# We can't simplify products to powers if the operands has
# free indices, because of complications in differentiation.
# op repeated, but has free indices, so we don't simplify
newoperands.extend([op]*nop)
else:
# op repeated, make it a power
newoperands.append(op**nop)
# Reset op as o
op, nop = o, 1
operands = newoperands
# Left with one operand only after simplifications?
if len(operands) == 1:
return operands[0]
# Construct and initialize a new Product object
self = AlgebraOperator.__new__(cls)
self._init(*operands)
return self
def _init(self, *operands):
"Constructor, called by __new__ with already checked arguments."
# Store basic properties
self._operands = operands
# Extract indices
self._free_indices = unique_indices(tuple(chain(*(o.free_indices() for o in operands))))
self._index_dimensions = mergedicts([o.index_dimensions() for o in operands]) or EmptyDict
def __init__(self, *operands):
AlgebraOperator.__init__(self)
def operands(self):
return self._operands
def free_indices(self):
return self._free_indices
def index_dimensions(self):
return self._index_dimensions
def shape(self):
return ()
def evaluate(self, x, mapping, component, index_values):
ops = self.operands()
sh = self.shape()
if sh:
ufl_assert(sh == ops[-1].shape(), "Expecting nonscalar product operand to be the last by convention.")
tmp = ops[-1].evaluate(x, mapping, component, index_values)
ops = ops[:-1]
else:
tmp = 1
for o in ops:
tmp *= o.evaluate(x, mapping, (), index_values)
return tmp
def __str__(self):
ops = [parstr(o, self) for o in self._operands]
if False:
# Implementation with line splitting:
limit = 70
delimop = " * \\\n * "
op = " * "
s = ops[0]
n = len(s)
for o in ops[1:]:
m = len(o)
if n+m > limit:
s += delimop
n = m
else:
s += op
n += m
s += o
return s
# Implementation with no line splitting:
return "%s" % " * ".join(ops)
def __repr__(self):
return "Product(%s)" % ", ".join(repr(o) for o in self._operands)
class Division(AlgebraOperator):
__slots__ = ("_a", "_b",)
def __new__(cls, a, b):
a = as_ufl(a)
b = as_ufl(b)
# Assertions
# TODO: Enabled workaround for nonscalar division in __div__,
# so maybe we can keep this assertion. Some algorithms may need updating.
if not is_ufl_scalar(a):
error("Expecting scalar nominator in Division.")
if not is_true_ufl_scalar(b):
error("Division by non-scalar is undefined.")
if isinstance(b, Zero):
error("Division by zero!")
# Simplification a/b -> a
if isinstance(a, Zero) or b == 1:
return a
# Simplification "literal a / literal b" -> "literal value of a/b"
# Avoiding integer division by casting to float
if isinstance(a, ScalarValue) and isinstance(b, ScalarValue):
return as_ufl(float(a._value) / float(b._value))
# Simplification "a / a" -> "1"
if not a.free_indices() and not a.shape() and a == b:
return as_ufl(1)
# construct and initialize a new Division object
self = AlgebraOperator.__new__(cls)
self._init(a, b)
return self
def _init(self, a, b):
#ufl_assert(isinstance(a, Expr) and isinstance(b, Expr), "Expecting Expr instances.")
if not (isinstance(a, Expr) and isinstance(b, Expr)):
error("Expecting Expr instances.")
self._a = a
self._b = b
def __init__(self, a, b):
AlgebraOperator.__init__(self)
def operands(self):
return (self._a, self._b)
def free_indices(self):
return self._a.free_indices()
def index_dimensions(self):
return self._a.index_dimensions()
def shape(self):
return () # self._a.shape()
def evaluate(self, x, mapping, component, index_values):
a, b = self.operands()
a = a.evaluate(x, mapping, component, index_values)
b = b.evaluate(x, mapping, component, index_values)
# Avoiding integer division by casting to float
return float(a) / float(b)
def __str__(self):
return "%s / %s" % (parstr(self._a, self), parstr(self._b, self))
def __repr__(self):
return "Division(%r, %r)" % (self._a, self._b)
class Power(AlgebraOperator):
__slots__ = ("_a", "_b",)
def __new__(cls, a, b):
a = as_ufl(a)
b = as_ufl(b)
if not is_true_ufl_scalar(a): error("Cannot take the power of a non-scalar expression.")
if not is_true_ufl_scalar(b): error("Cannot raise an expression to a non-scalar power.")
if isinstance(a, ScalarValue) and isinstance(b, ScalarValue):
return as_ufl(a._value ** b._value)
if a == 0 and isinstance(b, ScalarValue):
bf = float(b)
if bf < 0:
error("Division by zero, annot raise 0 to a negative power.")
else:
return zero()
if b == 1:
return a
if b == 0:
return IntValue(1)
# construct and initialize a new Power object
self = AlgebraOperator.__new__(cls)
self._init(a, b)
return self
def _init(self, a, b):
#ufl_assert(isinstance(a, Expr) and isinstance(b, Expr), "Expecting Expr instances.")
if not (isinstance(a, Expr) and isinstance(b, Expr)):
error("Expecting Expr instances.")
self._a = a
self._b = b
def __init__(self, a, b):
AlgebraOperator.__init__(self)
def operands(self):
return (self._a, self._b)
def free_indices(self):
return self._a.free_indices()
def index_dimensions(self):
return self._a.index_dimensions()
def shape(self):
return ()
def evaluate(self, x, mapping, component, index_values):
a, b = self.operands()
a = a.evaluate(x, mapping, component, index_values)
b = b.evaluate(x, mapping, component, index_values)
return a**b
def __str__(self):
return "%s ** %s" % (parstr(self._a, self), parstr(self._b, self))
def __repr__(self):
return "Power(%r, %r)" % (self._a, self._b)
class Abs(AlgebraOperator):
__slots__ = ("_a",)
def __init__(self, a):
AlgebraOperator.__init__(self)
ufl_assert(isinstance(a, Expr), "Expecting Expr instance.")
if not isinstance(a, Expr): error("Expecting Expr instances.")
self._a = a
def operands(self):
return (self._a, )
def free_indices(self):
return self._a.free_indices()
def index_dimensions(self):
return self._a.index_dimensions()
def shape(self):
return self._a.shape()
def evaluate(self, x, mapping, component, index_values):
a = self._a.evaluate(x, mapping, component, index_values)
return abs(a)
def __str__(self):
return "| %s |" % parstr(self._a, self)
def __repr__(self):
return "Abs(%r)" % self._a
|