/usr/share/pyshared/tlslite/utils/cryptomath.py is in python-tlslite 0.3.8-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 | """cryptomath module
This module has basic math/crypto code."""
import os
import math
import base64
import binascii
import sha
from compat import *
# **************************************************************************
# Load Optional Modules
# **************************************************************************
# Try to load M2Crypto/OpenSSL
try:
from M2Crypto import m2
m2cryptoLoaded = True
except ImportError:
m2cryptoLoaded = False
# Try to load cryptlib
try:
import cryptlib_py
try:
cryptlib_py.cryptInit()
except cryptlib_py.CryptException, e:
#If tlslite and cryptoIDlib are both present,
#they might each try to re-initialize this,
#so we're tolerant of that.
if e[0] != cryptlib_py.CRYPT_ERROR_INITED:
raise
cryptlibpyLoaded = True
except ImportError:
cryptlibpyLoaded = False
#Try to load GMPY
try:
import gmpy
gmpyLoaded = True
except ImportError:
gmpyLoaded = False
#Try to load pycrypto
try:
import Crypto.Cipher.AES
pycryptoLoaded = True
except ImportError:
pycryptoLoaded = False
# **************************************************************************
# PRNG Functions
# **************************************************************************
# Get os.urandom PRNG
try:
os.urandom(1)
def getRandomBytes(howMany):
return stringToBytes(os.urandom(howMany))
prngName = "os.urandom"
except:
# Else get cryptlib PRNG
if cryptlibpyLoaded:
def getRandomBytes(howMany):
randomKey = cryptlib_py.cryptCreateContext(cryptlib_py.CRYPT_UNUSED,
cryptlib_py.CRYPT_ALGO_AES)
cryptlib_py.cryptSetAttribute(randomKey,
cryptlib_py.CRYPT_CTXINFO_MODE,
cryptlib_py.CRYPT_MODE_OFB)
cryptlib_py.cryptGenerateKey(randomKey)
bytes = createByteArrayZeros(howMany)
cryptlib_py.cryptEncrypt(randomKey, bytes)
return bytes
prngName = "cryptlib"
else:
#Else get UNIX /dev/urandom PRNG
try:
devRandomFile = open("/dev/urandom", "rb")
def getRandomBytes(howMany):
return stringToBytes(devRandomFile.read(howMany))
prngName = "/dev/urandom"
except IOError:
#Else get Win32 CryptoAPI PRNG
try:
import win32prng
def getRandomBytes(howMany):
s = win32prng.getRandomBytes(howMany)
if len(s) != howMany:
raise AssertionError()
return stringToBytes(s)
prngName ="CryptoAPI"
except ImportError:
#Else no PRNG :-(
def getRandomBytes(howMany):
raise NotImplementedError("No Random Number Generator "\
"available.")
prngName = "None"
# **************************************************************************
# Converter Functions
# **************************************************************************
def bytesToNumber(bytes):
total = 0L
multiplier = 1L
for count in range(len(bytes)-1, -1, -1):
byte = bytes[count]
total += multiplier * byte
multiplier *= 256
return total
def numberToBytes(n):
howManyBytes = numBytes(n)
bytes = createByteArrayZeros(howManyBytes)
for count in range(howManyBytes-1, -1, -1):
bytes[count] = int(n % 256)
n >>= 8
return bytes
def bytesToBase64(bytes):
s = bytesToString(bytes)
return stringToBase64(s)
def base64ToBytes(s):
s = base64ToString(s)
return stringToBytes(s)
def numberToBase64(n):
bytes = numberToBytes(n)
return bytesToBase64(bytes)
def base64ToNumber(s):
bytes = base64ToBytes(s)
return bytesToNumber(bytes)
def stringToNumber(s):
bytes = stringToBytes(s)
return bytesToNumber(bytes)
def numberToString(s):
bytes = numberToBytes(s)
return bytesToString(bytes)
def base64ToString(s):
try:
return base64.decodestring(s)
except binascii.Error, e:
raise SyntaxError(e)
except binascii.Incomplete, e:
raise SyntaxError(e)
def stringToBase64(s):
return base64.encodestring(s).replace("\n", "")
def mpiToNumber(mpi): #mpi is an openssl-format bignum string
if (ord(mpi[4]) & 0x80) !=0: #Make sure this is a positive number
raise AssertionError()
bytes = stringToBytes(mpi[4:])
return bytesToNumber(bytes)
def numberToMPI(n):
bytes = numberToBytes(n)
ext = 0
#If the high-order bit is going to be set,
#add an extra byte of zeros
if (numBits(n) & 0x7)==0:
ext = 1
length = numBytes(n) + ext
bytes = concatArrays(createByteArrayZeros(4+ext), bytes)
bytes[0] = (length >> 24) & 0xFF
bytes[1] = (length >> 16) & 0xFF
bytes[2] = (length >> 8) & 0xFF
bytes[3] = length & 0xFF
return bytesToString(bytes)
# **************************************************************************
# Misc. Utility Functions
# **************************************************************************
def numBytes(n):
if n==0:
return 0
bits = numBits(n)
return int(math.ceil(bits / 8.0))
def hashAndBase64(s):
return stringToBase64(sha.sha(s).digest())
def getBase64Nonce(numChars=22): #defaults to an 132 bit nonce
bytes = getRandomBytes(numChars)
bytesStr = "".join([chr(b) for b in bytes])
return stringToBase64(bytesStr)[:numChars]
# **************************************************************************
# Big Number Math
# **************************************************************************
def getRandomNumber(low, high):
if low >= high:
raise AssertionError()
howManyBits = numBits(high)
howManyBytes = numBytes(high)
lastBits = howManyBits % 8
while 1:
bytes = getRandomBytes(howManyBytes)
if lastBits:
bytes[0] = bytes[0] % (1 << lastBits)
n = bytesToNumber(bytes)
if n >= low and n < high:
return n
def gcd(a,b):
a, b = max(a,b), min(a,b)
while b:
a, b = b, a % b
return a
def lcm(a, b):
#This will break when python division changes, but we can't use // cause
#of Jython
return (a * b) / gcd(a, b)
#Returns inverse of a mod b, zero if none
#Uses Extended Euclidean Algorithm
def invMod(a, b):
c, d = a, b
uc, ud = 1, 0
while c != 0:
#This will break when python division changes, but we can't use //
#cause of Jython
q = d / c
c, d = d-(q*c), c
uc, ud = ud - (q * uc), uc
if d == 1:
return ud % b
return 0
if gmpyLoaded:
def powMod(base, power, modulus):
base = gmpy.mpz(base)
power = gmpy.mpz(power)
modulus = gmpy.mpz(modulus)
result = pow(base, power, modulus)
return long(result)
else:
#Copied from Bryan G. Olson's post to comp.lang.python
#Does left-to-right instead of pow()'s right-to-left,
#thus about 30% faster than the python built-in with small bases
def powMod(base, power, modulus):
nBitScan = 5
""" Return base**power mod modulus, using multi bit scanning
with nBitScan bits at a time."""
#TREV - Added support for negative exponents
negativeResult = False
if (power < 0):
power *= -1
negativeResult = True
exp2 = 2**nBitScan
mask = exp2 - 1
# Break power into a list of digits of nBitScan bits.
# The list is recursive so easy to read in reverse direction.
nibbles = None
while power:
nibbles = int(power & mask), nibbles
power = power >> nBitScan
# Make a table of powers of base up to 2**nBitScan - 1
lowPowers = [1]
for i in xrange(1, exp2):
lowPowers.append((lowPowers[i-1] * base) % modulus)
# To exponentiate by the first nibble, look it up in the table
nib, nibbles = nibbles
prod = lowPowers[nib]
# For the rest, square nBitScan times, then multiply by
# base^nibble
while nibbles:
nib, nibbles = nibbles
for i in xrange(nBitScan):
prod = (prod * prod) % modulus
if nib: prod = (prod * lowPowers[nib]) % modulus
#TREV - Added support for negative exponents
if negativeResult:
prodInv = invMod(prod, modulus)
#Check to make sure the inverse is correct
if (prod * prodInv) % modulus != 1:
raise AssertionError()
return prodInv
return prod
#Pre-calculate a sieve of the ~100 primes < 1000:
def makeSieve(n):
sieve = range(n)
for count in range(2, int(math.sqrt(n))):
if sieve[count] == 0:
continue
x = sieve[count] * 2
while x < len(sieve):
sieve[x] = 0
x += sieve[count]
sieve = [x for x in sieve[2:] if x]
return sieve
sieve = makeSieve(1000)
def isPrime(n, iterations=5, display=False):
#Trial division with sieve
for x in sieve:
if x >= n: return True
if n % x == 0: return False
#Passed trial division, proceed to Rabin-Miller
#Rabin-Miller implemented per Ferguson & Schneier
#Compute s, t for Rabin-Miller
if display: print "*",
s, t = n-1, 0
while s % 2 == 0:
s, t = s/2, t+1
#Repeat Rabin-Miller x times
a = 2 #Use 2 as a base for first iteration speedup, per HAC
for count in range(iterations):
v = powMod(a, s, n)
if v==1:
continue
i = 0
while v != n-1:
if i == t-1:
return False
else:
v, i = powMod(v, 2, n), i+1
a = getRandomNumber(2, n)
return True
def getRandomPrime(bits, display=False):
if bits < 10:
raise AssertionError()
#The 1.5 ensures the 2 MSBs are set
#Thus, when used for p,q in RSA, n will have its MSB set
#
#Since 30 is lcm(2,3,5), we'll set our test numbers to
#29 % 30 and keep them there
low = (2L ** (bits-1)) * 3/2
high = 2L ** bits - 30
p = getRandomNumber(low, high)
p += 29 - (p % 30)
while 1:
if display: print ".",
p += 30
if p >= high:
p = getRandomNumber(low, high)
p += 29 - (p % 30)
if isPrime(p, display=display):
return p
#Unused at the moment...
def getRandomSafePrime(bits, display=False):
if bits < 10:
raise AssertionError()
#The 1.5 ensures the 2 MSBs are set
#Thus, when used for p,q in RSA, n will have its MSB set
#
#Since 30 is lcm(2,3,5), we'll set our test numbers to
#29 % 30 and keep them there
low = (2 ** (bits-2)) * 3/2
high = (2 ** (bits-1)) - 30
q = getRandomNumber(low, high)
q += 29 - (q % 30)
while 1:
if display: print ".",
q += 30
if (q >= high):
q = getRandomNumber(low, high)
q += 29 - (q % 30)
#Ideas from Tom Wu's SRP code
#Do trial division on p and q before Rabin-Miller
if isPrime(q, 0, display=display):
p = (2 * q) + 1
if isPrime(p, display=display):
if isPrime(q, display=display):
return p
|