/usr/share/pyshared/sklearn/utils/multiclass.py is in python-sklearn 0.14.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | # Author: Arnaud Joly, Joel Nothman
#
# License: BSD 3 clause
"""
Multi-class / multi-label utility function
==========================================
"""
from collections import Sequence
from itertools import chain
import numpy as np
from ..externals.six import string_types
def _unique_multiclass(y):
if isinstance(y, np.ndarray):
return np.unique(y)
else:
return set(y)
def _unique_sequence_of_sequence(y):
return set(chain.from_iterable(y))
def _unique_indicator(y):
return np.arange(y.shape[1])
_FN_UNIQUE_LABELS = {
'binary': _unique_multiclass,
'multiclass': _unique_multiclass,
'multilabel-sequences': _unique_sequence_of_sequence,
'multilabel-indicator': _unique_indicator,
}
def unique_labels(*ys):
"""Extract an ordered array of unique labels
We don't allow:
- mix of multilabel and multiclass (single label) targets
- mix of label indicator matrix and anything else,
because there are no explicit labels)
- mix of label indicator matrices of different sizes
- mix of string and integer labels
At the moment, we also don't allow "mutliclass-multioutput" input type.
Parameters
----------
ys : array-likes,
Returns
-------
out : numpy array of shape [n_unique_labels]
An ordered array of unique labels.
Examples
--------
>>> from sklearn.utils.multiclass import unique_labels
>>> unique_labels([3, 5, 5, 5, 7, 7])
array([3, 5, 7])
>>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4])
array([1, 2, 3, 4])
>>> unique_labels([1, 2, 10], [5, 11])
array([ 1, 2, 5, 10, 11])
>>> unique_labels(np.array([[0.0, 1.0], [1.0, 1.0]]), np.zeros((2, 2)))
array([0, 1])
>>> unique_labels([(1, 2), (3,)], [(1, 2), tuple()])
array([1, 2, 3])
"""
if not ys:
raise ValueError('No argument has been passed.')
# Check that we don't mix label format
ys_types = set(type_of_target(x) for x in ys)
if ys_types == set(["binary", "multiclass"]):
ys_types = set(["multiclass"])
if len(ys_types) > 1:
raise ValueError("Mix type of y not allowed, got types %s" % ys_types)
label_type = ys_types.pop()
# Check consistency for the indicator format
if (label_type == "multilabel-indicator" and
len(set(y.shape[1] for y in ys)) > 1):
raise ValueError("Multi-label binary indicator input with "
"different numbers of labels")
# Get the unique set of labels
_unique_labels = _FN_UNIQUE_LABELS.get(label_type, None)
if not _unique_labels:
raise ValueError("Unknown label type")
ys_labels = set(chain.from_iterable(_unique_labels(y) for y in ys))
# Check that we don't mix string type with number type
if (len(set(isinstance(label, string_types) for label in ys_labels)) > 1):
raise ValueError("Mix of label input types (string and number)")
return np.array(sorted(ys_labels))
def _is_integral_float(y):
return y.dtype.kind == 'f' and np.all(y.astype(int) == y)
def is_label_indicator_matrix(y):
""" Check if ``y`` is in the label indicator matrix format (multilabel).
Parameters
----------
y : numpy array of shape [n_samples] or sequence of sequences
Target values. In the multilabel case the nested sequences can
have variable lengths.
Returns
-------
out : bool,
Return ``True``, if ``y`` is in a label indicator matrix format,
else ``False``.
Examples
--------
>>> import numpy as np
>>> from sklearn.utils.multiclass import is_label_indicator_matrix
>>> is_label_indicator_matrix([0, 1, 0, 1])
False
>>> is_label_indicator_matrix([[1], [0, 2], []])
False
>>> is_label_indicator_matrix(np.array([[1, 0], [0, 0]]))
True
>>> is_label_indicator_matrix(np.array([[1], [0], [0]]))
False
>>> is_label_indicator_matrix(np.array([[1, 0, 0]]))
True
"""
if not (hasattr(y, "shape") and y.ndim == 2 and y.shape[1] > 1):
return False
labels = np.unique(y)
return len(labels) <= 2 and (y.dtype.kind in 'biu' # bool, int, uint
or _is_integral_float(labels))
def is_sequence_of_sequences(y):
""" Check if ``y`` is in the sequence of sequences format (multilabel).
Parameters
----------
y : sequence or array.
Returns
-------
out : bool,
Return ``True``, if ``y`` is a sequence of sequences else ``False``.
>>> import numpy as np
>>> from sklearn.utils.multiclass import is_multilabel
>>> is_sequence_of_sequences([0, 1, 0, 1])
False
>>> is_sequence_of_sequences([[1], [0, 2], []])
True
>>> is_sequence_of_sequences(np.array([[1], [0, 2], []], dtype=object))
True
>>> is_sequence_of_sequences([(1,), (0, 2), ()])
True
>>> is_sequence_of_sequences(np.array([[1, 0], [0, 0]]))
False
>>> is_sequence_of_sequences(np.array([[1], [0], [0]]))
False
>>> is_sequence_of_sequences(np.array([[1, 0, 0]]))
False
"""
# the explicit check for ndarray is for forward compatibility; future
# versions of Numpy might want to register ndarray as a Sequence
try:
return (not isinstance(y[0], np.ndarray) and isinstance(y[0], Sequence)
and not isinstance(y[0], string_types))
except IndexError:
return False
def is_multilabel(y):
""" Check if ``y`` is in a multilabel format.
Parameters
----------
y : numpy array of shape [n_samples] or sequence of sequences
Target values. In the multilabel case the nested sequences can
have variable lengths.
Returns
-------
out : bool,
Return ``True``, if ``y`` is in a multilabel format, else ```False``.
Examples
--------
>>> import numpy as np
>>> from sklearn.utils.multiclass import is_multilabel
>>> is_multilabel([0, 1, 0, 1])
False
>>> is_multilabel([[1], [0, 2], []])
True
>>> is_multilabel(np.array([[1, 0], [0, 0]]))
True
>>> is_multilabel(np.array([[1], [0], [0]]))
False
>>> is_multilabel(np.array([[1, 0, 0]]))
True
"""
return is_label_indicator_matrix(y) or is_sequence_of_sequences(y)
def type_of_target(y):
"""Determine the type of data indicated by target `y`
Parameters
----------
y : array-like
Returns
-------
target_type : string
One of:
* 'continuous': `y` is an array-like of floats that are not all
integers, and is 1d or a column vector.
* 'continuous-multioutput': `y` is a 2d array of floats that are
not all integers, and both dimensions are of size > 1.
* 'binary': `y` contains <= 2 discrete values and is 1d or a column
vector.
* 'multiclass': `y` contains more than two discrete values, is not a
sequence of sequences, and is 1d or a column vector.
* 'mutliclass-multioutput': `y` is a 2d array that contains more
than two discrete values, is not a sequence of sequences, and both
dimensions are of size > 1.
* 'multilabel-sequences': `y` is a sequence of sequences, a 1d
array-like of objects that are sequences of labels.
* 'multilabel-indicator': `y` is a label indicator matrix, an array
of two dimensions with at least two columns, and at most 2 unique
values.
* 'unknown': `y` is array-like but none of the above, such as a 3d
array, or an array of non-sequence objects.
Examples
--------
>>> import numpy as np
>>> type_of_target([0.1, 0.6])
'continuous'
>>> type_of_target([1, -1, -1, 1])
'binary'
>>> type_of_target(['a', 'b', 'a'])
'binary'
>>> type_of_target([1, 0, 2])
'multiclass'
>>> type_of_target(['a', 'b', 'c'])
'multiclass'
>>> type_of_target(np.array([[1, 2], [3, 1]]))
'multiclass-multioutput'
>>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]]))
'continuous-multioutput'
>>> type_of_target([['a', 'b'], ['c'], []])
'multilabel-sequences'
>>> type_of_target([[]])
'multilabel-sequences'
>>> type_of_target(np.array([[0, 1], [1, 1]]))
'multilabel-indicator'
"""
# XXX: is there a way to duck-type this condition?
valid = (isinstance(y, (np.ndarray, Sequence))
and not isinstance(y, string_types))
if not valid:
raise ValueError('Expected array-like (array or non-string sequence), '
'got %r' % y)
if is_sequence_of_sequences(y):
return 'multilabel-sequences'
elif is_label_indicator_matrix(y):
return 'multilabel-indicator'
try:
y = np.asarray(y)
except ValueError:
# known to fail in numpy 1.3 for array of arrays
return 'unknown'
if y.ndim > 2 or y.dtype == object:
return 'unknown'
if y.ndim == 2 and y.shape[1] == 0:
return 'unknown'
elif y.ndim == 2 and y.shape[1] > 1:
suffix = '-multioutput'
else:
# column vector or 1d
suffix = ''
# check float and contains non-integer float values:
if y.dtype.kind == 'f' and np.any(y != y.astype(int)):
return 'continuous' + suffix
if len(np.unique(y)) <= 2:
assert not suffix, "2d binary array-like should be multilabel"
return 'binary'
else:
return 'multiclass' + suffix
def _check_partial_fit_first_call(clf, classes=None):
"""Private helper function for factorizing common classes param logic
Estimator that implement the ``partial_fit`` API need to be provided with
the list of possible classes at the first call to partial fit.and
Subsequent calls to partial_fit should check that ``classes`` is still
consistent with a previous value of ``clf.classes_`` when provided.
This function returns True if it detects that this was the first call to
``partial_fit`` on ``clf``. In that case the ``classes_`` attribute is also
set on ``clf``.
"""
if getattr(clf, 'classes_', None) is None and classes is None:
raise ValueError("classes must be passed on the first call "
"to partial_fit.")
elif classes is not None:
if getattr(clf, 'classes_', None) is not None:
if not np.all(clf.classes_ == unique_labels(classes)):
raise ValueError(
"`classes=%r` is not the same as on last call "
"to partial_fit, was: %r" % (classes, clf.classes_))
else:
# This is the first call to partial_fit
clf.classes_ = unique_labels(classes)
return True
# classes is None and clf.classes_ has already previously been set:
# nothing to do
return False
|