This file is indexed.

/usr/share/pyshared/sklearn/utils/graph.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
"""
Graph utilities and algorithms

Graphs are represented with their adjacency matrices, preferably using
sparse matrices.
"""

# Authors: Aric Hagberg <hagberg@lanl.gov>
#          Gael Varoquaux <gael.varoquaux@normalesup.org>
#          Jake Vanderplas <vanderplas@astro.washington.edu>
# License: BSD 3 clause

import numpy as np
from scipy import sparse

from .graph_shortest_path import graph_shortest_path


###############################################################################
# Path and connected component analysis.
# Code adapted from networkx

def single_source_shortest_path_length(graph, source, cutoff=None):
    """Return the shortest path length from source to all reachable nodes.

    Returns a dictionary of shortest path lengths keyed by target.

    Parameters
    ----------
    graph: sparse matrix or 2D array (preferably LIL matrix)
        Adjacency matrix of the graph
    source : node label
       Starting node for path
    cutoff : integer, optional
        Depth to stop the search - only
        paths of length <= cutoff are returned.

    Examples
    --------
    >>> from sklearn.utils.graph import single_source_shortest_path_length
    >>> import numpy as np
    >>> graph = np.array([[ 0, 1, 0, 0],
    ...                   [ 1, 0, 1, 0],
    ...                   [ 0, 1, 0, 1],
    ...                   [ 0, 0, 1, 0]])
    >>> single_source_shortest_path_length(graph, 0)
    {0: 0, 1: 1, 2: 2, 3: 3}
    >>> single_source_shortest_path_length(np.ones((6, 6)), 2)
    {0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1}
    """
    if sparse.isspmatrix(graph):
        graph = graph.tolil()
    else:
        graph = sparse.lil_matrix(graph)
    seen = {}                   # level (number of hops) when seen in BFS
    level = 0                   # the current level
    next_level = [source]       # dict of nodes to check at next level
    while next_level:
        this_level = next_level     # advance to next level
        next_level = set()          # and start a new list (fringe)
        for v in this_level:
            if v not in seen:
                seen[v] = level     # set the level of vertex v
                next_level.update(graph.rows[v])
        if cutoff is not None and cutoff <= level:
            break
        level += 1
    return seen  # return all path lengths as dictionary


if hasattr(sparse, 'connected_components'):
    connected_components = sparse.connected_components
else:
    from .sparsetools import connected_components


###############################################################################
# Graph laplacian
def graph_laplacian(csgraph, normed=False, return_diag=False):
    """ Return the Laplacian matrix of a directed graph.

    For non-symmetric graphs the out-degree is used in the computation.

    Parameters
    ----------
    csgraph : array_like or sparse matrix, 2 dimensions
        compressed-sparse graph, with shape (N, N).
    normed : bool, optional
        If True, then compute normalized Laplacian.
    return_diag : bool, optional
        If True, then return diagonal as well as laplacian.

    Returns
    -------
    lap : ndarray
        The N x N laplacian matrix of graph.
    diag : ndarray
        The length-N diagonal of the laplacian matrix.
        diag is returned only if return_diag is True.

    Notes
    -----
    The Laplacian matrix of a graph is sometimes referred to as the
    "Kirchoff matrix" or the "admittance matrix", and is useful in many
    parts of spectral graph theory.  In particular, the eigen-decomposition
    of the laplacian matrix can give insight into many properties of the graph.

    For non-symmetric directed graphs, the laplacian is computed using the
    out-degree of each node.
    """
    if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]:
        raise ValueError('csgraph must be a square matrix or array')

    if normed and (np.issubdtype(csgraph.dtype, np.int)
                   or np.issubdtype(csgraph.dtype, np.uint)):
        csgraph = csgraph.astype(np.float)

    if sparse.isspmatrix(csgraph):
        return _laplacian_sparse(csgraph, normed=normed,
                                 return_diag=return_diag)
    else:
        return _laplacian_dense(csgraph, normed=normed,
                                return_diag=return_diag)


def _laplacian_sparse(graph, normed=False, return_diag=False):
    n_nodes = graph.shape[0]
    if not graph.format == 'coo':
        lap = (-graph).tocoo()
    else:
        lap = -graph.copy()
    diag_mask = (lap.row == lap.col)
    if not diag_mask.sum() == n_nodes:
        # The sparsity pattern of the matrix has holes on the diagonal,
        # we need to fix that
        diag_idx = lap.row[diag_mask]
        diagonal_holes = list(set(range(n_nodes)).difference(diag_idx))
        new_data = np.concatenate([lap.data, np.ones(len(diagonal_holes))])
        new_row = np.concatenate([lap.row, diagonal_holes])
        new_col = np.concatenate([lap.col, diagonal_holes])
        lap = sparse.coo_matrix((new_data, (new_row, new_col)),
                                shape=lap.shape)
        diag_mask = (lap.row == lap.col)

    lap.data[diag_mask] = 0
    w = -np.asarray(lap.sum(axis=1)).squeeze()
    if normed:
        w = np.sqrt(w)
        w_zeros = (w == 0)
        w[w_zeros] = 1
        lap.data /= w[lap.row]
        lap.data /= w[lap.col]
        lap.data[diag_mask] = (1 - w_zeros[lap.row[diag_mask]]).astype(
            lap.data.dtype)
    else:
        lap.data[diag_mask] = w[lap.row[diag_mask]]

    if return_diag:
        return lap, w
    return lap


def _laplacian_dense(graph, normed=False, return_diag=False):
    n_nodes = graph.shape[0]
    lap = -np.asarray(graph)  # minus sign leads to a copy

    # set diagonal to zero
    lap.flat[::n_nodes + 1] = 0
    w = -lap.sum(axis=0)
    if normed:
        w = np.sqrt(w)
        w_zeros = (w == 0)
        w[w_zeros] = 1
        lap /= w
        lap /= w[:, np.newaxis]
        lap.flat[::n_nodes + 1] = (1 - w_zeros).astype(lap.dtype)
    else:
        lap.flat[::n_nodes + 1] = w.astype(lap.dtype)

    if return_diag:
        return lap, w
    return lap