/usr/share/pyshared/sklearn/utils/extmath.py is in python-sklearn 0.14.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 | """
Extended math utilities.
"""
# Authors: G. Varoquaux, A. Gramfort, A. Passos, O. Grisel
# License: BSD 3 clause
import warnings
import numpy as np
from scipy import linalg
from scipy.sparse import issparse
from . import check_random_state
from .fixes import qr_economic
from ._logistic_sigmoid import _log_logistic_sigmoid
from ..externals.six.moves import xrange
from .validation import array2d
def norm(v):
v = np.asarray(v)
__nrm2, = linalg.get_blas_funcs(['nrm2'], [v])
return __nrm2(v)
def _fast_logdet(A):
"""Compute log(det(A)) for A symmetric
Equivalent to : np.log(np.linalg.det(A)) but more robust.
It returns -Inf if det(A) is non positive or is not defined.
"""
# XXX: Should be implemented as in numpy, using ATLAS
# http://projects.scipy.org/numpy/browser/ \
# trunk/numpy/linalg/linalg.py#L1559
ld = np.sum(np.log(np.diag(A)))
a = np.exp(ld / A.shape[0])
d = np.linalg.det(A / a)
ld += np.log(d)
if not np.isfinite(ld):
return -np.inf
return ld
def _fast_logdet_numpy(A):
"""Compute log(det(A)) for A symmetric
Equivalent to : np.log(nl.det(A)) but more robust.
It returns -Inf if det(A) is non positive or is not defined.
"""
sign, ld = np.linalg.slogdet(A)
if not sign > 0:
return -np.inf
return ld
# Numpy >= 1.5 provides a fast logdet
if hasattr(np.linalg, 'slogdet'):
fast_logdet = _fast_logdet_numpy
else:
fast_logdet = _fast_logdet
def density(w, **kwargs):
"""Compute density of a sparse vector
Return a value between 0 and 1
"""
if hasattr(w, "toarray"):
d = float(w.nnz) / (w.shape[0] * w.shape[1])
else:
d = 0 if w is None else float((w != 0).sum()) / w.size
return d
def safe_sparse_dot(a, b, dense_output=False):
"""Dot product that handle the sparse matrix case correctly"""
from scipy import sparse
if sparse.issparse(a) or sparse.issparse(b):
ret = a * b
if dense_output and hasattr(ret, "toarray"):
ret = ret.toarray()
return ret
else:
return np.dot(a, b)
def randomized_range_finder(A, size, n_iter, random_state=None,
n_iterations=None):
"""Computes an orthonormal matrix whose range approximates the range of A.
Parameters
----------
A: 2D array
The input data matrix
size: integer
Size of the return array
n_iter: integer
Number of power iterations used to stabilize the result
random_state: RandomState or an int seed (0 by default)
A random number generator instance
Returns
-------
Q: 2D array
A (size x size) projection matrix, the range of which
approximates well the range of the input matrix A.
Notes
-----
Follows Algorithm 4.3 of
Finding structure with randomness: Stochastic algorithms for constructing
approximate matrix decompositions
Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061
"""
if n_iterations is not None:
warnings.warn("n_iterations was renamed to n_iter for consistency "
"and will be removed in 0.16.", DeprecationWarning)
n_iter = n_iterations
random_state = check_random_state(random_state)
# generating random gaussian vectors r with shape: (A.shape[1], size)
R = random_state.normal(size=(A.shape[1], size))
# sampling the range of A using by linear projection of r
Y = safe_sparse_dot(A, R)
del R
# perform power iterations with Y to further 'imprint' the top
# singular vectors of A in Y
for i in xrange(n_iter):
Y = safe_sparse_dot(A, safe_sparse_dot(A.T, Y))
# extracting an orthonormal basis of the A range samples
Q, R = qr_economic(Y)
return Q
def randomized_svd(M, n_components, n_oversamples=10, n_iter=0,
transpose='auto', flip_sign=True, random_state=0,
n_iterations=None):
"""Computes a truncated randomized SVD
Parameters
----------
M: ndarray or sparse matrix
Matrix to decompose
n_components: int
Number of singular values and vectors to extract.
n_oversamples: int (default is 10)
Additional number of random vectors to sample the range of M so as
to ensure proper conditioning. The total number of random vectors
used to find the range of M is n_components + n_oversamples.
n_iter: int (default is 0)
Number of power iterations (can be used to deal with very noisy
problems).
transpose: True, False or 'auto' (default)
Whether the algorithm should be applied to M.T instead of M. The
result should approximately be the same. The 'auto' mode will
trigger the transposition if M.shape[1] > M.shape[0] since this
implementation of randomized SVD tend to be a little faster in that
case).
flip_sign: boolean, (True by default)
The output of a singular value decomposition is only unique up to a
permutation of the signs of the singular vectors. If `flip_sign` is
set to `True`, the sign ambiguity is resolved by making the largest
loadings for each component in the left singular vectors positive.
random_state: RandomState or an int seed (0 by default)
A random number generator instance to make behavior
Notes
-----
This algorithm finds a (usually very good) approximate truncated
singular value decomposition using randomization to speed up the
computations. It is particularly fast on large matrices on which
you wish to extract only a small number of components.
References
----------
* Finding structure with randomness: Stochastic algorithms for constructing
approximate matrix decompositions
Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061
* A randomized algorithm for the decomposition of matrices
Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert
"""
if n_iterations is not None:
warnings.warn("n_iterations was renamed to n_iter for consistency "
"and will be removed in 0.16.", DeprecationWarning)
n_iter = n_iterations
random_state = check_random_state(random_state)
n_random = n_components + n_oversamples
n_samples, n_features = M.shape
if transpose == 'auto' and n_samples > n_features:
transpose = True
if transpose:
# this implementation is a bit faster with smaller shape[1]
M = M.T
Q = randomized_range_finder(M, n_random, n_iter, random_state)
# project M to the (k + p) dimensional space using the basis vectors
B = safe_sparse_dot(Q.T, M)
# compute the SVD on the thin matrix: (k + p) wide
Uhat, s, V = linalg.svd(B, full_matrices=False)
del B
U = np.dot(Q, Uhat)
if flip_sign:
U, V = svd_flip(U, V)
if transpose:
# transpose back the results according to the input convention
return V[:n_components, :].T, s[:n_components], U[:, :n_components].T
else:
return U[:, :n_components], s[:n_components], V[:n_components, :]
def logsumexp(arr, axis=0):
"""Computes the sum of arr assuming arr is in the log domain.
Returns log(sum(exp(arr))) while minimizing the possibility of
over/underflow.
Examples
--------
>>> import numpy as np
>>> from sklearn.utils.extmath import logsumexp
>>> a = np.arange(10)
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
>>> logsumexp(a)
9.4586297444267107
"""
arr = np.rollaxis(arr, axis)
# Use the max to normalize, as with the log this is what accumulates
# the less errors
vmax = arr.max(axis=0)
out = np.log(np.sum(np.exp(arr - vmax), axis=0))
out += vmax
return out
def weighted_mode(a, w, axis=0):
"""Returns an array of the weighted modal (most common) value in a
If there is more than one such value, only the first is returned.
The bin-count for the modal bins is also returned.
This is an extension of the algorithm in scipy.stats.mode.
Parameters
----------
a : array_like
n-dimensional array of which to find mode(s).
w : array_like
n-dimensional array of weights for each value
axis : int, optional
Axis along which to operate. Default is 0, i.e. the first axis.
Returns
-------
vals : ndarray
Array of modal values.
score : ndarray
Array of weighted counts for each mode.
Examples
--------
>>> from sklearn.utils.extmath import weighted_mode
>>> x = [4, 1, 4, 2, 4, 2]
>>> weights = [1, 1, 1, 1, 1, 1]
>>> weighted_mode(x, weights)
(array([ 4.]), array([ 3.]))
The value 4 appears three times: with uniform weights, the result is
simply the mode of the distribution.
>>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's
>>> weighted_mode(x, weights)
(array([ 2.]), array([ 3.5]))
The value 2 has the highest score: it appears twice with weights of
1.5 and 2: the sum of these is 3.
See Also
--------
scipy.stats.mode
"""
if axis is None:
a = np.ravel(a)
w = np.ravel(w)
axis = 0
else:
a = np.asarray(a)
w = np.asarray(w)
axis = axis
if a.shape != w.shape:
w = np.zeros(a.shape, dtype=w.dtype) + w
scores = np.unique(np.ravel(a)) # get ALL unique values
testshape = list(a.shape)
testshape[axis] = 1
oldmostfreq = np.zeros(testshape)
oldcounts = np.zeros(testshape)
for score in scores:
template = np.zeros(a.shape)
ind = (a == score)
template[ind] = w[ind]
counts = np.expand_dims(np.sum(template, axis), axis)
mostfrequent = np.where(counts > oldcounts, score, oldmostfreq)
oldcounts = np.maximum(counts, oldcounts)
oldmostfreq = mostfrequent
return mostfrequent, oldcounts
def pinvh(a, cond=None, rcond=None, lower=True):
"""Compute the (Moore-Penrose) pseudo-inverse of a hermetian matrix.
Calculate a generalized inverse of a symmetric matrix using its
eigenvalue decomposition and including all 'large' eigenvalues.
Parameters
----------
a : array, shape (N, N)
Real symmetric or complex hermetian matrix to be pseudo-inverted
cond, rcond : float or None
Cutoff for 'small' eigenvalues.
Singular values smaller than rcond * largest_eigenvalue are considered
zero.
If None or -1, suitable machine precision is used.
lower : boolean
Whether the pertinent array data is taken from the lower or upper
triangle of a. (Default: lower)
Returns
-------
B : array, shape (N, N)
Raises
------
LinAlgError
If eigenvalue does not converge
Examples
--------
>>> from numpy import *
>>> a = random.randn(9, 6)
>>> a = np.dot(a, a.T)
>>> B = pinvh(a)
>>> allclose(a, dot(a, dot(B, a)))
True
>>> allclose(B, dot(B, dot(a, B)))
True
"""
a = np.asarray_chkfinite(a)
s, u = linalg.eigh(a, lower=lower)
if rcond is not None:
cond = rcond
if cond in [None, -1]:
t = u.dtype.char.lower()
factor = {'f': 1E3, 'd': 1E6}
cond = factor[t] * np.finfo(t).eps
# unlike svd case, eigh can lead to negative eigenvalues
above_cutoff = (abs(s) > cond * np.max(abs(s)))
psigma_diag = np.zeros_like(s)
psigma_diag[above_cutoff] = 1.0 / s[above_cutoff]
return np.dot(u * psigma_diag, np.conjugate(u).T)
def cartesian(arrays, out=None):
"""Generate a cartesian product of input arrays.
Parameters
----------
arrays : list of array-like
1-D arrays to form the cartesian product of.
out : ndarray
Array to place the cartesian product in.
Returns
-------
out : ndarray
2-D array of shape (M, len(arrays)) containing cartesian products
formed of input arrays.
Examples
--------
>>> cartesian(([1, 2, 3], [4, 5], [6, 7]))
array([[1, 4, 6],
[1, 4, 7],
[1, 5, 6],
[1, 5, 7],
[2, 4, 6],
[2, 4, 7],
[2, 5, 6],
[2, 5, 7],
[3, 4, 6],
[3, 4, 7],
[3, 5, 6],
[3, 5, 7]])
References
----------
http://stackoverflow.com/q/1208118
"""
arrays = [np.asarray(x).ravel() for x in arrays]
dtype = arrays[0].dtype
n = np.prod([x.size for x in arrays])
if out is None:
out = np.empty([n, len(arrays)], dtype=dtype)
m = n / arrays[0].size
out[:, 0] = np.repeat(arrays[0], m)
if arrays[1:]:
cartesian(arrays[1:], out=out[0:m, 1:])
for j in xrange(1, arrays[0].size):
out[j * m:(j + 1) * m, 1:] = out[0:m, 1:]
return out
def svd_flip(u, v):
"""Sign correction to ensure deterministic output from SVD
Adjusts the columns of u and the rows of v such that the loadings in the
columns in u that are largest in absolute value are always positive.
Parameters
----------
u, v: arrays
The output of `linalg.svd` or `sklearn.utils.extmath.randomized_svd`,
with matching inner dimensions so one can compute `np.dot(u * s, v)`.
Returns
-------
u_adjusted, s, v_adjusted: arrays with the same dimensions as the input.
"""
max_abs_cols = np.argmax(np.abs(u), axis=0)
signs = np.sign(u[max_abs_cols, xrange(u.shape[1])])
u *= signs
v *= signs[:, np.newaxis]
return u, v
def logistic_sigmoid(X, log=False, out=None):
"""
Implements the logistic function, ``1 / (1 + e ** -x)`` and its log.
This implementation is more stable by splitting on positive and negative
values and computing::
1 / (1 + exp(-x_i)) if x_i > 0
exp(x_i) / (1 + exp(x_i)) if x_i <= 0
The log is computed using::
-log(1 + exp(-x_i)) if x_i > 0
x_i - log(1 + exp(x_i)) if x_i <= 0
Parameters
----------
X: array-like, shape (M, N)
Argument to the logistic function
log: boolean, default: False
Whether to compute the logarithm of the logistic function.
out: array-like, shape: (M, N), optional:
Preallocated output array.
Returns
-------
out: array, shape (M, N)
Value of the logistic function evaluated at every point in x
Notes
-----
See the blog post describing this implementation:
http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression/
"""
is_1d = X.ndim == 1
X = array2d(X, dtype=np.float)
n_samples, n_features = X.shape
if out is None:
out = np.empty_like(X)
if log:
_log_logistic_sigmoid(n_samples, n_features, X, out)
else:
# logistic(x) = (1 + tanh(x / 2)) / 2
out[:] = X
out *= .5
np.tanh(out, out)
out += 1
out *= .5
if is_1d:
return np.squeeze(out)
return out
def safe_min(X):
"""Returns the minimum value of a dense or a CSR/CSC matrix.
Adapated from http://stackoverflow.com/q/13426580
"""
if issparse(X):
if len(X.data) == 0:
return 0
m = X.data.min()
return m if X.getnnz() == X.size else min(m, 0)
else:
return X.min()
def make_nonnegative(X, min_value=0):
"""Ensure `X.min()` >= `min_value`."""
min_ = safe_min(X)
if min_ < min_value:
if issparse(X):
raise ValueError("Cannot make the data matrix"
" nonnegative because it is sparse."
" Adding a value to every entry would"
" make it no longer sparse.")
X = X + (min_value - min_)
return X
|