This file is indexed.

/usr/share/pyshared/sklearn/utils/arpack.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
"""
This contains a copy of the future version of
scipy.sparse.linalg.eigen.arpack.eigsh
It's an upgraded wrapper of the ARPACK library which
allows the use of shift-invert mode for symmetric matrices.


Find a few eigenvectors and eigenvalues of a matrix.


Uses ARPACK: http://www.caam.rice.edu/software/ARPACK/

"""
# Wrapper implementation notes
#
# ARPACK Entry Points
# -------------------
# The entry points to ARPACK are
# - (s,d)seupd : single and double precision symmetric matrix
# - (s,d,c,z)neupd: single,double,complex,double complex general matrix
# This wrapper puts the *neupd (general matrix) interfaces in eigs()
# and the *seupd (symmetric matrix) in eigsh().
# There is no Hermetian complex/double complex interface.
# To find eigenvalues of a Hermetian matrix you
# must use eigs() and not eigsh()
# It might be desirable to handle the Hermetian case differently
# and, for example, return real eigenvalues.

# Number of eigenvalues returned and complex eigenvalues
# ------------------------------------------------------
# The ARPACK nonsymmetric real and double interface (s,d)naupd return
# eigenvalues and eigenvectors in real (float,double) arrays.
# Since the eigenvalues and eigenvectors are, in general, complex
# ARPACK puts the real and imaginary parts in consecutive entries
# in real-valued arrays.   This wrapper puts the real entries
# into complex data types and attempts to return the requested eigenvalues
# and eigenvectors.


# Solver modes
# ------------
# ARPACK and handle shifted and shift-inverse computations
# for eigenvalues by providing a shift (sigma) and a solver.

__docformat__ = "restructuredtext en"

__all__ = ['eigs', 'eigsh', 'svds', 'ArpackError', 'ArpackNoConvergence']
import warnings

from scipy.sparse.linalg.eigen.arpack import _arpack
import numpy as np
from scipy.sparse.linalg.interface import aslinearoperator, LinearOperator
from scipy.sparse import identity, isspmatrix, isspmatrix_csr
from scipy.linalg import lu_factor, lu_solve
from scipy.sparse.sputils import isdense
from scipy.sparse.linalg import gmres, splu
import scipy
from distutils.version import LooseVersion


_type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z'}
_ndigits = {'f': 5, 'd': 12, 'F': 5, 'D': 12}

DNAUPD_ERRORS = {
    0: "Normal exit.",
    1: "Maximum number of iterations taken. "
       "All possible eigenvalues of OP has been found. IPARAM(5) "
       "returns the number of wanted converged Ritz values.",
    2: "No longer an informational error. Deprecated starting "
       "with release 2 of ARPACK.",
    3: "No shifts could be applied during a cycle of the "
       "Implicitly restarted Arnoldi iteration. One possibility "
       "is to increase the size of NCV relative to NEV. ",
    -1: "N must be positive.",
    -2: "NEV must be positive.",
    -3: "NCV-NEV >= 2 and less than or equal to N.",
    -4: "The maximum number of Arnoldi update iterations allowed "
        "must be greater than zero.",
    -5: " WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'",
    -6: "BMAT must be one of 'I' or 'G'.",
    -7: "Length of private work array WORKL is not sufficient.",
    -8: "Error return from LAPACK eigenvalue calculation;",
    -9: "Starting vector is zero.",
    -10: "IPARAM(7) must be 1,2,3,4.",
    -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
    -12: "IPARAM(1) must be equal to 0 or 1.",
    -13: "NEV and WHICH = 'BE' are incompatible.",
    -9999: "Could not build an Arnoldi factorization. "
           "IPARAM(5) returns the size of the current Arnoldi "
           "factorization. The user is advised to check that "
           "enough workspace and array storage has been allocated."
}

SNAUPD_ERRORS = DNAUPD_ERRORS

ZNAUPD_ERRORS = DNAUPD_ERRORS.copy()
ZNAUPD_ERRORS[-10] = "IPARAM(7) must be 1,2,3."

CNAUPD_ERRORS = ZNAUPD_ERRORS

DSAUPD_ERRORS = {
    0: "Normal exit.",
    1: "Maximum number of iterations taken. "
       "All possible eigenvalues of OP has been found.",
    2: "No longer an informational error. Deprecated starting with "
       "release 2 of ARPACK.",
    3: "No shifts could be applied during a cycle of the Implicitly "
       "restarted Arnoldi iteration. One possibility is to increase "
       "the size of NCV relative to NEV. ",
    -1: "N must be positive.",
    -2: "NEV must be positive.",
    -3: "NCV must be greater than NEV and less than or equal to N.",
    -4: "The maximum number of Arnoldi update iterations allowed "
        "must be greater than zero.",
    -5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.",
    -6: "BMAT must be one of 'I' or 'G'.",
    -7: "Length of private work array WORKL is not sufficient.",
    -8: "Error return from trid. eigenvalue calculation; "
        "Informational error from LAPACK routine dsteqr .",
    -9: "Starting vector is zero.",
    -10: "IPARAM(7) must be 1,2,3,4,5.",
    -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
    -12: "IPARAM(1) must be equal to 0 or 1.",
    -13: "NEV and WHICH = 'BE' are incompatible. ",
    -9999: "Could not build an Arnoldi factorization. "
           "IPARAM(5) returns the size of the current Arnoldi "
           "factorization. The user is advised to check that "
           "enough workspace and array storage has been allocated.",
}

SSAUPD_ERRORS = DSAUPD_ERRORS

DNEUPD_ERRORS = {
    0: "Normal exit.",
    1: "The Schur form computed by LAPACK routine dlahqr "
       "could not be reordered by LAPACK routine dtrsen. "
       "Re-enter subroutine dneupd  with IPARAM(5)NCV and "
       "increase the size of the arrays DR and DI to have "
       "dimension at least dimension NCV and allocate at least NCV "
       "columns for Z. NOTE: Not necessary if Z and V share "
       "the same space. Please notify the authors if this error"
       "occurs.",
    -1: "N must be positive.",
    -2: "NEV must be positive.",
    -3: "NCV-NEV >= 2 and less than or equal to N.",
    -5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'",
    -6: "BMAT must be one of 'I' or 'G'.",
    -7: "Length of private work WORKL array is not sufficient.",
    -8: "Error return from calculation of a real Schur form. "
        "Informational error from LAPACK routine dlahqr .",
    -9: "Error return from calculation of eigenvectors. "
        "Informational error from LAPACK routine dtrevc.",
    -10: "IPARAM(7) must be 1,2,3,4.",
    -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
    -12: "HOWMNY = 'S' not yet implemented",
    -13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.",
    -14: "DNAUPD  did not find any eigenvalues to sufficient "
         "accuracy.",
    -15: "DNEUPD got a different count of the number of converged "
         "Ritz values than DNAUPD got.  This indicates the user "
         "probably made an error in passing data from DNAUPD to "
         "DNEUPD or that the data was modified before entering "
         "DNEUPD",
}

SNEUPD_ERRORS = DNEUPD_ERRORS.copy()
SNEUPD_ERRORS[1] = ("The Schur form computed by LAPACK routine slahqr "
                    "could not be reordered by LAPACK routine strsen . "
                    "Re-enter subroutine dneupd  with IPARAM(5)=NCV and "
                    "increase the size of the arrays DR and DI to have "
                    "dimension at least dimension NCV and allocate at least "
                    "NCV columns for Z. NOTE: Not necessary if Z and V share "
                    "the same space. Please notify the authors if this error "
                    "occurs.")
SNEUPD_ERRORS[-14] = ("SNAUPD did not find any eigenvalues to sufficient "
                      "accuracy.")
SNEUPD_ERRORS[-15] = ("SNEUPD got a different count of the number of "
                      "converged Ritz values than SNAUPD got.  This indicates "
                      "the user probably made an error in passing data from "
                      "SNAUPD to SNEUPD or that the data was modified before "
                      "entering SNEUPD")

ZNEUPD_ERRORS = {0: "Normal exit.",
                 1: "The Schur form computed by LAPACK routine csheqr "
                    "could not be reordered by LAPACK routine ztrsen. "
                    "Re-enter subroutine zneupd with IPARAM(5)=NCV and "
                    "increase the size of the array D to have "
                    "dimension at least dimension NCV and allocate at least "
                    "NCV columns for Z. NOTE: Not necessary if Z and V share "
                    "the same space. Please notify the authors if this error "
                    "occurs.",
                 -1: "N must be positive.",
                 -2: "NEV must be positive.",
                 -3: "NCV-NEV >= 1 and less than or equal to N.",
                 -5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'",
                 -6: "BMAT must be one of 'I' or 'G'.",
                 -7: "Length of private work WORKL array is not sufficient.",
                 -8: "Error return from LAPACK eigenvalue calculation. "
                     "This should never happened.",
                 -9: "Error return from calculation of eigenvectors. "
                     "Informational error from LAPACK routine ztrevc.",
                 -10: "IPARAM(7) must be 1,2,3",
                 -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
                 -12: "HOWMNY = 'S' not yet implemented",
                 -13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.",
                 -14: "ZNAUPD did not find any eigenvalues to sufficient "
                      "accuracy.",
                 -15: "ZNEUPD got a different count of the number of "
                      "converged Ritz values than ZNAUPD got.  This "
                      "indicates the user probably made an error in passing "
                      "data from ZNAUPD to ZNEUPD or that the data was "
                      "modified before entering ZNEUPD"}

CNEUPD_ERRORS = ZNEUPD_ERRORS.copy()
CNEUPD_ERRORS[-14] = ("CNAUPD did not find any eigenvalues to sufficient "
                      "accuracy.")
CNEUPD_ERRORS[-15] = ("CNEUPD got a different count of the number of "
                      "converged Ritz values than CNAUPD got.  This indicates "
                      "the user probably made an error in passing data from "
                      "CNAUPD to CNEUPD or that the data was modified before "
                      "entering CNEUPD")

DSEUPD_ERRORS = {
    0: "Normal exit.",
    -1: "N must be positive.",
    -2: "NEV must be positive.",
    -3: "NCV must be greater than NEV and less than or equal to N.",
    -5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.",
    -6: "BMAT must be one of 'I' or 'G'.",
    -7: "Length of private work WORKL array is not sufficient.",
    -8: ("Error return from trid. eigenvalue calculation; "
         "Information error from LAPACK routine dsteqr."),
    -9: "Starting vector is zero.",
    -10: "IPARAM(7) must be 1,2,3,4,5.",
    -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
    -12: "NEV and WHICH = 'BE' are incompatible.",
    -14: "DSAUPD  did not find any eigenvalues to sufficient accuracy.",
    -15: "HOWMNY must be one of 'A' or 'S' if RVEC = .true.",
    -16: "HOWMNY = 'S' not yet implemented",
    -17: ("DSEUPD  got a different count of the number of converged "
          "Ritz values than DSAUPD  got.  This indicates the user "
          "probably made an error in passing data from DSAUPD  to "
          "DSEUPD  or that the data was modified before entering  "
          "DSEUPD.")
}

SSEUPD_ERRORS = DSEUPD_ERRORS.copy()
SSEUPD_ERRORS[-14] = ("SSAUPD  did not find any eigenvalues "
                      "to sufficient accuracy.")
SSEUPD_ERRORS[-17] = ("SSEUPD  got a different count of the number of "
                      "converged "
                      "Ritz values than SSAUPD  got.  This indicates the user "
                      "probably made an error in passing data from SSAUPD  to "
                      "SSEUPD  or that the data was modified before entering  "
                      "SSEUPD.")

_SAUPD_ERRORS = {'d': DSAUPD_ERRORS,
                 's': SSAUPD_ERRORS}
_NAUPD_ERRORS = {'d': DNAUPD_ERRORS,
                 's': SNAUPD_ERRORS,
                 'z': ZNAUPD_ERRORS,
                 'c': CNAUPD_ERRORS}
_SEUPD_ERRORS = {'d': DSEUPD_ERRORS,
                 's': SSEUPD_ERRORS}
_NEUPD_ERRORS = {'d': DNEUPD_ERRORS,
                 's': SNEUPD_ERRORS,
                 'z': ZNEUPD_ERRORS,
                 'c': CNEUPD_ERRORS}

# accepted values of parameter WHICH in _SEUPD
_SEUPD_WHICH = ['LM', 'SM', 'LA', 'SA', 'BE']

# accepted values of parameter WHICH in _NAUPD
_NEUPD_WHICH = ['LM', 'SM', 'LR', 'SR', 'LI', 'SI']


class ArpackError(RuntimeError):
    """
    ARPACK error
    """
    def __init__(self, info, infodict=_NAUPD_ERRORS):
        msg = infodict.get(info, "Unknown error")
        RuntimeError.__init__(self, "ARPACK error %d: %s" % (info, msg))


class ArpackNoConvergence(ArpackError):
    """
    ARPACK iteration did not converge

    Attributes
    ----------
    eigenvalues : ndarray
        Partial result. Converged eigenvalues.
    eigenvectors : ndarray
        Partial result. Converged eigenvectors.

    """
    def __init__(self, msg, eigenvalues, eigenvectors):
        ArpackError.__init__(self, -1, {-1: msg})
        self.eigenvalues = eigenvalues
        self.eigenvectors = eigenvectors


class _ArpackParams(object):
    def __init__(self, n, k, tp, mode=1, sigma=None,
                 ncv=None, v0=None, maxiter=None, which="LM", tol=0):
        if k <= 0:
            raise ValueError("k must be positive, k=%d" % k)

        if maxiter is None:
            maxiter = n * 10
        if maxiter <= 0:
            raise ValueError("maxiter must be positive, maxiter=%d" % maxiter)

        if tp not in 'fdFD':
            raise ValueError("matrix type must be 'f', 'd', 'F', or 'D'")

        if v0 is not None:
            # ARPACK overwrites its initial resid,  make a copy
            self.resid = np.array(v0, copy=True)
            info = 1
        else:
            self.resid = np.zeros(n, tp)
            info = 0

        if sigma is None:
            #sigma not used
            self.sigma = 0
        else:
            self.sigma = sigma

        if ncv is None:
            ncv = 2 * k + 1
        ncv = min(ncv, n)

        self.v = np.zeros((n, ncv), tp)  # holds Ritz vectors
        self.iparam = np.zeros(11, "int")

        # set solver mode and parameters
        ishfts = 1
        self.mode = mode
        self.iparam[0] = ishfts
        self.iparam[2] = maxiter
        self.iparam[3] = 1
        self.iparam[6] = mode

        self.n = n
        self.tol = tol
        self.k = k
        self.maxiter = maxiter
        self.ncv = ncv
        self.which = which
        self.tp = tp
        self.info = info

        self.converged = False
        self.ido = 0

    def _raise_no_convergence(self):
        msg = "No convergence (%d iterations, %d/%d eigenvectors converged)"
        k_ok = self.iparam[4]
        num_iter = self.iparam[2]
        try:
            ev, vec = self.extract(True)
        except ArpackError as err:
            msg = "%s [%s]" % (msg, err)
            ev = np.zeros((0,))
            vec = np.zeros((self.n, 0))
            k_ok = 0
        raise ArpackNoConvergence(msg % (num_iter, k_ok, self.k), ev, vec)


class _SymmetricArpackParams(_ArpackParams):
    def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None,
                 Minv_matvec=None, sigma=None,
                 ncv=None, v0=None, maxiter=None, which="LM", tol=0):
        # The following modes are supported:
        #  mode = 1:
        #    Solve the standard eigenvalue problem:
        #      A*x = lambda*x :
        #       A - symmetric
        #    Arguments should be
        #       matvec      = left multiplication by A
        #       M_matvec    = None [not used]
        #       Minv_matvec = None [not used]
        #
        #  mode = 2:
        #    Solve the general eigenvalue problem:
        #      A*x = lambda*M*x
        #       A - symmetric
        #       M - symmetric positive definite
        #    Arguments should be
        #       matvec      = left multiplication by A
        #       M_matvec    = left multiplication by M
        #       Minv_matvec = left multiplication by M^-1
        #
        #  mode = 3:
        #    Solve the general eigenvalue problem in shift-invert mode:
        #      A*x = lambda*M*x
        #       A - symmetric
        #       M - symmetric positive semi-definite
        #    Arguments should be
        #       matvec      = None [not used]
        #       M_matvec    = left multiplication by M
        #                     or None, if M is the identity
        #       Minv_matvec = left multiplication by [A-sigma*M]^-1
        #
        #  mode = 4:
        #    Solve the general eigenvalue problem in Buckling mode:
        #      A*x = lambda*AG*x
        #       A  - symmetric positive semi-definite
        #       AG - symmetric indefinite
        #    Arguments should be
        #       matvec      = left multiplication by A
        #       M_matvec    = None [not used]
        #       Minv_matvec = left multiplication by [A-sigma*AG]^-1
        #
        #  mode = 5:
        #    Solve the general eigenvalue problem in Cayley-transformed mode:
        #      A*x = lambda*M*x
        #       A - symmetric
        #       M - symmetric positive semi-definite
        #    Arguments should be
        #       matvec      = left multiplication by A
        #       M_matvec    = left multiplication by M
        #                     or None, if M is the identity
        #       Minv_matvec = left multiplication by [A-sigma*M]^-1
        if mode == 1:
            if matvec is None:
                raise ValueError("matvec must be specified for mode=1")
            if M_matvec is not None:
                raise ValueError("M_matvec cannot be specified for mode=1")
            if Minv_matvec is not None:
                raise ValueError("Minv_matvec cannot be specified for mode=1")

            self.OP = matvec
            self.B = lambda x: x
            self.bmat = 'I'
        elif mode == 2:
            if matvec is None:
                raise ValueError("matvec must be specified for mode=2")
            if M_matvec is None:
                raise ValueError("M_matvec must be specified for mode=2")
            if Minv_matvec is None:
                raise ValueError("Minv_matvec must be specified for mode=2")

            self.OP = lambda x: Minv_matvec(matvec(x))
            self.OPa = Minv_matvec
            self.OPb = matvec
            self.B = M_matvec
            self.bmat = 'G'
        elif mode == 3:
            if matvec is not None:
                raise ValueError("matvec must not be specified for mode=3")
            if Minv_matvec is None:
                raise ValueError("Minv_matvec must be specified for mode=3")

            if M_matvec is None:
                self.OP = Minv_matvec
                self.OPa = Minv_matvec
                self.B = lambda x: x
                self.bmat = 'I'
            else:
                self.OP = lambda x: Minv_matvec(M_matvec(x))
                self.OPa = Minv_matvec
                self.B = M_matvec
                self.bmat = 'G'
        elif mode == 4:
            if matvec is None:
                raise ValueError("matvec must be specified for mode=4")
            if M_matvec is not None:
                raise ValueError("M_matvec must not be specified for mode=4")
            if Minv_matvec is None:
                raise ValueError("Minv_matvec must be specified for mode=4")
            self.OPa = Minv_matvec
            self.OP = lambda x: self.OPa(matvec(x))
            self.B = matvec
            self.bmat = 'G'
        elif mode == 5:
            if matvec is None:
                raise ValueError("matvec must be specified for mode=5")
            if Minv_matvec is None:
                raise ValueError("Minv_matvec must be specified for mode=5")

            self.OPa = Minv_matvec
            self.A_matvec = matvec

            if M_matvec is None:
                self.OP = lambda x: Minv_matvec(matvec(x) + sigma * x)
                self.B = lambda x: x
                self.bmat = 'I'
            else:
                self.OP = lambda x: Minv_matvec(matvec(x)
                                                + sigma * M_matvec(x))
                self.B = M_matvec
                self.bmat = 'G'
        else:
            raise ValueError("mode=%i not implemented" % mode)

        if which not in _SEUPD_WHICH:
            raise ValueError("which must be one of %s"
                             % ' '.join(_SEUPD_WHICH))
        if k >= n:
            raise ValueError("k must be less than rank(A), k=%d" % k)

        _ArpackParams.__init__(self, n, k, tp, mode, sigma,
                               ncv, v0, maxiter, which, tol)

        if self.ncv > n or self.ncv <= k:
            raise ValueError("ncv must be k<ncv<=n, ncv=%s" % self.ncv)

        self.workd = np.zeros(3 * n, self.tp)
        self.workl = np.zeros(self.ncv * (self.ncv + 8), self.tp)

        ltr = _type_conv[self.tp]
        if ltr not in ["s", "d"]:
            raise ValueError("Input matrix is not real-valued.")

        self._arpack_solver = _arpack.__dict__[ltr + 'saupd']
        self._arpack_extract = _arpack.__dict__[ltr + 'seupd']

        self.iterate_infodict = _SAUPD_ERRORS[ltr]
        self.extract_infodict = _SEUPD_ERRORS[ltr]

        self.ipntr = np.zeros(11, "int")

    def iterate(self):
        self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info = \
            self._arpack_solver(self.ido, self.bmat, self.which, self.k,
                                self.tol, self.resid, self.v, self.iparam,
                                self.ipntr, self.workd, self.workl, self.info)

        xslice = slice(self.ipntr[0] - 1, self.ipntr[0] - 1 + self.n)
        yslice = slice(self.ipntr[1] - 1, self.ipntr[1] - 1 + self.n)
        if self.ido == -1:
            # initialization
            self.workd[yslice] = self.OP(self.workd[xslice])
        elif self.ido == 1:
            # compute y = Op*x
            if self.mode == 1:
                self.workd[yslice] = self.OP(self.workd[xslice])
            elif self.mode == 2:
                self.workd[xslice] = self.OPb(self.workd[xslice])
                self.workd[yslice] = self.OPa(self.workd[xslice])
            elif self.mode == 5:
                Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n)
                Ax = self.A_matvec(self.workd[xslice])
                self.workd[yslice] = self.OPa(Ax + (self.sigma *
                                                    self.workd[Bxslice]))
            else:
                Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n)
                self.workd[yslice] = self.OPa(self.workd[Bxslice])
        elif self.ido == 2:
            self.workd[yslice] = self.B(self.workd[xslice])
        elif self.ido == 3:
            raise ValueError("ARPACK requested user shifts.  Assure ISHIFT==0")
        else:
            self.converged = True

            if self.info == 0:
                pass
            elif self.info == 1:
                self._raise_no_convergence()
            else:
                raise ArpackError(self.info, infodict=self.iterate_infodict)

    def extract(self, return_eigenvectors):
        rvec = return_eigenvectors
        ierr = 0
        howmny = 'A'  # return all eigenvectors
        sselect = np.zeros(self.ncv, 'int')  # unused
        d, z, ierr = self._arpack_extract(rvec, howmny, sselect, self.sigma,
                                          self.bmat, self.which, self.k,
                                          self.tol, self.resid, self.v,
                                          self.iparam[0:7], self.ipntr,
                                          self.workd[0:2 * self.n],
                                          self.workl, ierr)
        if ierr != 0:
            raise ArpackError(ierr, infodict=self.extract_infodict)
        k_ok = self.iparam[4]
        d = d[:k_ok]
        z = z[:, :k_ok]

        if return_eigenvectors:
            return d, z
        else:
            return d


class _UnsymmetricArpackParams(_ArpackParams):
    def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None,
                 Minv_matvec=None, sigma=None,
                 ncv=None, v0=None, maxiter=None, which="LM", tol=0):
        # The following modes are supported:
        #  mode = 1:
        #    Solve the standard eigenvalue problem:
        #      A*x = lambda*x
        #       A - square matrix
        #    Arguments should be
        #       matvec      = left multiplication by A
        #       M_matvec    = None [not used]
        #       Minv_matvec = None [not used]
        #
        #  mode = 2:
        #    Solve the generalized eigenvalue problem:
        #      A*x = lambda*M*x
        #       A - square matrix
        #       M - symmetric, positive semi-definite
        #    Arguments should be
        #       matvec      = left multiplication by A
        #       M_matvec    = left multiplication by M
        #       Minv_matvec = left multiplication by M^-1
        #
        #  mode = 3,4:
        #    Solve the general eigenvalue problem in shift-invert mode:
        #      A*x = lambda*M*x
        #       A - square matrix
        #       M - symmetric, positive semi-definite
        #    Arguments should be
        #       matvec      = None [not used]
        #       M_matvec    = left multiplication by M
        #                     or None, if M is the identity
        #       Minv_matvec = left multiplication by [A-sigma*M]^-1
        #    if A is real and mode==3, use the real part of Minv_matvec
        #    if A is real and mode==4, use the imag part of Minv_matvec
        #    if A is complex and mode==3,
        #       use real and imag parts of Minv_matvec
        if mode == 1:
            if matvec is None:
                raise ValueError("matvec must be specified for mode=1")
            if M_matvec is not None:
                raise ValueError("M_matvec cannot be specified for mode=1")
            if Minv_matvec is not None:
                raise ValueError("Minv_matvec cannot be specified for mode=1")

            self.OP = matvec
            self.B = lambda x: x
            self.bmat = 'I'
        elif mode == 2:
            if matvec is None:
                raise ValueError("matvec must be specified for mode=2")
            if M_matvec is None:
                raise ValueError("M_matvec must be specified for mode=2")
            if Minv_matvec is None:
                raise ValueError("Minv_matvec must be specified for mode=2")

            self.OP = lambda x: Minv_matvec(matvec(x))
            self.OPa = Minv_matvec
            self.OPb = matvec
            self.B = M_matvec
            self.bmat = 'G'
        elif mode in (3, 4):
            if matvec is None:
                raise ValueError("matvec must be specified "
                                 "for mode in (3,4)")
            if Minv_matvec is None:
                raise ValueError("Minv_matvec must be specified "
                                 "for mode in (3,4)")

            self.matvec = matvec
            if tp in 'DF':  # complex type
                if mode == 3:
                    self.OPa = Minv_matvec
                else:
                    raise ValueError("mode=4 invalid for complex A")
            else:  # real type
                if mode == 3:
                    self.OPa = lambda x: np.real(Minv_matvec(x))
                else:
                    self.OPa = lambda x: np.imag(Minv_matvec(x))
            if M_matvec is None:
                self.B = lambda x: x
                self.bmat = 'I'
                self.OP = self.OPa
            else:
                self.B = M_matvec
                self.bmat = 'G'
                self.OP = lambda x: self.OPa(M_matvec(x))
        else:
            raise ValueError("mode=%i not implemented" % mode)

        if which not in _NEUPD_WHICH:
            raise ValueError("Parameter which must be one of %s"
                             % ' '.join(_NEUPD_WHICH))
        if k >= n - 1:
            raise ValueError("k must be less than rank(A)-1, k=%d" % k)

        _ArpackParams.__init__(self, n, k, tp, mode, sigma,
                               ncv, v0, maxiter, which, tol)

        if self.ncv > n or self.ncv <= k + 1:
            raise ValueError("ncv must be k+1<ncv<=n, ncv=%s" % self.ncv)

        self.workd = np.zeros(3 * n, self.tp)
        self.workl = np.zeros(3 * self.ncv * (self.ncv + 2), self.tp)

        ltr = _type_conv[self.tp]
        self._arpack_solver = _arpack.__dict__[ltr + 'naupd']
        self._arpack_extract = _arpack.__dict__[ltr + 'neupd']

        self.iterate_infodict = _NAUPD_ERRORS[ltr]
        self.extract_infodict = _NEUPD_ERRORS[ltr]

        self.ipntr = np.zeros(14, "int")

        if self.tp in 'FD':
            self.rwork = np.zeros(self.ncv, self.tp.lower())
        else:
            self.rwork = None

    def iterate(self):
        if self.tp in 'fd':
            self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info =\
                self._arpack_solver(self.ido, self.bmat, self.which, self.k,
                                    self.tol, self.resid, self.v, self.iparam,
                                    self.ipntr,  self.workd, self.workl,
                                    self.info)
        else:
            self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info =\
                self._arpack_solver(self.ido, self.bmat, self.which, self.k,
                                    self.tol, self.resid, self.v, self.iparam,
                                    self.ipntr, self.workd, self.workl,
                                    self.rwork, self.info)

        xslice = slice(self.ipntr[0] - 1, self.ipntr[0] - 1 + self.n)
        yslice = slice(self.ipntr[1] - 1, self.ipntr[1] - 1 + self.n)
        if self.ido == -1:
            # initialization
            self.workd[yslice] = self.OP(self.workd[xslice])
        elif self.ido == 1:
            # compute y = Op*x
            if self.mode in (1, 2):
                self.workd[yslice] = self.OP(self.workd[xslice])
            else:
                Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n)
                self.workd[yslice] = self.OPa(self.workd[Bxslice])
        elif self.ido == 2:
            self.workd[yslice] = self.B(self.workd[xslice])
        elif self.ido == 3:
            raise ValueError("ARPACK requested user shifts.  Assure ISHIFT==0")
        else:
            self.converged = True

            if self.info == 0:
                pass
            elif self.info == 1:
                self._raise_no_convergence()
            else:
                raise ArpackError(self.info, infodict=self.iterate_infodict)

    def extract(self, return_eigenvectors):
        k, n = self.k, self.n

        ierr = 0
        howmny = 'A'  # return all eigenvectors
        sselect = np.zeros(self.ncv, 'int')  # unused
        sigmar = np.real(self.sigma)
        sigmai = np.imag(self.sigma)
        workev = np.zeros(3 * self.ncv, self.tp)

        if self.tp in 'fd':
            dr = np.zeros(k + 1, self.tp)
            di = np.zeros(k + 1, self.tp)
            zr = np.zeros((n, k + 1), self.tp)
            dr, di, zr, ierr = \
                self._arpack_extract(
                    return_eigenvectors, howmny, sselect, sigmar, sigmai,
                    workev, self.bmat, self.which, k, self.tol, self.resid,
                    self.v, self.iparam, self.ipntr, self.workd, self.workl,
                    self.info)
            if ierr != 0:
                raise ArpackError(ierr, infodict=self.extract_infodict)
            nreturned = self.iparam[4]  # number of good eigenvalues returned

            # Build complex eigenvalues from real and imaginary parts
            d = dr + 1.0j * di

            # Arrange the eigenvectors: complex eigenvectors are stored as
            # real,imaginary in consecutive columns
            z = zr.astype(self.tp.upper())

            # The ARPACK nonsymmetric real and double interface (s,d)naupd
            # return eigenvalues and eigenvectors in real (float,double)
            # arrays.

            # Efficiency: this should check that return_eigenvectors == True
            #  before going through this construction.
            if sigmai == 0:
                i = 0
                while i <= k:
                    # check if complex
                    if abs(d[i].imag) != 0:
                        # this is a complex conjugate pair with eigenvalues
                        # in consecutive columns
                        if i < k:
                            z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1]
                            z[:, i + 1] = z[:, i].conjugate()
                            i += 1
                        else:
                            #last eigenvalue is complex: the imaginary part of
                            # the eigenvector has not been returned
                            #this can only happen if nreturned > k, so we'll
                            # throw out this case.
                            nreturned -= 1
                    i += 1

            else:
                # real matrix, mode 3 or 4, imag(sigma) is nonzero:
                # see remark 3 in <s,d>neupd.f
                # Build complex eigenvalues from real and imaginary parts
                i = 0
                while i <= k:
                    if abs(d[i].imag) == 0:
                        d[i] = np.dot(zr[:, i], self.matvec(zr[:, i]))
                    else:
                        if i < k:
                            z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1]
                            z[:, i + 1] = z[:, i].conjugate()
                            d[i] = ((np.dot(zr[:, i],
                                            self.matvec(zr[:, i]))
                                     + np.dot(zr[:, i + 1],
                                              self.matvec(zr[:, i + 1])))
                                    + 1j * (np.dot(zr[:, i],
                                                   self.matvec(zr[:, i + 1]))
                                            - np.dot(zr[:, i + 1],
                                                     self.matvec(zr[:, i]))))
                            d[i + 1] = d[i].conj()
                            i += 1
                        else:
                            #last eigenvalue is complex: the imaginary part of
                            # the eigenvector has not been returned
                            #this can only happen if nreturned > k, so we'll
                            # throw out this case.
                            nreturned -= 1
                    i += 1

            # Now we have k+1 possible eigenvalues and eigenvectors
            # Return the ones specified by the keyword "which"

            if nreturned <= k:
                # we got less or equal as many eigenvalues we wanted
                d = d[:nreturned]
                z = z[:, :nreturned]
            else:
                # we got one extra eigenvalue (likely a cc pair, but which?)
                # cut at approx precision for sorting
                rd = np.round(d, decimals=_ndigits[self.tp])
                if self.which in ['LR', 'SR']:
                    ind = np.argsort(rd.real)
                elif self.which in ['LI', 'SI']:
                    # for LI,SI ARPACK returns largest,smallest
                    # abs(imaginary) why?
                    ind = np.argsort(abs(rd.imag))
                else:
                    ind = np.argsort(abs(rd))
                if self.which in ['LR', 'LM', 'LI']:
                    d = d[ind[-k:]]
                    z = z[:, ind[-k:]]
                if self.which in ['SR', 'SM', 'SI']:
                    d = d[ind[:k]]
                    z = z[:, ind[:k]]
        else:
            # complex is so much simpler...
            d, z, ierr =\
                self._arpack_extract(
                    return_eigenvectors, howmny, sselect, self.sigma, workev,
                    self.bmat, self.which, k, self.tol, self.resid, self.v,
                    self.iparam, self.ipntr, self.workd, self.workl,
                    self.rwork, ierr)

            if ierr != 0:
                raise ArpackError(ierr, infodict=self.extract_infodict)

            k_ok = self.iparam[4]
            d = d[:k_ok]
            z = z[:, :k_ok]

        if return_eigenvectors:
            return d, z
        else:
            return d


def _aslinearoperator_with_dtype(m):
    m = aslinearoperator(m)
    if not hasattr(m, 'dtype'):
        x = np.zeros(m.shape[1])
        m.dtype = (m * x).dtype
    return m


class SpLuInv(LinearOperator):
    """
    SpLuInv:
       helper class to repeatedly solve M*x=b
       using a sparse LU-decopposition of M
    """
    def __init__(self, M):
        self.M_lu = splu(M)
        LinearOperator.__init__(self, M.shape, self._matvec, dtype=M.dtype)
        self.isreal = not np.issubdtype(self.dtype, np.complexfloating)

    def _matvec(self, x):
        # careful here: splu.solve will throw away imaginary
        # part of x if M is real
        if self.isreal and np.issubdtype(x.dtype, np.complexfloating):
            return (self.M_lu.solve(np.real(x))
                    + 1j * self.M_lu.solve(np.imag(x)))
        else:
            return self.M_lu.solve(x)


class LuInv(LinearOperator):
    """
    LuInv:
       helper class to repeatedly solve M*x=b
       using an LU-decomposition of M
    """
    def __init__(self, M):
        self.M_lu = lu_factor(M)
        LinearOperator.__init__(self, M.shape, self._matvec, dtype=M.dtype)

    def _matvec(self, x):
        return lu_solve(self.M_lu, x)


class IterInv(LinearOperator):
    """
    IterInv:
       helper class to repeatedly solve M*x=b
       using an iterative method.
    """
    def __init__(self, M, ifunc=gmres, tol=0):
        if tol <= 0:
            # when tol=0, ARPACK uses machine tolerance as calculated
            # by LAPACK's _LAMCH function.  We should match this
            tol = np.finfo(M.dtype).eps
        self.M = M
        self.ifunc = ifunc
        self.tol = tol
        if hasattr(M, 'dtype'):
            dtype = M.dtype
        else:
            x = np.zeros(M.shape[1])
            dtype = (M * x).dtype
        LinearOperator.__init__(self, M.shape, self._matvec, dtype=dtype)

    def _matvec(self, x):
        b, info = self.ifunc(self.M, x, tol=self.tol)
        if info != 0:
            raise ValueError("Error in inverting M: function "
                             "%s did not converge (info = %i)."
                             % (self.ifunc.__name__, info))
        return b


class IterOpInv(LinearOperator):
    """
    IterOpInv:
       helper class to repeatedly solve [A-sigma*M]*x = b
       using an iterative method
    """
    def __init__(self, A, M, sigma, ifunc=gmres, tol=0):
        if tol <= 0:
            # when tol=0, ARPACK uses machine tolerance as calculated
            # by LAPACK's _LAMCH function.  We should match this
            tol = np.finfo(A.dtype).eps
        self.A = A
        self.M = M
        self.sigma = sigma
        self.ifunc = ifunc
        self.tol = tol

        x = np.zeros(A.shape[1])
        if M is None:
            dtype = self.mult_func_M_None(x).dtype
            self.OP = LinearOperator(self.A.shape,
                                     self.mult_func_M_None,
                                     dtype=dtype)
        else:
            dtype = self.mult_func(x).dtype
            self.OP = LinearOperator(self.A.shape,
                                     self.mult_func,
                                     dtype=dtype)
        LinearOperator.__init__(self, A.shape, self._matvec, dtype=dtype)

    def mult_func(self, x):
        return self.A.matvec(x) - self.sigma * self.M.matvec(x)

    def mult_func_M_None(self, x):
        return self.A.matvec(x) - self.sigma * x

    def _matvec(self, x):
        b, info = self.ifunc(self.OP, x, tol=self.tol)
        if info != 0:
            raise ValueError("Error in inverting [A-sigma*M]: function "
                             "%s did not converge (info = %i)."
                             % (self.ifunc.__name__, info))
        return b


def get_inv_matvec(M, symmetric=False, tol=0):
    if isdense(M):
        return LuInv(M).matvec
    elif isspmatrix(M):
        if isspmatrix_csr(M) and symmetric:
            M = M.T
        return SpLuInv(M).matvec
    else:
        return IterInv(M, tol=tol).matvec


def get_OPinv_matvec(A, M, sigma, symmetric=False, tol=0):
    if sigma == 0:
        return get_inv_matvec(A, symmetric=symmetric, tol=tol)

    if M is None:
        #M is the identity matrix
        if isdense(A):
            if (np.issubdtype(A.dtype, np.complexfloating)
                    or np.imag(sigma) == 0):
                A = np.copy(A)
            else:
                A = A + 0j
            A.flat[::A.shape[1] + 1] -= sigma
            return LuInv(A).matvec
        elif isspmatrix(A):
            A = A - sigma * identity(A.shape[0])
            if symmetric and isspmatrix_csr(A):
                A = A.T
            return SpLuInv(A.tocsc()).matvec
        else:
            return IterOpInv(_aslinearoperator_with_dtype(A), M, sigma,
                             tol=tol).matvec
    else:
        if ((not isdense(A) and not isspmatrix(A)) or
                (not isdense(M) and not isspmatrix(M))):
            return IterOpInv(_aslinearoperator_with_dtype(A),
                             _aslinearoperator_with_dtype(M), sigma,
                             tol=tol).matvec
        elif isdense(A) or isdense(M):
            return LuInv(A - sigma * M).matvec
        else:
            OP = A - sigma * M
            if symmetric and isspmatrix_csr(OP):
                OP = OP.T
            return SpLuInv(OP.tocsc()).matvec


def _eigs(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None,
          maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None,
          OPpart=None):
    """
    Find k eigenvalues and eigenvectors of the square matrix A.

    Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem
    for w[i] eigenvalues with corresponding eigenvectors x[i].

    If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the
    generalized eigenvalue problem for w[i] eigenvalues
    with corresponding eigenvectors x[i]

    Parameters
    ----------
    A : An N x N matrix, array, sparse matrix, or LinearOperator representing
        the operation A * x, where A is a real or complex square matrix.
    k : integer
        The number of eigenvalues and eigenvectors desired.
        `k` must be smaller than N. It is not possible to compute all
        eigenvectors of a matrix.

    Returns
    -------
    w : array
        Array of k eigenvalues.
    v : array
        An array of `k` eigenvectors.
        ``v[:, i]`` is the eigenvector corresponding to the eigenvalue w[i].

    Other Parameters
    ----------------
    M : An N x N matrix, array, sparse matrix, or LinearOperator representing
        the operation M*x for the generalized eigenvalue problem
          ``A * x = w * M * x``
        M must represent a real symmetric matrix.  For best results, M should
        be of the same type as A.  Additionally:
         * If sigma==None, M is positive definite
         * If sigma is specified, M is positive semi-definite
        If sigma==None, eigs requires an operator to compute the solution
        of the linear equation `M * x = b`. This is done internally via a
        (sparse) LU decomposition for an explicit matrix M, or via an
        iterative solver for a general linear operator.  Alternatively,
        the user can supply the matrix or operator Minv, which gives
        x = Minv * b = M^-1 * b
    sigma : real or complex
        Find eigenvalues near sigma using shift-invert mode.  This requires
        an operator to compute the solution of the linear system
        `[A - sigma * M] * x = b`, where M is the identity matrix if
        unspecified. This is computed internally via a (sparse) LU
        decomposition for explicit matrices A & M, or via an iterative
        solver if either A or M is a general linear operator.
        Alternatively, the user can supply the matrix or operator OPinv,
        which gives x = OPinv * b = [A - sigma * M]^-1 * b.
        For a real matrix A, shift-invert can either be done in imaginary
        mode or real mode, specified by the parameter OPpart ('r' or 'i').
        Note that when sigma is specified, the keyword 'which' (below)
        refers to the shifted eigenvalues w'[i] where:
         * If A is real and OPpart == 'r' (default),
            w'[i] = 1/2 * [ 1/(w[i]-sigma) + 1/(w[i]-conj(sigma)) ]
         * If A is real and OPpart == 'i',
            w'[i] = 1/2i * [ 1/(w[i]-sigma) - 1/(w[i]-conj(sigma)) ]
         * If A is complex,
            w'[i] = 1/(w[i]-sigma)
    v0 : array
        Starting vector for iteration.
    ncv : integer
        The number of Lanczos vectors generated
        `ncv` must be greater than `k`; it is recommended that ``ncv > 2*k``.
    which : string ['LM' | 'SM' | 'LR' | 'SR' | 'LI' | 'SI']
        Which `k` eigenvectors and eigenvalues to find:
         - 'LM' : largest magnitude
         - 'SM' : smallest magnitude
         - 'LR' : largest real part
         - 'SR' : smallest real part
         - 'LI' : largest imaginary part
         - 'SI' : smallest imaginary part
        When sigma != None, 'which' refers to the shifted eigenvalues w'[i]
        (see discussion in 'sigma', above).  ARPACK is generally better
        at finding large values than small values.  If small eigenvalues are
        desired, consider using shift-invert mode for better performance.
    maxiter : integer
        Maximum number of Arnoldi update iterations allowed
    tol : float
        Relative accuracy for eigenvalues (stopping criterion)
        The default value of 0 implies machine precision.
    return_eigenvectors : boolean
        Return eigenvectors (True) in addition to eigenvalues
    Minv : N x N matrix, array, sparse matrix, or linear operator
        See notes in M, above.
    OPinv : N x N matrix, array, sparse matrix, or linear operator
        See notes in sigma, above.
    OPpart : 'r' or 'i'.
        See notes in sigma, above

    Raises
    ------
    ArpackNoConvergence
        When the requested convergence is not obtained.

        The currently converged eigenvalues and eigenvectors can be found
        as ``eigenvalues`` and ``eigenvectors`` attributes of the exception
        object.

    See Also
    --------
    eigsh : eigenvalues and eigenvectors for symmetric matrix A
    svds : singular value decomposition for a matrix A

    Examples
    --------
    Find 6 eigenvectors of the identity matrix:

    >>> from sklearn.utils.arpack import eigs
    >>> id = np.identity(13)
    >>> vals, vecs = eigs(id, k=6)
    >>> vals
    array([ 1.+0.j,  1.+0.j,  1.+0.j,  1.+0.j,  1.+0.j,  1.+0.j])
    >>> vecs.shape
    (13, 6)

    Notes
    -----
    This function is a wrapper to the ARPACK [1]_ SNEUPD, DNEUPD, CNEUPD,
    ZNEUPD, functions which use the Implicitly Restarted Arnoldi Method to
    find the eigenvalues and eigenvectors [2]_.

    References
    ----------
    .. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/
    .. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang,  ARPACK USERS GUIDE:
       Solution of Large Scale Eigenvalue Problems by Implicitly Restarted
       Arnoldi Methods. SIAM, Philadelphia, PA, 1998.
    """
    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix (shape=%s)' % (A.shape,))
    if M is not None:
        if M.shape != A.shape:
            raise ValueError('wrong M dimensions %s, should be %s'
                             % (M.shape, A.shape))
        if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower():
            warnings.warn('M does not have the same type precision as A. '
                          'This may adversely affect ARPACK convergence')
    n = A.shape[0]

    if k <= 0 or k >= n:
        raise ValueError("k must be between 1 and rank(A)-1")

    if sigma is None:
        matvec = _aslinearoperator_with_dtype(A).matvec

        if OPinv is not None:
            raise ValueError("OPinv should not be specified "
                             "with sigma = None.")
        if OPpart is not None:
            raise ValueError("OPpart should not be specified with "
                             "sigma = None or complex A")

        if M is None:
            #standard eigenvalue problem
            mode = 1
            M_matvec = None
            Minv_matvec = None
            if Minv is not None:
                raise ValueError("Minv should not be "
                                 "specified with M = None.")
        else:
            #general eigenvalue problem
            mode = 2
            if Minv is None:
                Minv_matvec = get_inv_matvec(M, symmetric=True, tol=tol)
            else:
                Minv = _aslinearoperator_with_dtype(Minv)
                Minv_matvec = Minv.matvec
            M_matvec = _aslinearoperator_with_dtype(M).matvec
    else:
        #sigma is not None: shift-invert mode
        if np.issubdtype(A.dtype, np.complexfloating):
            if OPpart is not None:
                raise ValueError("OPpart should not be specified "
                                 "with sigma=None or complex A")
            mode = 3
        elif OPpart is None or OPpart.lower() == 'r':
            mode = 3
        elif OPpart.lower() == 'i':
            if np.imag(sigma) == 0:
                raise ValueError("OPpart cannot be 'i' if sigma is real")
            mode = 4
        else:
            raise ValueError("OPpart must be one of ('r','i')")

        matvec = _aslinearoperator_with_dtype(A).matvec
        if Minv is not None:
            raise ValueError("Minv should not be specified when sigma is")
        if OPinv is None:
            Minv_matvec = get_OPinv_matvec(A, M, sigma,
                                           symmetric=False, tol=tol)
        else:
            OPinv = _aslinearoperator_with_dtype(OPinv)
            Minv_matvec = OPinv.matvec
        if M is None:
            M_matvec = None
        else:
            M_matvec = _aslinearoperator_with_dtype(M).matvec

    params = _UnsymmetricArpackParams(n, k, A.dtype.char, matvec, mode,
                                      M_matvec, Minv_matvec, sigma,
                                      ncv, v0, maxiter, which, tol)

    while not params.converged:
        params.iterate()

    return params.extract(return_eigenvectors)


def _eigsh(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None,
           maxiter=None, tol=0, return_eigenvectors=True, Minv=None,
           OPinv=None, mode='normal'):
    """
    Find k eigenvalues and eigenvectors of the real symmetric square matrix
    or complex hermitian matrix A.

    Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem for
    w[i] eigenvalues with corresponding eigenvectors x[i].

    If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the
    generalized eigenvalue problem for w[i] eigenvalues
    with corresponding eigenvectors x[i]


    Parameters
    ----------
    A : An N x N matrix, array, sparse matrix, or LinearOperator representing
        the operation A * x, where A is a real symmetric matrix
        For buckling mode (see below) A must additionally be positive-definite
    k : integer
        The number of eigenvalues and eigenvectors desired.
        `k` must be smaller than N. It is not possible to compute all
        eigenvectors of a matrix.

    Returns
    -------
    w : array
        Array of k eigenvalues
    v : array
       An array of k eigenvectors
       The v[i] is the eigenvector corresponding to the eigenvector w[i]

    Other Parameters
    ----------------
    M : An N x N matrix, array, sparse matrix, or linear operator representing
        the operation M * x for the generalized eigenvalue problem
          ``A * x = w * M * x``.
        M must represent a real, symmetric matrix.  For best results, M should
        be of the same type as A.  Additionally:
         * If sigma == None, M is symmetric positive definite
         * If sigma is specified, M is symmetric positive semi-definite
         * In buckling mode, M is symmetric indefinite.
        If sigma == None, eigsh requires an operator to compute the solution
        of the linear equation `M * x = b`. This is done internally via a
        (sparse) LU decomposition for an explicit matrix M, or via an
        iterative solver for a general linear operator.  Alternatively,
        the user can supply the matrix or operator Minv, which gives
        x = Minv * b = M^-1 * b
    sigma : real
        Find eigenvalues near sigma using shift-invert mode.  This requires
        an operator to compute the solution of the linear system
        `[A - sigma * M] x = b`, where M is the identity matrix if
        unspecified.  This is computed internally via a (sparse) LU
        decomposition for explicit matrices A & M, or via an iterative
        solver if either A or M is a general linear operator.
        Alternatively, the user can supply the matrix or operator OPinv,
        which gives x = OPinv * b = [A - sigma * M]^-1 * b.
        Note that when sigma is specified, the keyword 'which' refers to
        the shifted eigenvalues w'[i] where:
         - if mode == 'normal',
             w'[i] = 1 / (w[i] - sigma)
         - if mode == 'cayley',
             w'[i] = (w[i] + sigma) / (w[i] - sigma)
         - if mode == 'buckling',
             w'[i] = w[i] / (w[i] - sigma)
        (see further discussion in 'mode' below)
    v0 : array
        Starting vector for iteration.
    ncv : integer
        The number of Lanczos vectors generated
        ncv must be greater than k and smaller than n;
        it is recommended that ncv > 2*k
    which : string ['LM' | 'SM' | 'LA' | 'SA' | 'BE']
        If A is a complex hermitian matrix, 'BE' is invalid.
        Which `k` eigenvectors and eigenvalues to find:
         - 'LM' : Largest (in magnitude) eigenvalues
         - 'SM' : Smallest (in magnitude) eigenvalues
         - 'LA' : Largest (algebraic) eigenvalues
         - 'SA' : Smallest (algebraic) eigenvalues
         - 'BE' : Half (k/2) from each end of the spectrum
                  When k is odd, return one more (k/2+1) from the high end
        When sigma != None, 'which' refers to the shifted eigenvalues w'[i]
        (see discussion in 'sigma', above).  ARPACK is generally better
        at finding large values than small values.  If small eigenvalues are
        desired, consider using shift-invert mode for better performance.
    maxiter : integer
        Maximum number of Arnoldi update iterations allowed
    tol : float
        Relative accuracy for eigenvalues (stopping criterion).
        The default value of 0 implies machine precision.
    Minv : N x N matrix, array, sparse matrix, or LinearOperator
        See notes in M, above
    OPinv : N x N matrix, array, sparse matrix, or LinearOperator
        See notes in sigma, above.
    return_eigenvectors : boolean
        Return eigenvectors (True) in addition to eigenvalues
    mode : string ['normal' | 'buckling' | 'cayley']
        Specify strategy to use for shift-invert mode.  This argument applies
        only for real-valued A and sigma != None.  For shift-invert mode,
        ARPACK internally solves the eigenvalue problem
        ``OP * x'[i] = w'[i] * B * x'[i]``
        and transforms the resulting Ritz vectors x'[i] and Ritz values w'[i]
        into the desired eigenvectors and eigenvalues of the problem
        ``A * x[i] = w[i] * M * x[i]``.
        The modes are as follows:
          - 'normal'   : OP = [A - sigma * M]^-1 * M
                         B = M
                         w'[i] = 1 / (w[i] - sigma)
          - 'buckling' : OP = [A - sigma * M]^-1 * A
                         B = A
                         w'[i] = w[i] / (w[i] - sigma)
          - 'cayley'   : OP = [A - sigma * M]^-1 * [A + sigma * M]
                         B = M
                         w'[i] = (w[i] + sigma) / (w[i] - sigma)
        The choice of mode will affect which eigenvalues are selected by
        the keyword 'which', and can also impact the stability of
        convergence (see [2] for a discussion)

    Raises
    ------
    ArpackNoConvergence
        When the requested convergence is not obtained.

        The currently converged eigenvalues and eigenvectors can be found
        as ``eigenvalues`` and ``eigenvectors`` attributes of the exception
        object.

    See Also
    --------
    eigs : eigenvalues and eigenvectors for a general (nonsymmetric) matrix A
    svds : singular value decomposition for a matrix A

    Notes
    -----
    This function is a wrapper to the ARPACK [1]_ SSEUPD and DSEUPD
    functions which use the Implicitly Restarted Lanczos Method to
    find the eigenvalues and eigenvectors [2]_.

    Examples
    --------
    >>> from sklearn.utils.arpack import eigsh
    >>> id = np.identity(13)
    >>> vals, vecs = eigsh(id, k=6)
    >>> vals # doctest: +SKIP
    array([ 1.+0.j,  1.+0.j,  1.+0.j,  1.+0.j,  1.+0.j,  1.+0.j])
    >>> print(vecs.shape)
    (13, 6)

    References
    ----------
    .. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/
    .. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang,  ARPACK USERS GUIDE:
       Solution of Large Scale Eigenvalue Problems by Implicitly Restarted
       Arnoldi Methods. SIAM, Philadelphia, PA, 1998.
    """
    # complex hermitian matrices should be solved with eigs
    if np.issubdtype(A.dtype, np.complexfloating):
        if mode != 'normal':
            raise ValueError("mode=%s cannot be used with "
                             "complex matrix A" % mode)
        if which == 'BE':
            raise ValueError("which='BE' cannot be used with complex matrix A")
        elif which == 'LA':
            which = 'LR'
        elif which == 'SA':
            which = 'SR'
        ret = eigs(A, k, M=M, sigma=sigma, which=which, v0=v0,
                   ncv=ncv, maxiter=maxiter, tol=tol,
                   return_eigenvectors=return_eigenvectors, Minv=Minv,
                   OPinv=OPinv)

        if return_eigenvectors:
            return ret[0].real, ret[1]
        else:
            return ret.real

    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix (shape=%s)' % (A.shape,))
    if M is not None:
        if M.shape != A.shape:
            raise ValueError('wrong M dimensions %s, should be %s'
                             % (M.shape, A.shape))
        if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower():
            warnings.warn('M does not have the same type precision as A. '
                          'This may adversely affect ARPACK convergence')
    n = A.shape[0]

    if k <= 0 or k >= n:
        raise ValueError("k must be between 1 and rank(A)-1")

    if sigma is None:
        A = _aslinearoperator_with_dtype(A)
        matvec = A.matvec

        if OPinv is not None:
            raise ValueError("OPinv should not be specified "
                             "with sigma = None.")
        if M is None:
            #standard eigenvalue problem
            mode = 1
            M_matvec = None
            Minv_matvec = None
            if Minv is not None:
                raise ValueError("Minv should not be "
                                 "specified with M = None.")
        else:
            #general eigenvalue problem
            mode = 2
            if Minv is None:
                Minv_matvec = get_inv_matvec(M, symmetric=True, tol=tol)
            else:
                Minv = _aslinearoperator_with_dtype(Minv)
                Minv_matvec = Minv.matvec
            M_matvec = _aslinearoperator_with_dtype(M).matvec
    else:
        # sigma is not None: shift-invert mode
        if Minv is not None:
            raise ValueError("Minv should not be specified when sigma is")

        # normal mode
        if mode == 'normal':
            mode = 3
            matvec = None
            if OPinv is None:
                Minv_matvec = get_OPinv_matvec(A, M, sigma,
                                               symmetric=True, tol=tol)
            else:
                OPinv = _aslinearoperator_with_dtype(OPinv)
                Minv_matvec = OPinv.matvec
            if M is None:
                M_matvec = None
            else:
                M = _aslinearoperator_with_dtype(M)
                M_matvec = M.matvec

        # buckling mode
        elif mode == 'buckling':
            mode = 4
            if OPinv is None:
                Minv_matvec = get_OPinv_matvec(A, M, sigma,
                                               symmetric=True, tol=tol)
            else:
                Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec
            matvec = _aslinearoperator_with_dtype(A).matvec
            M_matvec = None

        # cayley-transform mode
        elif mode == 'cayley':
            mode = 5
            matvec = _aslinearoperator_with_dtype(A).matvec
            if OPinv is None:
                Minv_matvec = get_OPinv_matvec(A, M, sigma,
                                               symmetric=True, tol=tol)
            else:
                Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec
            if M is None:
                M_matvec = None
            else:
                M_matvec = _aslinearoperator_with_dtype(M).matvec

        # unrecognized mode
        else:
            raise ValueError("unrecognized mode '%s'" % mode)

    params = _SymmetricArpackParams(n, k, A.dtype.char, matvec, mode,
                                    M_matvec, Minv_matvec, sigma,
                                    ncv, v0, maxiter, which, tol)

    while not params.converged:
        params.iterate()

    return params.extract(return_eigenvectors)


def _svds(A, k=6, ncv=None, tol=0):
    """Compute k singular values/vectors for a sparse matrix using ARPACK.

    Parameters
    ----------
    A : sparse matrix
        Array to compute the SVD on
    k : int, optional
        Number of singular values and vectors to compute.
    ncv : integer
        The number of Lanczos vectors generated
        ncv must be greater than k+1 and smaller than n;
        it is recommended that ncv > 2*k
    tol : float, optional
        Tolerance for singular values. Zero (default) means machine precision.

    Notes
    -----
    This is a naive implementation using an eigensolver on A.H * A or
    A * A.H, depending on which one is more efficient.

    """
    if not (isinstance(A, np.ndarray) or isspmatrix(A)):
        A = np.asarray(A)

    n, m = A.shape

    if np.issubdtype(A.dtype, np.complexfloating):
        herm = lambda x: x.T.conjugate()
        eigensolver = eigs
    else:
        herm = lambda x: x.T
        eigensolver = eigsh

    if n > m:
        X = A
        XH = herm(A)
    else:
        XH = A
        X = herm(A)

    if hasattr(XH, 'dot'):
        def matvec_XH_X(x):
            return XH.dot(X.dot(x))
    else:
        def matvec_XH_X(x):
            return np.dot(XH, np.dot(X, x))

    XH_X = LinearOperator(matvec=matvec_XH_X, dtype=X.dtype,
                          shape=(X.shape[1], X.shape[1]))

    # Ignore deprecation warnings here: dot on matrices is deprecated,
    # but this code is a backport anyhow
    with warnings.catch_warnings():
        warnings.simplefilter('ignore', DeprecationWarning)
        eigvals, eigvec = eigensolver(XH_X, k=k, tol=tol ** 2)
    s = np.sqrt(eigvals)

    if n > m:
        v = eigvec
        if hasattr(X, 'dot'):
            u = X.dot(v) / s
        else:
            u = np.dot(X, v) / s
        vh = herm(v)
    else:
        u = eigvec
        if hasattr(X, 'dot'):
            vh = herm(X.dot(u) / s)
        else:
            vh = herm(np.dot(X, u) / s)

    return u, s, vh

# check if backport is actually needed:
if scipy.version.version >= LooseVersion('0.10'):
    from scipy.sparse.linalg import eigs, eigsh, svds
else:
    eigs, eigsh, svds = _eigs, _eigsh, _svds