/usr/share/pyshared/sklearn/utils/arpack.py is in python-sklearn 0.14.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 | """
This contains a copy of the future version of
scipy.sparse.linalg.eigen.arpack.eigsh
It's an upgraded wrapper of the ARPACK library which
allows the use of shift-invert mode for symmetric matrices.
Find a few eigenvectors and eigenvalues of a matrix.
Uses ARPACK: http://www.caam.rice.edu/software/ARPACK/
"""
# Wrapper implementation notes
#
# ARPACK Entry Points
# -------------------
# The entry points to ARPACK are
# - (s,d)seupd : single and double precision symmetric matrix
# - (s,d,c,z)neupd: single,double,complex,double complex general matrix
# This wrapper puts the *neupd (general matrix) interfaces in eigs()
# and the *seupd (symmetric matrix) in eigsh().
# There is no Hermetian complex/double complex interface.
# To find eigenvalues of a Hermetian matrix you
# must use eigs() and not eigsh()
# It might be desirable to handle the Hermetian case differently
# and, for example, return real eigenvalues.
# Number of eigenvalues returned and complex eigenvalues
# ------------------------------------------------------
# The ARPACK nonsymmetric real and double interface (s,d)naupd return
# eigenvalues and eigenvectors in real (float,double) arrays.
# Since the eigenvalues and eigenvectors are, in general, complex
# ARPACK puts the real and imaginary parts in consecutive entries
# in real-valued arrays. This wrapper puts the real entries
# into complex data types and attempts to return the requested eigenvalues
# and eigenvectors.
# Solver modes
# ------------
# ARPACK and handle shifted and shift-inverse computations
# for eigenvalues by providing a shift (sigma) and a solver.
__docformat__ = "restructuredtext en"
__all__ = ['eigs', 'eigsh', 'svds', 'ArpackError', 'ArpackNoConvergence']
import warnings
from scipy.sparse.linalg.eigen.arpack import _arpack
import numpy as np
from scipy.sparse.linalg.interface import aslinearoperator, LinearOperator
from scipy.sparse import identity, isspmatrix, isspmatrix_csr
from scipy.linalg import lu_factor, lu_solve
from scipy.sparse.sputils import isdense
from scipy.sparse.linalg import gmres, splu
import scipy
from distutils.version import LooseVersion
_type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z'}
_ndigits = {'f': 5, 'd': 12, 'F': 5, 'D': 12}
DNAUPD_ERRORS = {
0: "Normal exit.",
1: "Maximum number of iterations taken. "
"All possible eigenvalues of OP has been found. IPARAM(5) "
"returns the number of wanted converged Ritz values.",
2: "No longer an informational error. Deprecated starting "
"with release 2 of ARPACK.",
3: "No shifts could be applied during a cycle of the "
"Implicitly restarted Arnoldi iteration. One possibility "
"is to increase the size of NCV relative to NEV. ",
-1: "N must be positive.",
-2: "NEV must be positive.",
-3: "NCV-NEV >= 2 and less than or equal to N.",
-4: "The maximum number of Arnoldi update iterations allowed "
"must be greater than zero.",
-5: " WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'",
-6: "BMAT must be one of 'I' or 'G'.",
-7: "Length of private work array WORKL is not sufficient.",
-8: "Error return from LAPACK eigenvalue calculation;",
-9: "Starting vector is zero.",
-10: "IPARAM(7) must be 1,2,3,4.",
-11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
-12: "IPARAM(1) must be equal to 0 or 1.",
-13: "NEV and WHICH = 'BE' are incompatible.",
-9999: "Could not build an Arnoldi factorization. "
"IPARAM(5) returns the size of the current Arnoldi "
"factorization. The user is advised to check that "
"enough workspace and array storage has been allocated."
}
SNAUPD_ERRORS = DNAUPD_ERRORS
ZNAUPD_ERRORS = DNAUPD_ERRORS.copy()
ZNAUPD_ERRORS[-10] = "IPARAM(7) must be 1,2,3."
CNAUPD_ERRORS = ZNAUPD_ERRORS
DSAUPD_ERRORS = {
0: "Normal exit.",
1: "Maximum number of iterations taken. "
"All possible eigenvalues of OP has been found.",
2: "No longer an informational error. Deprecated starting with "
"release 2 of ARPACK.",
3: "No shifts could be applied during a cycle of the Implicitly "
"restarted Arnoldi iteration. One possibility is to increase "
"the size of NCV relative to NEV. ",
-1: "N must be positive.",
-2: "NEV must be positive.",
-3: "NCV must be greater than NEV and less than or equal to N.",
-4: "The maximum number of Arnoldi update iterations allowed "
"must be greater than zero.",
-5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.",
-6: "BMAT must be one of 'I' or 'G'.",
-7: "Length of private work array WORKL is not sufficient.",
-8: "Error return from trid. eigenvalue calculation; "
"Informational error from LAPACK routine dsteqr .",
-9: "Starting vector is zero.",
-10: "IPARAM(7) must be 1,2,3,4,5.",
-11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
-12: "IPARAM(1) must be equal to 0 or 1.",
-13: "NEV and WHICH = 'BE' are incompatible. ",
-9999: "Could not build an Arnoldi factorization. "
"IPARAM(5) returns the size of the current Arnoldi "
"factorization. The user is advised to check that "
"enough workspace and array storage has been allocated.",
}
SSAUPD_ERRORS = DSAUPD_ERRORS
DNEUPD_ERRORS = {
0: "Normal exit.",
1: "The Schur form computed by LAPACK routine dlahqr "
"could not be reordered by LAPACK routine dtrsen. "
"Re-enter subroutine dneupd with IPARAM(5)NCV and "
"increase the size of the arrays DR and DI to have "
"dimension at least dimension NCV and allocate at least NCV "
"columns for Z. NOTE: Not necessary if Z and V share "
"the same space. Please notify the authors if this error"
"occurs.",
-1: "N must be positive.",
-2: "NEV must be positive.",
-3: "NCV-NEV >= 2 and less than or equal to N.",
-5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'",
-6: "BMAT must be one of 'I' or 'G'.",
-7: "Length of private work WORKL array is not sufficient.",
-8: "Error return from calculation of a real Schur form. "
"Informational error from LAPACK routine dlahqr .",
-9: "Error return from calculation of eigenvectors. "
"Informational error from LAPACK routine dtrevc.",
-10: "IPARAM(7) must be 1,2,3,4.",
-11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
-12: "HOWMNY = 'S' not yet implemented",
-13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.",
-14: "DNAUPD did not find any eigenvalues to sufficient "
"accuracy.",
-15: "DNEUPD got a different count of the number of converged "
"Ritz values than DNAUPD got. This indicates the user "
"probably made an error in passing data from DNAUPD to "
"DNEUPD or that the data was modified before entering "
"DNEUPD",
}
SNEUPD_ERRORS = DNEUPD_ERRORS.copy()
SNEUPD_ERRORS[1] = ("The Schur form computed by LAPACK routine slahqr "
"could not be reordered by LAPACK routine strsen . "
"Re-enter subroutine dneupd with IPARAM(5)=NCV and "
"increase the size of the arrays DR and DI to have "
"dimension at least dimension NCV and allocate at least "
"NCV columns for Z. NOTE: Not necessary if Z and V share "
"the same space. Please notify the authors if this error "
"occurs.")
SNEUPD_ERRORS[-14] = ("SNAUPD did not find any eigenvalues to sufficient "
"accuracy.")
SNEUPD_ERRORS[-15] = ("SNEUPD got a different count of the number of "
"converged Ritz values than SNAUPD got. This indicates "
"the user probably made an error in passing data from "
"SNAUPD to SNEUPD or that the data was modified before "
"entering SNEUPD")
ZNEUPD_ERRORS = {0: "Normal exit.",
1: "The Schur form computed by LAPACK routine csheqr "
"could not be reordered by LAPACK routine ztrsen. "
"Re-enter subroutine zneupd with IPARAM(5)=NCV and "
"increase the size of the array D to have "
"dimension at least dimension NCV and allocate at least "
"NCV columns for Z. NOTE: Not necessary if Z and V share "
"the same space. Please notify the authors if this error "
"occurs.",
-1: "N must be positive.",
-2: "NEV must be positive.",
-3: "NCV-NEV >= 1 and less than or equal to N.",
-5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'",
-6: "BMAT must be one of 'I' or 'G'.",
-7: "Length of private work WORKL array is not sufficient.",
-8: "Error return from LAPACK eigenvalue calculation. "
"This should never happened.",
-9: "Error return from calculation of eigenvectors. "
"Informational error from LAPACK routine ztrevc.",
-10: "IPARAM(7) must be 1,2,3",
-11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
-12: "HOWMNY = 'S' not yet implemented",
-13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.",
-14: "ZNAUPD did not find any eigenvalues to sufficient "
"accuracy.",
-15: "ZNEUPD got a different count of the number of "
"converged Ritz values than ZNAUPD got. This "
"indicates the user probably made an error in passing "
"data from ZNAUPD to ZNEUPD or that the data was "
"modified before entering ZNEUPD"}
CNEUPD_ERRORS = ZNEUPD_ERRORS.copy()
CNEUPD_ERRORS[-14] = ("CNAUPD did not find any eigenvalues to sufficient "
"accuracy.")
CNEUPD_ERRORS[-15] = ("CNEUPD got a different count of the number of "
"converged Ritz values than CNAUPD got. This indicates "
"the user probably made an error in passing data from "
"CNAUPD to CNEUPD or that the data was modified before "
"entering CNEUPD")
DSEUPD_ERRORS = {
0: "Normal exit.",
-1: "N must be positive.",
-2: "NEV must be positive.",
-3: "NCV must be greater than NEV and less than or equal to N.",
-5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.",
-6: "BMAT must be one of 'I' or 'G'.",
-7: "Length of private work WORKL array is not sufficient.",
-8: ("Error return from trid. eigenvalue calculation; "
"Information error from LAPACK routine dsteqr."),
-9: "Starting vector is zero.",
-10: "IPARAM(7) must be 1,2,3,4,5.",
-11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
-12: "NEV and WHICH = 'BE' are incompatible.",
-14: "DSAUPD did not find any eigenvalues to sufficient accuracy.",
-15: "HOWMNY must be one of 'A' or 'S' if RVEC = .true.",
-16: "HOWMNY = 'S' not yet implemented",
-17: ("DSEUPD got a different count of the number of converged "
"Ritz values than DSAUPD got. This indicates the user "
"probably made an error in passing data from DSAUPD to "
"DSEUPD or that the data was modified before entering "
"DSEUPD.")
}
SSEUPD_ERRORS = DSEUPD_ERRORS.copy()
SSEUPD_ERRORS[-14] = ("SSAUPD did not find any eigenvalues "
"to sufficient accuracy.")
SSEUPD_ERRORS[-17] = ("SSEUPD got a different count of the number of "
"converged "
"Ritz values than SSAUPD got. This indicates the user "
"probably made an error in passing data from SSAUPD to "
"SSEUPD or that the data was modified before entering "
"SSEUPD.")
_SAUPD_ERRORS = {'d': DSAUPD_ERRORS,
's': SSAUPD_ERRORS}
_NAUPD_ERRORS = {'d': DNAUPD_ERRORS,
's': SNAUPD_ERRORS,
'z': ZNAUPD_ERRORS,
'c': CNAUPD_ERRORS}
_SEUPD_ERRORS = {'d': DSEUPD_ERRORS,
's': SSEUPD_ERRORS}
_NEUPD_ERRORS = {'d': DNEUPD_ERRORS,
's': SNEUPD_ERRORS,
'z': ZNEUPD_ERRORS,
'c': CNEUPD_ERRORS}
# accepted values of parameter WHICH in _SEUPD
_SEUPD_WHICH = ['LM', 'SM', 'LA', 'SA', 'BE']
# accepted values of parameter WHICH in _NAUPD
_NEUPD_WHICH = ['LM', 'SM', 'LR', 'SR', 'LI', 'SI']
class ArpackError(RuntimeError):
"""
ARPACK error
"""
def __init__(self, info, infodict=_NAUPD_ERRORS):
msg = infodict.get(info, "Unknown error")
RuntimeError.__init__(self, "ARPACK error %d: %s" % (info, msg))
class ArpackNoConvergence(ArpackError):
"""
ARPACK iteration did not converge
Attributes
----------
eigenvalues : ndarray
Partial result. Converged eigenvalues.
eigenvectors : ndarray
Partial result. Converged eigenvectors.
"""
def __init__(self, msg, eigenvalues, eigenvectors):
ArpackError.__init__(self, -1, {-1: msg})
self.eigenvalues = eigenvalues
self.eigenvectors = eigenvectors
class _ArpackParams(object):
def __init__(self, n, k, tp, mode=1, sigma=None,
ncv=None, v0=None, maxiter=None, which="LM", tol=0):
if k <= 0:
raise ValueError("k must be positive, k=%d" % k)
if maxiter is None:
maxiter = n * 10
if maxiter <= 0:
raise ValueError("maxiter must be positive, maxiter=%d" % maxiter)
if tp not in 'fdFD':
raise ValueError("matrix type must be 'f', 'd', 'F', or 'D'")
if v0 is not None:
# ARPACK overwrites its initial resid, make a copy
self.resid = np.array(v0, copy=True)
info = 1
else:
self.resid = np.zeros(n, tp)
info = 0
if sigma is None:
#sigma not used
self.sigma = 0
else:
self.sigma = sigma
if ncv is None:
ncv = 2 * k + 1
ncv = min(ncv, n)
self.v = np.zeros((n, ncv), tp) # holds Ritz vectors
self.iparam = np.zeros(11, "int")
# set solver mode and parameters
ishfts = 1
self.mode = mode
self.iparam[0] = ishfts
self.iparam[2] = maxiter
self.iparam[3] = 1
self.iparam[6] = mode
self.n = n
self.tol = tol
self.k = k
self.maxiter = maxiter
self.ncv = ncv
self.which = which
self.tp = tp
self.info = info
self.converged = False
self.ido = 0
def _raise_no_convergence(self):
msg = "No convergence (%d iterations, %d/%d eigenvectors converged)"
k_ok = self.iparam[4]
num_iter = self.iparam[2]
try:
ev, vec = self.extract(True)
except ArpackError as err:
msg = "%s [%s]" % (msg, err)
ev = np.zeros((0,))
vec = np.zeros((self.n, 0))
k_ok = 0
raise ArpackNoConvergence(msg % (num_iter, k_ok, self.k), ev, vec)
class _SymmetricArpackParams(_ArpackParams):
def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None,
Minv_matvec=None, sigma=None,
ncv=None, v0=None, maxiter=None, which="LM", tol=0):
# The following modes are supported:
# mode = 1:
# Solve the standard eigenvalue problem:
# A*x = lambda*x :
# A - symmetric
# Arguments should be
# matvec = left multiplication by A
# M_matvec = None [not used]
# Minv_matvec = None [not used]
#
# mode = 2:
# Solve the general eigenvalue problem:
# A*x = lambda*M*x
# A - symmetric
# M - symmetric positive definite
# Arguments should be
# matvec = left multiplication by A
# M_matvec = left multiplication by M
# Minv_matvec = left multiplication by M^-1
#
# mode = 3:
# Solve the general eigenvalue problem in shift-invert mode:
# A*x = lambda*M*x
# A - symmetric
# M - symmetric positive semi-definite
# Arguments should be
# matvec = None [not used]
# M_matvec = left multiplication by M
# or None, if M is the identity
# Minv_matvec = left multiplication by [A-sigma*M]^-1
#
# mode = 4:
# Solve the general eigenvalue problem in Buckling mode:
# A*x = lambda*AG*x
# A - symmetric positive semi-definite
# AG - symmetric indefinite
# Arguments should be
# matvec = left multiplication by A
# M_matvec = None [not used]
# Minv_matvec = left multiplication by [A-sigma*AG]^-1
#
# mode = 5:
# Solve the general eigenvalue problem in Cayley-transformed mode:
# A*x = lambda*M*x
# A - symmetric
# M - symmetric positive semi-definite
# Arguments should be
# matvec = left multiplication by A
# M_matvec = left multiplication by M
# or None, if M is the identity
# Minv_matvec = left multiplication by [A-sigma*M]^-1
if mode == 1:
if matvec is None:
raise ValueError("matvec must be specified for mode=1")
if M_matvec is not None:
raise ValueError("M_matvec cannot be specified for mode=1")
if Minv_matvec is not None:
raise ValueError("Minv_matvec cannot be specified for mode=1")
self.OP = matvec
self.B = lambda x: x
self.bmat = 'I'
elif mode == 2:
if matvec is None:
raise ValueError("matvec must be specified for mode=2")
if M_matvec is None:
raise ValueError("M_matvec must be specified for mode=2")
if Minv_matvec is None:
raise ValueError("Minv_matvec must be specified for mode=2")
self.OP = lambda x: Minv_matvec(matvec(x))
self.OPa = Minv_matvec
self.OPb = matvec
self.B = M_matvec
self.bmat = 'G'
elif mode == 3:
if matvec is not None:
raise ValueError("matvec must not be specified for mode=3")
if Minv_matvec is None:
raise ValueError("Minv_matvec must be specified for mode=3")
if M_matvec is None:
self.OP = Minv_matvec
self.OPa = Minv_matvec
self.B = lambda x: x
self.bmat = 'I'
else:
self.OP = lambda x: Minv_matvec(M_matvec(x))
self.OPa = Minv_matvec
self.B = M_matvec
self.bmat = 'G'
elif mode == 4:
if matvec is None:
raise ValueError("matvec must be specified for mode=4")
if M_matvec is not None:
raise ValueError("M_matvec must not be specified for mode=4")
if Minv_matvec is None:
raise ValueError("Minv_matvec must be specified for mode=4")
self.OPa = Minv_matvec
self.OP = lambda x: self.OPa(matvec(x))
self.B = matvec
self.bmat = 'G'
elif mode == 5:
if matvec is None:
raise ValueError("matvec must be specified for mode=5")
if Minv_matvec is None:
raise ValueError("Minv_matvec must be specified for mode=5")
self.OPa = Minv_matvec
self.A_matvec = matvec
if M_matvec is None:
self.OP = lambda x: Minv_matvec(matvec(x) + sigma * x)
self.B = lambda x: x
self.bmat = 'I'
else:
self.OP = lambda x: Minv_matvec(matvec(x)
+ sigma * M_matvec(x))
self.B = M_matvec
self.bmat = 'G'
else:
raise ValueError("mode=%i not implemented" % mode)
if which not in _SEUPD_WHICH:
raise ValueError("which must be one of %s"
% ' '.join(_SEUPD_WHICH))
if k >= n:
raise ValueError("k must be less than rank(A), k=%d" % k)
_ArpackParams.__init__(self, n, k, tp, mode, sigma,
ncv, v0, maxiter, which, tol)
if self.ncv > n or self.ncv <= k:
raise ValueError("ncv must be k<ncv<=n, ncv=%s" % self.ncv)
self.workd = np.zeros(3 * n, self.tp)
self.workl = np.zeros(self.ncv * (self.ncv + 8), self.tp)
ltr = _type_conv[self.tp]
if ltr not in ["s", "d"]:
raise ValueError("Input matrix is not real-valued.")
self._arpack_solver = _arpack.__dict__[ltr + 'saupd']
self._arpack_extract = _arpack.__dict__[ltr + 'seupd']
self.iterate_infodict = _SAUPD_ERRORS[ltr]
self.extract_infodict = _SEUPD_ERRORS[ltr]
self.ipntr = np.zeros(11, "int")
def iterate(self):
self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info = \
self._arpack_solver(self.ido, self.bmat, self.which, self.k,
self.tol, self.resid, self.v, self.iparam,
self.ipntr, self.workd, self.workl, self.info)
xslice = slice(self.ipntr[0] - 1, self.ipntr[0] - 1 + self.n)
yslice = slice(self.ipntr[1] - 1, self.ipntr[1] - 1 + self.n)
if self.ido == -1:
# initialization
self.workd[yslice] = self.OP(self.workd[xslice])
elif self.ido == 1:
# compute y = Op*x
if self.mode == 1:
self.workd[yslice] = self.OP(self.workd[xslice])
elif self.mode == 2:
self.workd[xslice] = self.OPb(self.workd[xslice])
self.workd[yslice] = self.OPa(self.workd[xslice])
elif self.mode == 5:
Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n)
Ax = self.A_matvec(self.workd[xslice])
self.workd[yslice] = self.OPa(Ax + (self.sigma *
self.workd[Bxslice]))
else:
Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n)
self.workd[yslice] = self.OPa(self.workd[Bxslice])
elif self.ido == 2:
self.workd[yslice] = self.B(self.workd[xslice])
elif self.ido == 3:
raise ValueError("ARPACK requested user shifts. Assure ISHIFT==0")
else:
self.converged = True
if self.info == 0:
pass
elif self.info == 1:
self._raise_no_convergence()
else:
raise ArpackError(self.info, infodict=self.iterate_infodict)
def extract(self, return_eigenvectors):
rvec = return_eigenvectors
ierr = 0
howmny = 'A' # return all eigenvectors
sselect = np.zeros(self.ncv, 'int') # unused
d, z, ierr = self._arpack_extract(rvec, howmny, sselect, self.sigma,
self.bmat, self.which, self.k,
self.tol, self.resid, self.v,
self.iparam[0:7], self.ipntr,
self.workd[0:2 * self.n],
self.workl, ierr)
if ierr != 0:
raise ArpackError(ierr, infodict=self.extract_infodict)
k_ok = self.iparam[4]
d = d[:k_ok]
z = z[:, :k_ok]
if return_eigenvectors:
return d, z
else:
return d
class _UnsymmetricArpackParams(_ArpackParams):
def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None,
Minv_matvec=None, sigma=None,
ncv=None, v0=None, maxiter=None, which="LM", tol=0):
# The following modes are supported:
# mode = 1:
# Solve the standard eigenvalue problem:
# A*x = lambda*x
# A - square matrix
# Arguments should be
# matvec = left multiplication by A
# M_matvec = None [not used]
# Minv_matvec = None [not used]
#
# mode = 2:
# Solve the generalized eigenvalue problem:
# A*x = lambda*M*x
# A - square matrix
# M - symmetric, positive semi-definite
# Arguments should be
# matvec = left multiplication by A
# M_matvec = left multiplication by M
# Minv_matvec = left multiplication by M^-1
#
# mode = 3,4:
# Solve the general eigenvalue problem in shift-invert mode:
# A*x = lambda*M*x
# A - square matrix
# M - symmetric, positive semi-definite
# Arguments should be
# matvec = None [not used]
# M_matvec = left multiplication by M
# or None, if M is the identity
# Minv_matvec = left multiplication by [A-sigma*M]^-1
# if A is real and mode==3, use the real part of Minv_matvec
# if A is real and mode==4, use the imag part of Minv_matvec
# if A is complex and mode==3,
# use real and imag parts of Minv_matvec
if mode == 1:
if matvec is None:
raise ValueError("matvec must be specified for mode=1")
if M_matvec is not None:
raise ValueError("M_matvec cannot be specified for mode=1")
if Minv_matvec is not None:
raise ValueError("Minv_matvec cannot be specified for mode=1")
self.OP = matvec
self.B = lambda x: x
self.bmat = 'I'
elif mode == 2:
if matvec is None:
raise ValueError("matvec must be specified for mode=2")
if M_matvec is None:
raise ValueError("M_matvec must be specified for mode=2")
if Minv_matvec is None:
raise ValueError("Minv_matvec must be specified for mode=2")
self.OP = lambda x: Minv_matvec(matvec(x))
self.OPa = Minv_matvec
self.OPb = matvec
self.B = M_matvec
self.bmat = 'G'
elif mode in (3, 4):
if matvec is None:
raise ValueError("matvec must be specified "
"for mode in (3,4)")
if Minv_matvec is None:
raise ValueError("Minv_matvec must be specified "
"for mode in (3,4)")
self.matvec = matvec
if tp in 'DF': # complex type
if mode == 3:
self.OPa = Minv_matvec
else:
raise ValueError("mode=4 invalid for complex A")
else: # real type
if mode == 3:
self.OPa = lambda x: np.real(Minv_matvec(x))
else:
self.OPa = lambda x: np.imag(Minv_matvec(x))
if M_matvec is None:
self.B = lambda x: x
self.bmat = 'I'
self.OP = self.OPa
else:
self.B = M_matvec
self.bmat = 'G'
self.OP = lambda x: self.OPa(M_matvec(x))
else:
raise ValueError("mode=%i not implemented" % mode)
if which not in _NEUPD_WHICH:
raise ValueError("Parameter which must be one of %s"
% ' '.join(_NEUPD_WHICH))
if k >= n - 1:
raise ValueError("k must be less than rank(A)-1, k=%d" % k)
_ArpackParams.__init__(self, n, k, tp, mode, sigma,
ncv, v0, maxiter, which, tol)
if self.ncv > n or self.ncv <= k + 1:
raise ValueError("ncv must be k+1<ncv<=n, ncv=%s" % self.ncv)
self.workd = np.zeros(3 * n, self.tp)
self.workl = np.zeros(3 * self.ncv * (self.ncv + 2), self.tp)
ltr = _type_conv[self.tp]
self._arpack_solver = _arpack.__dict__[ltr + 'naupd']
self._arpack_extract = _arpack.__dict__[ltr + 'neupd']
self.iterate_infodict = _NAUPD_ERRORS[ltr]
self.extract_infodict = _NEUPD_ERRORS[ltr]
self.ipntr = np.zeros(14, "int")
if self.tp in 'FD':
self.rwork = np.zeros(self.ncv, self.tp.lower())
else:
self.rwork = None
def iterate(self):
if self.tp in 'fd':
self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info =\
self._arpack_solver(self.ido, self.bmat, self.which, self.k,
self.tol, self.resid, self.v, self.iparam,
self.ipntr, self.workd, self.workl,
self.info)
else:
self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info =\
self._arpack_solver(self.ido, self.bmat, self.which, self.k,
self.tol, self.resid, self.v, self.iparam,
self.ipntr, self.workd, self.workl,
self.rwork, self.info)
xslice = slice(self.ipntr[0] - 1, self.ipntr[0] - 1 + self.n)
yslice = slice(self.ipntr[1] - 1, self.ipntr[1] - 1 + self.n)
if self.ido == -1:
# initialization
self.workd[yslice] = self.OP(self.workd[xslice])
elif self.ido == 1:
# compute y = Op*x
if self.mode in (1, 2):
self.workd[yslice] = self.OP(self.workd[xslice])
else:
Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n)
self.workd[yslice] = self.OPa(self.workd[Bxslice])
elif self.ido == 2:
self.workd[yslice] = self.B(self.workd[xslice])
elif self.ido == 3:
raise ValueError("ARPACK requested user shifts. Assure ISHIFT==0")
else:
self.converged = True
if self.info == 0:
pass
elif self.info == 1:
self._raise_no_convergence()
else:
raise ArpackError(self.info, infodict=self.iterate_infodict)
def extract(self, return_eigenvectors):
k, n = self.k, self.n
ierr = 0
howmny = 'A' # return all eigenvectors
sselect = np.zeros(self.ncv, 'int') # unused
sigmar = np.real(self.sigma)
sigmai = np.imag(self.sigma)
workev = np.zeros(3 * self.ncv, self.tp)
if self.tp in 'fd':
dr = np.zeros(k + 1, self.tp)
di = np.zeros(k + 1, self.tp)
zr = np.zeros((n, k + 1), self.tp)
dr, di, zr, ierr = \
self._arpack_extract(
return_eigenvectors, howmny, sselect, sigmar, sigmai,
workev, self.bmat, self.which, k, self.tol, self.resid,
self.v, self.iparam, self.ipntr, self.workd, self.workl,
self.info)
if ierr != 0:
raise ArpackError(ierr, infodict=self.extract_infodict)
nreturned = self.iparam[4] # number of good eigenvalues returned
# Build complex eigenvalues from real and imaginary parts
d = dr + 1.0j * di
# Arrange the eigenvectors: complex eigenvectors are stored as
# real,imaginary in consecutive columns
z = zr.astype(self.tp.upper())
# The ARPACK nonsymmetric real and double interface (s,d)naupd
# return eigenvalues and eigenvectors in real (float,double)
# arrays.
# Efficiency: this should check that return_eigenvectors == True
# before going through this construction.
if sigmai == 0:
i = 0
while i <= k:
# check if complex
if abs(d[i].imag) != 0:
# this is a complex conjugate pair with eigenvalues
# in consecutive columns
if i < k:
z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1]
z[:, i + 1] = z[:, i].conjugate()
i += 1
else:
#last eigenvalue is complex: the imaginary part of
# the eigenvector has not been returned
#this can only happen if nreturned > k, so we'll
# throw out this case.
nreturned -= 1
i += 1
else:
# real matrix, mode 3 or 4, imag(sigma) is nonzero:
# see remark 3 in <s,d>neupd.f
# Build complex eigenvalues from real and imaginary parts
i = 0
while i <= k:
if abs(d[i].imag) == 0:
d[i] = np.dot(zr[:, i], self.matvec(zr[:, i]))
else:
if i < k:
z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1]
z[:, i + 1] = z[:, i].conjugate()
d[i] = ((np.dot(zr[:, i],
self.matvec(zr[:, i]))
+ np.dot(zr[:, i + 1],
self.matvec(zr[:, i + 1])))
+ 1j * (np.dot(zr[:, i],
self.matvec(zr[:, i + 1]))
- np.dot(zr[:, i + 1],
self.matvec(zr[:, i]))))
d[i + 1] = d[i].conj()
i += 1
else:
#last eigenvalue is complex: the imaginary part of
# the eigenvector has not been returned
#this can only happen if nreturned > k, so we'll
# throw out this case.
nreturned -= 1
i += 1
# Now we have k+1 possible eigenvalues and eigenvectors
# Return the ones specified by the keyword "which"
if nreturned <= k:
# we got less or equal as many eigenvalues we wanted
d = d[:nreturned]
z = z[:, :nreturned]
else:
# we got one extra eigenvalue (likely a cc pair, but which?)
# cut at approx precision for sorting
rd = np.round(d, decimals=_ndigits[self.tp])
if self.which in ['LR', 'SR']:
ind = np.argsort(rd.real)
elif self.which in ['LI', 'SI']:
# for LI,SI ARPACK returns largest,smallest
# abs(imaginary) why?
ind = np.argsort(abs(rd.imag))
else:
ind = np.argsort(abs(rd))
if self.which in ['LR', 'LM', 'LI']:
d = d[ind[-k:]]
z = z[:, ind[-k:]]
if self.which in ['SR', 'SM', 'SI']:
d = d[ind[:k]]
z = z[:, ind[:k]]
else:
# complex is so much simpler...
d, z, ierr =\
self._arpack_extract(
return_eigenvectors, howmny, sselect, self.sigma, workev,
self.bmat, self.which, k, self.tol, self.resid, self.v,
self.iparam, self.ipntr, self.workd, self.workl,
self.rwork, ierr)
if ierr != 0:
raise ArpackError(ierr, infodict=self.extract_infodict)
k_ok = self.iparam[4]
d = d[:k_ok]
z = z[:, :k_ok]
if return_eigenvectors:
return d, z
else:
return d
def _aslinearoperator_with_dtype(m):
m = aslinearoperator(m)
if not hasattr(m, 'dtype'):
x = np.zeros(m.shape[1])
m.dtype = (m * x).dtype
return m
class SpLuInv(LinearOperator):
"""
SpLuInv:
helper class to repeatedly solve M*x=b
using a sparse LU-decopposition of M
"""
def __init__(self, M):
self.M_lu = splu(M)
LinearOperator.__init__(self, M.shape, self._matvec, dtype=M.dtype)
self.isreal = not np.issubdtype(self.dtype, np.complexfloating)
def _matvec(self, x):
# careful here: splu.solve will throw away imaginary
# part of x if M is real
if self.isreal and np.issubdtype(x.dtype, np.complexfloating):
return (self.M_lu.solve(np.real(x))
+ 1j * self.M_lu.solve(np.imag(x)))
else:
return self.M_lu.solve(x)
class LuInv(LinearOperator):
"""
LuInv:
helper class to repeatedly solve M*x=b
using an LU-decomposition of M
"""
def __init__(self, M):
self.M_lu = lu_factor(M)
LinearOperator.__init__(self, M.shape, self._matvec, dtype=M.dtype)
def _matvec(self, x):
return lu_solve(self.M_lu, x)
class IterInv(LinearOperator):
"""
IterInv:
helper class to repeatedly solve M*x=b
using an iterative method.
"""
def __init__(self, M, ifunc=gmres, tol=0):
if tol <= 0:
# when tol=0, ARPACK uses machine tolerance as calculated
# by LAPACK's _LAMCH function. We should match this
tol = np.finfo(M.dtype).eps
self.M = M
self.ifunc = ifunc
self.tol = tol
if hasattr(M, 'dtype'):
dtype = M.dtype
else:
x = np.zeros(M.shape[1])
dtype = (M * x).dtype
LinearOperator.__init__(self, M.shape, self._matvec, dtype=dtype)
def _matvec(self, x):
b, info = self.ifunc(self.M, x, tol=self.tol)
if info != 0:
raise ValueError("Error in inverting M: function "
"%s did not converge (info = %i)."
% (self.ifunc.__name__, info))
return b
class IterOpInv(LinearOperator):
"""
IterOpInv:
helper class to repeatedly solve [A-sigma*M]*x = b
using an iterative method
"""
def __init__(self, A, M, sigma, ifunc=gmres, tol=0):
if tol <= 0:
# when tol=0, ARPACK uses machine tolerance as calculated
# by LAPACK's _LAMCH function. We should match this
tol = np.finfo(A.dtype).eps
self.A = A
self.M = M
self.sigma = sigma
self.ifunc = ifunc
self.tol = tol
x = np.zeros(A.shape[1])
if M is None:
dtype = self.mult_func_M_None(x).dtype
self.OP = LinearOperator(self.A.shape,
self.mult_func_M_None,
dtype=dtype)
else:
dtype = self.mult_func(x).dtype
self.OP = LinearOperator(self.A.shape,
self.mult_func,
dtype=dtype)
LinearOperator.__init__(self, A.shape, self._matvec, dtype=dtype)
def mult_func(self, x):
return self.A.matvec(x) - self.sigma * self.M.matvec(x)
def mult_func_M_None(self, x):
return self.A.matvec(x) - self.sigma * x
def _matvec(self, x):
b, info = self.ifunc(self.OP, x, tol=self.tol)
if info != 0:
raise ValueError("Error in inverting [A-sigma*M]: function "
"%s did not converge (info = %i)."
% (self.ifunc.__name__, info))
return b
def get_inv_matvec(M, symmetric=False, tol=0):
if isdense(M):
return LuInv(M).matvec
elif isspmatrix(M):
if isspmatrix_csr(M) and symmetric:
M = M.T
return SpLuInv(M).matvec
else:
return IterInv(M, tol=tol).matvec
def get_OPinv_matvec(A, M, sigma, symmetric=False, tol=0):
if sigma == 0:
return get_inv_matvec(A, symmetric=symmetric, tol=tol)
if M is None:
#M is the identity matrix
if isdense(A):
if (np.issubdtype(A.dtype, np.complexfloating)
or np.imag(sigma) == 0):
A = np.copy(A)
else:
A = A + 0j
A.flat[::A.shape[1] + 1] -= sigma
return LuInv(A).matvec
elif isspmatrix(A):
A = A - sigma * identity(A.shape[0])
if symmetric and isspmatrix_csr(A):
A = A.T
return SpLuInv(A.tocsc()).matvec
else:
return IterOpInv(_aslinearoperator_with_dtype(A), M, sigma,
tol=tol).matvec
else:
if ((not isdense(A) and not isspmatrix(A)) or
(not isdense(M) and not isspmatrix(M))):
return IterOpInv(_aslinearoperator_with_dtype(A),
_aslinearoperator_with_dtype(M), sigma,
tol=tol).matvec
elif isdense(A) or isdense(M):
return LuInv(A - sigma * M).matvec
else:
OP = A - sigma * M
if symmetric and isspmatrix_csr(OP):
OP = OP.T
return SpLuInv(OP.tocsc()).matvec
def _eigs(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None,
maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None,
OPpart=None):
"""
Find k eigenvalues and eigenvectors of the square matrix A.
Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem
for w[i] eigenvalues with corresponding eigenvectors x[i].
If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the
generalized eigenvalue problem for w[i] eigenvalues
with corresponding eigenvectors x[i]
Parameters
----------
A : An N x N matrix, array, sparse matrix, or LinearOperator representing
the operation A * x, where A is a real or complex square matrix.
k : integer
The number of eigenvalues and eigenvectors desired.
`k` must be smaller than N. It is not possible to compute all
eigenvectors of a matrix.
Returns
-------
w : array
Array of k eigenvalues.
v : array
An array of `k` eigenvectors.
``v[:, i]`` is the eigenvector corresponding to the eigenvalue w[i].
Other Parameters
----------------
M : An N x N matrix, array, sparse matrix, or LinearOperator representing
the operation M*x for the generalized eigenvalue problem
``A * x = w * M * x``
M must represent a real symmetric matrix. For best results, M should
be of the same type as A. Additionally:
* If sigma==None, M is positive definite
* If sigma is specified, M is positive semi-definite
If sigma==None, eigs requires an operator to compute the solution
of the linear equation `M * x = b`. This is done internally via a
(sparse) LU decomposition for an explicit matrix M, or via an
iterative solver for a general linear operator. Alternatively,
the user can supply the matrix or operator Minv, which gives
x = Minv * b = M^-1 * b
sigma : real or complex
Find eigenvalues near sigma using shift-invert mode. This requires
an operator to compute the solution of the linear system
`[A - sigma * M] * x = b`, where M is the identity matrix if
unspecified. This is computed internally via a (sparse) LU
decomposition for explicit matrices A & M, or via an iterative
solver if either A or M is a general linear operator.
Alternatively, the user can supply the matrix or operator OPinv,
which gives x = OPinv * b = [A - sigma * M]^-1 * b.
For a real matrix A, shift-invert can either be done in imaginary
mode or real mode, specified by the parameter OPpart ('r' or 'i').
Note that when sigma is specified, the keyword 'which' (below)
refers to the shifted eigenvalues w'[i] where:
* If A is real and OPpart == 'r' (default),
w'[i] = 1/2 * [ 1/(w[i]-sigma) + 1/(w[i]-conj(sigma)) ]
* If A is real and OPpart == 'i',
w'[i] = 1/2i * [ 1/(w[i]-sigma) - 1/(w[i]-conj(sigma)) ]
* If A is complex,
w'[i] = 1/(w[i]-sigma)
v0 : array
Starting vector for iteration.
ncv : integer
The number of Lanczos vectors generated
`ncv` must be greater than `k`; it is recommended that ``ncv > 2*k``.
which : string ['LM' | 'SM' | 'LR' | 'SR' | 'LI' | 'SI']
Which `k` eigenvectors and eigenvalues to find:
- 'LM' : largest magnitude
- 'SM' : smallest magnitude
- 'LR' : largest real part
- 'SR' : smallest real part
- 'LI' : largest imaginary part
- 'SI' : smallest imaginary part
When sigma != None, 'which' refers to the shifted eigenvalues w'[i]
(see discussion in 'sigma', above). ARPACK is generally better
at finding large values than small values. If small eigenvalues are
desired, consider using shift-invert mode for better performance.
maxiter : integer
Maximum number of Arnoldi update iterations allowed
tol : float
Relative accuracy for eigenvalues (stopping criterion)
The default value of 0 implies machine precision.
return_eigenvectors : boolean
Return eigenvectors (True) in addition to eigenvalues
Minv : N x N matrix, array, sparse matrix, or linear operator
See notes in M, above.
OPinv : N x N matrix, array, sparse matrix, or linear operator
See notes in sigma, above.
OPpart : 'r' or 'i'.
See notes in sigma, above
Raises
------
ArpackNoConvergence
When the requested convergence is not obtained.
The currently converged eigenvalues and eigenvectors can be found
as ``eigenvalues`` and ``eigenvectors`` attributes of the exception
object.
See Also
--------
eigsh : eigenvalues and eigenvectors for symmetric matrix A
svds : singular value decomposition for a matrix A
Examples
--------
Find 6 eigenvectors of the identity matrix:
>>> from sklearn.utils.arpack import eigs
>>> id = np.identity(13)
>>> vals, vecs = eigs(id, k=6)
>>> vals
array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])
>>> vecs.shape
(13, 6)
Notes
-----
This function is a wrapper to the ARPACK [1]_ SNEUPD, DNEUPD, CNEUPD,
ZNEUPD, functions which use the Implicitly Restarted Arnoldi Method to
find the eigenvalues and eigenvectors [2]_.
References
----------
.. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/
.. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE:
Solution of Large Scale Eigenvalue Problems by Implicitly Restarted
Arnoldi Methods. SIAM, Philadelphia, PA, 1998.
"""
if A.shape[0] != A.shape[1]:
raise ValueError('expected square matrix (shape=%s)' % (A.shape,))
if M is not None:
if M.shape != A.shape:
raise ValueError('wrong M dimensions %s, should be %s'
% (M.shape, A.shape))
if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower():
warnings.warn('M does not have the same type precision as A. '
'This may adversely affect ARPACK convergence')
n = A.shape[0]
if k <= 0 or k >= n:
raise ValueError("k must be between 1 and rank(A)-1")
if sigma is None:
matvec = _aslinearoperator_with_dtype(A).matvec
if OPinv is not None:
raise ValueError("OPinv should not be specified "
"with sigma = None.")
if OPpart is not None:
raise ValueError("OPpart should not be specified with "
"sigma = None or complex A")
if M is None:
#standard eigenvalue problem
mode = 1
M_matvec = None
Minv_matvec = None
if Minv is not None:
raise ValueError("Minv should not be "
"specified with M = None.")
else:
#general eigenvalue problem
mode = 2
if Minv is None:
Minv_matvec = get_inv_matvec(M, symmetric=True, tol=tol)
else:
Minv = _aslinearoperator_with_dtype(Minv)
Minv_matvec = Minv.matvec
M_matvec = _aslinearoperator_with_dtype(M).matvec
else:
#sigma is not None: shift-invert mode
if np.issubdtype(A.dtype, np.complexfloating):
if OPpart is not None:
raise ValueError("OPpart should not be specified "
"with sigma=None or complex A")
mode = 3
elif OPpart is None or OPpart.lower() == 'r':
mode = 3
elif OPpart.lower() == 'i':
if np.imag(sigma) == 0:
raise ValueError("OPpart cannot be 'i' if sigma is real")
mode = 4
else:
raise ValueError("OPpart must be one of ('r','i')")
matvec = _aslinearoperator_with_dtype(A).matvec
if Minv is not None:
raise ValueError("Minv should not be specified when sigma is")
if OPinv is None:
Minv_matvec = get_OPinv_matvec(A, M, sigma,
symmetric=False, tol=tol)
else:
OPinv = _aslinearoperator_with_dtype(OPinv)
Minv_matvec = OPinv.matvec
if M is None:
M_matvec = None
else:
M_matvec = _aslinearoperator_with_dtype(M).matvec
params = _UnsymmetricArpackParams(n, k, A.dtype.char, matvec, mode,
M_matvec, Minv_matvec, sigma,
ncv, v0, maxiter, which, tol)
while not params.converged:
params.iterate()
return params.extract(return_eigenvectors)
def _eigsh(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None,
maxiter=None, tol=0, return_eigenvectors=True, Minv=None,
OPinv=None, mode='normal'):
"""
Find k eigenvalues and eigenvectors of the real symmetric square matrix
or complex hermitian matrix A.
Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem for
w[i] eigenvalues with corresponding eigenvectors x[i].
If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the
generalized eigenvalue problem for w[i] eigenvalues
with corresponding eigenvectors x[i]
Parameters
----------
A : An N x N matrix, array, sparse matrix, or LinearOperator representing
the operation A * x, where A is a real symmetric matrix
For buckling mode (see below) A must additionally be positive-definite
k : integer
The number of eigenvalues and eigenvectors desired.
`k` must be smaller than N. It is not possible to compute all
eigenvectors of a matrix.
Returns
-------
w : array
Array of k eigenvalues
v : array
An array of k eigenvectors
The v[i] is the eigenvector corresponding to the eigenvector w[i]
Other Parameters
----------------
M : An N x N matrix, array, sparse matrix, or linear operator representing
the operation M * x for the generalized eigenvalue problem
``A * x = w * M * x``.
M must represent a real, symmetric matrix. For best results, M should
be of the same type as A. Additionally:
* If sigma == None, M is symmetric positive definite
* If sigma is specified, M is symmetric positive semi-definite
* In buckling mode, M is symmetric indefinite.
If sigma == None, eigsh requires an operator to compute the solution
of the linear equation `M * x = b`. This is done internally via a
(sparse) LU decomposition for an explicit matrix M, or via an
iterative solver for a general linear operator. Alternatively,
the user can supply the matrix or operator Minv, which gives
x = Minv * b = M^-1 * b
sigma : real
Find eigenvalues near sigma using shift-invert mode. This requires
an operator to compute the solution of the linear system
`[A - sigma * M] x = b`, where M is the identity matrix if
unspecified. This is computed internally via a (sparse) LU
decomposition for explicit matrices A & M, or via an iterative
solver if either A or M is a general linear operator.
Alternatively, the user can supply the matrix or operator OPinv,
which gives x = OPinv * b = [A - sigma * M]^-1 * b.
Note that when sigma is specified, the keyword 'which' refers to
the shifted eigenvalues w'[i] where:
- if mode == 'normal',
w'[i] = 1 / (w[i] - sigma)
- if mode == 'cayley',
w'[i] = (w[i] + sigma) / (w[i] - sigma)
- if mode == 'buckling',
w'[i] = w[i] / (w[i] - sigma)
(see further discussion in 'mode' below)
v0 : array
Starting vector for iteration.
ncv : integer
The number of Lanczos vectors generated
ncv must be greater than k and smaller than n;
it is recommended that ncv > 2*k
which : string ['LM' | 'SM' | 'LA' | 'SA' | 'BE']
If A is a complex hermitian matrix, 'BE' is invalid.
Which `k` eigenvectors and eigenvalues to find:
- 'LM' : Largest (in magnitude) eigenvalues
- 'SM' : Smallest (in magnitude) eigenvalues
- 'LA' : Largest (algebraic) eigenvalues
- 'SA' : Smallest (algebraic) eigenvalues
- 'BE' : Half (k/2) from each end of the spectrum
When k is odd, return one more (k/2+1) from the high end
When sigma != None, 'which' refers to the shifted eigenvalues w'[i]
(see discussion in 'sigma', above). ARPACK is generally better
at finding large values than small values. If small eigenvalues are
desired, consider using shift-invert mode for better performance.
maxiter : integer
Maximum number of Arnoldi update iterations allowed
tol : float
Relative accuracy for eigenvalues (stopping criterion).
The default value of 0 implies machine precision.
Minv : N x N matrix, array, sparse matrix, or LinearOperator
See notes in M, above
OPinv : N x N matrix, array, sparse matrix, or LinearOperator
See notes in sigma, above.
return_eigenvectors : boolean
Return eigenvectors (True) in addition to eigenvalues
mode : string ['normal' | 'buckling' | 'cayley']
Specify strategy to use for shift-invert mode. This argument applies
only for real-valued A and sigma != None. For shift-invert mode,
ARPACK internally solves the eigenvalue problem
``OP * x'[i] = w'[i] * B * x'[i]``
and transforms the resulting Ritz vectors x'[i] and Ritz values w'[i]
into the desired eigenvectors and eigenvalues of the problem
``A * x[i] = w[i] * M * x[i]``.
The modes are as follows:
- 'normal' : OP = [A - sigma * M]^-1 * M
B = M
w'[i] = 1 / (w[i] - sigma)
- 'buckling' : OP = [A - sigma * M]^-1 * A
B = A
w'[i] = w[i] / (w[i] - sigma)
- 'cayley' : OP = [A - sigma * M]^-1 * [A + sigma * M]
B = M
w'[i] = (w[i] + sigma) / (w[i] - sigma)
The choice of mode will affect which eigenvalues are selected by
the keyword 'which', and can also impact the stability of
convergence (see [2] for a discussion)
Raises
------
ArpackNoConvergence
When the requested convergence is not obtained.
The currently converged eigenvalues and eigenvectors can be found
as ``eigenvalues`` and ``eigenvectors`` attributes of the exception
object.
See Also
--------
eigs : eigenvalues and eigenvectors for a general (nonsymmetric) matrix A
svds : singular value decomposition for a matrix A
Notes
-----
This function is a wrapper to the ARPACK [1]_ SSEUPD and DSEUPD
functions which use the Implicitly Restarted Lanczos Method to
find the eigenvalues and eigenvectors [2]_.
Examples
--------
>>> from sklearn.utils.arpack import eigsh
>>> id = np.identity(13)
>>> vals, vecs = eigsh(id, k=6)
>>> vals # doctest: +SKIP
array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])
>>> print(vecs.shape)
(13, 6)
References
----------
.. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/
.. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE:
Solution of Large Scale Eigenvalue Problems by Implicitly Restarted
Arnoldi Methods. SIAM, Philadelphia, PA, 1998.
"""
# complex hermitian matrices should be solved with eigs
if np.issubdtype(A.dtype, np.complexfloating):
if mode != 'normal':
raise ValueError("mode=%s cannot be used with "
"complex matrix A" % mode)
if which == 'BE':
raise ValueError("which='BE' cannot be used with complex matrix A")
elif which == 'LA':
which = 'LR'
elif which == 'SA':
which = 'SR'
ret = eigs(A, k, M=M, sigma=sigma, which=which, v0=v0,
ncv=ncv, maxiter=maxiter, tol=tol,
return_eigenvectors=return_eigenvectors, Minv=Minv,
OPinv=OPinv)
if return_eigenvectors:
return ret[0].real, ret[1]
else:
return ret.real
if A.shape[0] != A.shape[1]:
raise ValueError('expected square matrix (shape=%s)' % (A.shape,))
if M is not None:
if M.shape != A.shape:
raise ValueError('wrong M dimensions %s, should be %s'
% (M.shape, A.shape))
if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower():
warnings.warn('M does not have the same type precision as A. '
'This may adversely affect ARPACK convergence')
n = A.shape[0]
if k <= 0 or k >= n:
raise ValueError("k must be between 1 and rank(A)-1")
if sigma is None:
A = _aslinearoperator_with_dtype(A)
matvec = A.matvec
if OPinv is not None:
raise ValueError("OPinv should not be specified "
"with sigma = None.")
if M is None:
#standard eigenvalue problem
mode = 1
M_matvec = None
Minv_matvec = None
if Minv is not None:
raise ValueError("Minv should not be "
"specified with M = None.")
else:
#general eigenvalue problem
mode = 2
if Minv is None:
Minv_matvec = get_inv_matvec(M, symmetric=True, tol=tol)
else:
Minv = _aslinearoperator_with_dtype(Minv)
Minv_matvec = Minv.matvec
M_matvec = _aslinearoperator_with_dtype(M).matvec
else:
# sigma is not None: shift-invert mode
if Minv is not None:
raise ValueError("Minv should not be specified when sigma is")
# normal mode
if mode == 'normal':
mode = 3
matvec = None
if OPinv is None:
Minv_matvec = get_OPinv_matvec(A, M, sigma,
symmetric=True, tol=tol)
else:
OPinv = _aslinearoperator_with_dtype(OPinv)
Minv_matvec = OPinv.matvec
if M is None:
M_matvec = None
else:
M = _aslinearoperator_with_dtype(M)
M_matvec = M.matvec
# buckling mode
elif mode == 'buckling':
mode = 4
if OPinv is None:
Minv_matvec = get_OPinv_matvec(A, M, sigma,
symmetric=True, tol=tol)
else:
Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec
matvec = _aslinearoperator_with_dtype(A).matvec
M_matvec = None
# cayley-transform mode
elif mode == 'cayley':
mode = 5
matvec = _aslinearoperator_with_dtype(A).matvec
if OPinv is None:
Minv_matvec = get_OPinv_matvec(A, M, sigma,
symmetric=True, tol=tol)
else:
Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec
if M is None:
M_matvec = None
else:
M_matvec = _aslinearoperator_with_dtype(M).matvec
# unrecognized mode
else:
raise ValueError("unrecognized mode '%s'" % mode)
params = _SymmetricArpackParams(n, k, A.dtype.char, matvec, mode,
M_matvec, Minv_matvec, sigma,
ncv, v0, maxiter, which, tol)
while not params.converged:
params.iterate()
return params.extract(return_eigenvectors)
def _svds(A, k=6, ncv=None, tol=0):
"""Compute k singular values/vectors for a sparse matrix using ARPACK.
Parameters
----------
A : sparse matrix
Array to compute the SVD on
k : int, optional
Number of singular values and vectors to compute.
ncv : integer
The number of Lanczos vectors generated
ncv must be greater than k+1 and smaller than n;
it is recommended that ncv > 2*k
tol : float, optional
Tolerance for singular values. Zero (default) means machine precision.
Notes
-----
This is a naive implementation using an eigensolver on A.H * A or
A * A.H, depending on which one is more efficient.
"""
if not (isinstance(A, np.ndarray) or isspmatrix(A)):
A = np.asarray(A)
n, m = A.shape
if np.issubdtype(A.dtype, np.complexfloating):
herm = lambda x: x.T.conjugate()
eigensolver = eigs
else:
herm = lambda x: x.T
eigensolver = eigsh
if n > m:
X = A
XH = herm(A)
else:
XH = A
X = herm(A)
if hasattr(XH, 'dot'):
def matvec_XH_X(x):
return XH.dot(X.dot(x))
else:
def matvec_XH_X(x):
return np.dot(XH, np.dot(X, x))
XH_X = LinearOperator(matvec=matvec_XH_X, dtype=X.dtype,
shape=(X.shape[1], X.shape[1]))
# Ignore deprecation warnings here: dot on matrices is deprecated,
# but this code is a backport anyhow
with warnings.catch_warnings():
warnings.simplefilter('ignore', DeprecationWarning)
eigvals, eigvec = eigensolver(XH_X, k=k, tol=tol ** 2)
s = np.sqrt(eigvals)
if n > m:
v = eigvec
if hasattr(X, 'dot'):
u = X.dot(v) / s
else:
u = np.dot(X, v) / s
vh = herm(v)
else:
u = eigvec
if hasattr(X, 'dot'):
vh = herm(X.dot(u) / s)
else:
vh = herm(np.dot(X, u) / s)
return u, s, vh
# check if backport is actually needed:
if scipy.version.version >= LooseVersion('0.10'):
from scipy.sparse.linalg import eigs, eigsh, svds
else:
eigs, eigsh, svds = _eigs, _eigsh, _svds
|