This file is indexed.

/usr/share/pyshared/sklearn/svm/base.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
from __future__ import print_function

import numpy as np
import scipy.sparse as sp
import warnings
from abc import ABCMeta, abstractmethod

from . import libsvm, liblinear
from . import libsvm_sparse
from ..base import BaseEstimator, ClassifierMixin
from ..preprocessing import LabelEncoder
from ..utils import atleast2d_or_csr, array2d, check_random_state, column_or_1d
from ..utils import ConvergenceWarning, compute_class_weight, deprecated
from ..utils.fixes import unique
from ..utils.extmath import safe_sparse_dot
from ..externals import six


LIBSVM_IMPL = ['c_svc', 'nu_svc', 'one_class', 'epsilon_svr', 'nu_svr']


def _one_vs_one_coef(dual_coef, n_support, support_vectors):
    """Generate primal coefficients from dual coefficients
    for the one-vs-one multi class LibSVM in the case
    of a linear kernel."""

    # get 1vs1 weights for all n*(n-1) classifiers.
    # this is somewhat messy.
    # shape of dual_coef_ is nSV * (n_classes -1)
    # see docs for details
    n_class = dual_coef.shape[0] + 1

    # XXX we could do preallocation of coef but
    # would have to take care in the sparse case
    coef = []
    sv_locs = np.cumsum(np.hstack([[0], n_support]))
    for class1 in range(n_class):
        # SVs for class1:
        sv1 = support_vectors[sv_locs[class1]:sv_locs[class1 + 1], :]
        for class2 in range(class1 + 1, n_class):
            # SVs for class1:
            sv2 = support_vectors[sv_locs[class2]:sv_locs[class2 + 1], :]

            # dual coef for class1 SVs:
            alpha1 = dual_coef[class2 - 1, sv_locs[class1]:sv_locs[class1 + 1]]
            # dual coef for class2 SVs:
            alpha2 = dual_coef[class1, sv_locs[class2]:sv_locs[class2 + 1]]
            # build weight for class1 vs class2

            coef.append(safe_sparse_dot(alpha1, sv1)
                        + safe_sparse_dot(alpha2, sv2))
    return coef


class BaseLibSVM(six.with_metaclass(ABCMeta, BaseEstimator)):
    """Base class for estimators that use libsvm as backing library

    This implements support vector machine classification and regression.

    Parameter documentation is in the derived `SVC` class.
    """

    # The order of these must match the integer values in LibSVM.
    # XXX These are actually the same in the dense case. Need to factor
    # this out.
    _sparse_kernels = ["linear", "poly", "rbf", "sigmoid", "precomputed"]

    @abstractmethod
    def __init__(self, impl, kernel, degree, gamma, coef0,
                 tol, C, nu, epsilon, shrinking, probability, cache_size,
                 class_weight, verbose, max_iter, random_state):

        if not impl in LIBSVM_IMPL:  # pragma: no cover
            raise ValueError("impl should be one of %s, %s was given" % (
                LIBSVM_IMPL, impl))

        self._impl = impl
        self.kernel = kernel
        self.degree = degree
        self.gamma = gamma
        self.coef0 = coef0
        self.tol = tol
        self.C = C
        self.nu = nu
        self.epsilon = epsilon
        self.shrinking = shrinking
        self.probability = probability
        self.cache_size = cache_size
        self.class_weight = class_weight
        self.verbose = verbose
        self.max_iter = max_iter
        self.random_state = random_state

    @property
    def _pairwise(self):
        kernel = self.kernel
        return kernel == "precomputed" or callable(kernel)

    def fit(self, X, y, sample_weight=None):
        """Fit the SVM model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like, shape (n_samples,)
            Target values (class labels in classification, real numbers in
            regression)

        sample_weight : array-like, shape (n_samples,)
            Per-sample weights. Rescale C per sample. Higher weights
            force the classifier to put more emphasis on these points.

        Returns
        -------
        self : object
            Returns self.

        Notes
        ------
        If X and y are not C-ordered and contiguous arrays of np.float64 and
        X is not a scipy.sparse.csr_matrix, X and/or y may be copied.

        If X is a dense array, then the other methods will not support sparse
        matrices as input.
        """

        rnd = check_random_state(self.random_state)

        self._sparse = sp.isspmatrix(X) and not self._pairwise

        if self._sparse and self._pairwise:
            raise ValueError("Sparse precomputed kernels are not supported. "
                             "Using sparse data and dense kernels is possible "
                             "by not using the ``sparse`` parameter")

        X = atleast2d_or_csr(X, dtype=np.float64, order='C')
        y = self._validate_targets(y)

        sample_weight = np.asarray([]
                                   if sample_weight is None
                                   else sample_weight, dtype=np.float64)
        solver_type = LIBSVM_IMPL.index(self._impl)

        # input validation
        if solver_type != 2 and X.shape[0] != y.shape[0]:
            raise ValueError("X and y have incompatible shapes.\n" +
                             "X has %s samples, but y has %s." %
                             (X.shape[0], y.shape[0]))

        if self.kernel == "precomputed" and X.shape[0] != X.shape[1]:
            raise ValueError("X.shape[0] should be equal to X.shape[1]")

        if sample_weight.shape[0] > 0 and sample_weight.shape[0] != X.shape[0]:
            raise ValueError("sample_weight and X have incompatible shapes:"
                             "%r vs %r\n"
                             "Note: Sparse matrices cannot be indexed w/"
                             "boolean masks (use `indices=True` in CV)."
                             % (sample_weight.shape, X.shape))

        if (self.kernel in ['poly', 'rbf']) and (self.gamma == 0):
            # if custom gamma is not provided ...
            self._gamma = 1.0 / X.shape[1]
        else:
            self._gamma = self.gamma

        kernel = self.kernel
        if callable(kernel):
            kernel = 'precomputed'

        fit = self._sparse_fit if self._sparse else self._dense_fit
        if self.verbose:  # pragma: no cover
            print('[LibSVM]', end='')

        seed = rnd.randint(np.iinfo('i').max)
        fit(X, y, sample_weight, solver_type, kernel, random_seed=seed)
        # see comment on the other call to np.iinfo in this file

        self.shape_fit_ = X.shape

        # In binary case, we need to flip the sign of coef, intercept and
        # decision function. Use self._intercept_ internally.
        self._intercept_ = self.intercept_.copy()
        if self._impl in ['c_svc', 'nu_svc'] and len(self.classes_) == 2:
            self.intercept_ *= -1
        return self

    def _validate_targets(self, y):
        """Validation of y and class_weight.

        Default implementation for SVR and one-class; overridden in BaseSVC.
        """
        # XXX this is ugly.
        # Regression models should not have a class_weight_ attribute.
        self.class_weight_ = np.empty(0)
        return np.asarray(y, dtype=np.float64, order='C')

    def _warn_from_fit_status(self):
        assert self.fit_status_ in (0, 1)
        if self.fit_status_ == 1:
            warnings.warn('Solver terminated early (max_iter=%i).'
                          '  Consider pre-processing your data with'
                          ' StandardScaler or MinMaxScaler.'
                          % self.max_iter, ConvergenceWarning)

    def _dense_fit(self, X, y, sample_weight, solver_type, kernel,
                   random_seed):
        if callable(self.kernel):
            # you must store a reference to X to compute the kernel in predict
            # TODO: add keyword copy to copy on demand
            self.__Xfit = X
            X = self._compute_kernel(X)

            if X.shape[0] != X.shape[1]:
                raise ValueError("X.shape[0] should be equal to X.shape[1]")

        libsvm.set_verbosity_wrap(self.verbose)

        # we don't pass **self.get_params() to allow subclasses to
        # add other parameters to __init__
        self.support_, self.support_vectors_, self.n_support_, \
            self.dual_coef_, self.intercept_, self._label, self.probA_, \
            self.probB_, self.fit_status_ = libsvm.fit(
                X, y,
                svm_type=solver_type, sample_weight=sample_weight,
                class_weight=self.class_weight_, kernel=kernel, C=self.C,
                nu=self.nu, probability=self.probability, degree=self.degree,
                shrinking=self.shrinking, tol=self.tol,
                cache_size=self.cache_size, coef0=self.coef0,
                gamma=self._gamma, epsilon=self.epsilon,
                max_iter=self.max_iter, random_seed=random_seed)

        self._warn_from_fit_status()

    def _sparse_fit(self, X, y, sample_weight, solver_type, kernel,
                    random_seed):
        X.data = np.asarray(X.data, dtype=np.float64, order='C')
        X.sort_indices()

        kernel_type = self._sparse_kernels.index(kernel)

        libsvm_sparse.set_verbosity_wrap(self.verbose)

        self.support_, self.support_vectors_, dual_coef_data, \
            self.intercept_, self._label, self.n_support_, \
            self.probA_, self.probB_, self.fit_status_ = \
            libsvm_sparse.libsvm_sparse_train(
                X.shape[1], X.data, X.indices, X.indptr, y, solver_type,
                kernel_type, self.degree, self._gamma, self.coef0, self.tol,
                self.C, self.class_weight_,
                sample_weight, self.nu, self.cache_size, self.epsilon,
                int(self.shrinking), int(self.probability), self.max_iter,
                random_seed)

        self._warn_from_fit_status()

        n_class = len(self._label) - 1
        n_SV = self.support_vectors_.shape[0]

        dual_coef_indices = np.tile(np.arange(n_SV), n_class)
        dual_coef_indptr = np.arange(0, dual_coef_indices.size + 1,
                                     dual_coef_indices.size / n_class)
        self.dual_coef_ = sp.csr_matrix(
            (dual_coef_data, dual_coef_indices, dual_coef_indptr),
            (n_class, n_SV))

    def predict(self, X):
        """Perform regression on samples in X.

        For an one-class model, +1 or -1 is returned.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)

        Returns
        -------
        y_pred : array, shape (n_samples,)
        """
        X = self._validate_for_predict(X)
        predict = self._sparse_predict if self._sparse else self._dense_predict
        return predict(X)

    def _dense_predict(self, X):
        n_samples, n_features = X.shape
        X = self._compute_kernel(X)
        if X.ndim == 1:
            X = array2d(X, order='C')

        kernel = self.kernel
        if callable(self.kernel):
            kernel = 'precomputed'
            if X.shape[1] != self.shape_fit_[0]:
                raise ValueError("X.shape[1] = %d should be equal to %d, "
                                 "the number of samples at training time" %
                                 (X.shape[1], self.shape_fit_[0]))

        svm_type = LIBSVM_IMPL.index(self._impl)

        return libsvm.predict(
            X, self.support_, self.support_vectors_, self.n_support_,
            self.dual_coef_, self._intercept_, self._label,
            self.probA_, self.probB_, svm_type=svm_type, kernel=kernel,
            degree=self.degree, coef0=self.coef0, gamma=self._gamma,
            cache_size=self.cache_size)

    def _sparse_predict(self, X):
        X = sp.csr_matrix(X, dtype=np.float64)

        kernel = self.kernel
        if callable(kernel):
            kernel = 'precomputed'

        kernel_type = self._sparse_kernels.index(kernel)

        C = 0.0  # C is not useful here

        return libsvm_sparse.libsvm_sparse_predict(
            X.data, X.indices, X.indptr,
            self.support_vectors_.data,
            self.support_vectors_.indices,
            self.support_vectors_.indptr,
            self.dual_coef_.data, self._intercept_,
            LIBSVM_IMPL.index(self._impl), kernel_type,
            self.degree, self._gamma, self.coef0, self.tol,
            C, self.class_weight_,
            self.nu, self.epsilon, self.shrinking,
            self.probability, self.n_support_, self._label,
            self.probA_, self.probB_)

    def _compute_kernel(self, X):
        """Return the data transformed by a callable kernel"""
        if callable(self.kernel):
            # in the case of precomputed kernel given as a function, we
            # have to compute explicitly the kernel matrix
            kernel = self.kernel(X, self.__Xfit)
            if sp.issparse(kernel):
                kernel = kernel.toarray()
            X = np.asarray(kernel, dtype=np.float64, order='C')
        return X

    def decision_function(self, X):
        """Distance of the samples X to the separating hyperplane.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        X : array-like, shape = [n_samples, n_class * (n_class-1) / 2]
            Returns the decision function of the sample for each class
            in the model.
        """
        if self._sparse:
            raise NotImplementedError("Decision_function not supported for"
                                      " sparse SVM.")

        X = self._validate_for_predict(X)
        X = self._compute_kernel(X)

        kernel = self.kernel
        if callable(kernel):
            kernel = 'precomputed'

        dec_func = libsvm.decision_function(
            X, self.support_, self.support_vectors_, self.n_support_,
            self.dual_coef_, self._intercept_, self._label,
            self.probA_, self.probB_,
            svm_type=LIBSVM_IMPL.index(self._impl),
            kernel=kernel, degree=self.degree, cache_size=self.cache_size,
            coef0=self.coef0, gamma=self._gamma)

        # In binary case, we need to flip the sign of coef, intercept and
        # decision function.
        if self._impl in ['c_svc', 'nu_svc'] and len(self.classes_) == 2:
            return -dec_func

        return dec_func

    def _validate_for_predict(self, X):
        X = atleast2d_or_csr(X, dtype=np.float64, order="C")
        if self._sparse and not sp.isspmatrix(X):
            X = sp.csr_matrix(X)
        if self._sparse:
            X.sort_indices()

        if sp.issparse(X) and not self._sparse and not callable(self.kernel):
            raise ValueError(
                "cannot use sparse input in %r trained on dense data"
                % type(self).__name__)
        n_samples, n_features = X.shape

        if self.kernel == "precomputed":
            if X.shape[1] != self.shape_fit_[0]:
                raise ValueError("X.shape[1] = %d should be equal to %d, "
                                 "the number of samples at training time" %
                                 (X.shape[1], self.shape_fit_[0]))
        elif n_features != self.shape_fit_[1]:
            raise ValueError("X.shape[1] = %d should be equal to %d, "
                             "the number of features at training time" %
                             (n_features, self.shape_fit_[1]))
        return X

    @property
    def coef_(self):
        if self.kernel != 'linear':
            raise ValueError('coef_ is only available when using a '
                             'linear kernel')

        if self.dual_coef_.shape[0] == 1:
            # binary classifier
            coef = -safe_sparse_dot(self.dual_coef_, self.support_vectors_)
        else:
            # 1vs1 classifier
            coef = _one_vs_one_coef(self.dual_coef_, self.n_support_,
                                    self.support_vectors_)
            if sp.issparse(coef[0]):
                coef = sp.vstack(coef).tocsr()
            else:
                coef = np.vstack(coef)

        # coef_ being a read-only property it's better to mark the value as
        # immutable to avoid hiding potential bugs for the unsuspecting user
        if sp.issparse(coef):
            # sparse matrix do not have global flags
            coef.data.flags.writeable = False
        else:
            # regular dense array
            coef.flags.writeable = False
        return coef


class BaseSVC(BaseLibSVM, ClassifierMixin):
    """ABC for LibSVM-based classifiers."""

    def _validate_targets(self, y):
        y = column_or_1d(y, warn=True)
        cls, y = unique(y, return_inverse=True)
        self.class_weight_ = compute_class_weight(self.class_weight, cls, y)
        if len(cls) < 2:
            raise ValueError(
                "The number of classes has to be greater than one; got %d"
                % len(cls))

        self.classes_ = cls

        return np.asarray(y, dtype=np.float64, order='C')

    def predict(self, X):
        """Perform classification on samples in X.

        For an one-class model, +1 or -1 is returned.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]

        Returns
        -------
        y_pred : array, shape = [n_samples]
            Class labels for samples in X.
        """
        y = super(BaseSVC, self).predict(X)
        return self.classes_.take(y.astype(np.int))

    def predict_proba(self, X):
        """Compute probabilities of possible outcomes for samples in X.

        The model need to have probability information computed at training
        time: fit with attribute `probability` set to True.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        X : array-like, shape = [n_samples, n_classes]
            Returns the probability of the sample for each class in
            the model. The columns correspond to the classes in sorted
            order, as they appear in the attribute `classes_`.

        Notes
        -----
        The probability model is created using cross validation, so
        the results can be slightly different than those obtained by
        predict. Also, it will produce meaningless results on very small
        datasets.
        """
        if not self.probability:
            raise NotImplementedError(
                "probability estimates must be enabled to use this method")

        if self._impl not in ('c_svc', 'nu_svc'):
            raise NotImplementedError("predict_proba only implemented for SVC "
                                      "and NuSVC")

        X = self._validate_for_predict(X)
        pred_proba = (self._sparse_predict_proba
                      if self._sparse else self._dense_predict_proba)
        return pred_proba(X)

    def predict_log_proba(self, X):
        """Compute log probabilities of possible outcomes for samples in X.

        The model need to have probability information computed at training
        time: fit with attribute `probability` set to True.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        X : array-like, shape = [n_samples, n_classes]
            Returns the log-probabilities of the sample for each class in
            the model. The columns correspond to the classes in sorted
            order, as they appear in the attribute `classes_`.

        Notes
        -----
        The probability model is created using cross validation, so
        the results can be slightly different than those obtained by
        predict. Also, it will produce meaningless results on very small
        datasets.
        """
        return np.log(self.predict_proba(X))

    def _dense_predict_proba(self, X):
        X = self._compute_kernel(X)

        kernel = self.kernel
        if callable(kernel):
            kernel = 'precomputed'

        svm_type = LIBSVM_IMPL.index(self._impl)
        pprob = libsvm.predict_proba(
            X, self.support_, self.support_vectors_, self.n_support_,
            self.dual_coef_, self._intercept_, self._label,
            self.probA_, self.probB_,
            svm_type=svm_type, kernel=kernel, degree=self.degree,
            cache_size=self.cache_size, coef0=self.coef0, gamma=self._gamma)

        return pprob

    def _sparse_predict_proba(self, X):
        X.data = np.asarray(X.data, dtype=np.float64, order='C')

        kernel = self.kernel
        if callable(kernel):
            kernel = 'precomputed'

        kernel_type = self._sparse_kernels.index(kernel)

        return libsvm_sparse.libsvm_sparse_predict_proba(
            X.data, X.indices, X.indptr,
            self.support_vectors_.data,
            self.support_vectors_.indices,
            self.support_vectors_.indptr,
            self.dual_coef_.data, self._intercept_,
            LIBSVM_IMPL.index(self._impl), kernel_type,
            self.degree, self._gamma, self.coef0, self.tol,
            self.C, self.class_weight_,
            self.nu, self.epsilon, self.shrinking,
            self.probability, self.n_support_, self._label,
            self.probA_, self.probB_)

    @property
    @deprecated("The ``label_`` attribute has been renamed to ``classes_`` "
                "for consistency and will be removed in 0.15.")
    def label_(self):
        return self.classes_


class BaseLibLinear(six.with_metaclass(ABCMeta, BaseEstimator)):
    """Base for classes binding liblinear (dense and sparse versions)"""

    _solver_type_dict = {
        'PL2_LLR_D0': 0,  # L2 penalty, logistic regression
        'PL2_LL2_D1': 1,  # L2 penalty, L2 loss, dual form
        'PL2_LL2_D0': 2,  # L2 penalty, L2 loss, primal form
        'PL2_LL1_D1': 3,  # L2 penalty, L1 Loss, dual form
        'MC_SVC': 4,      # Multi-class Support Vector Classification
        'PL1_LL2_D0': 5,  # L1 penalty, L2 Loss, primal form
        'PL1_LLR_D0': 6,  # L1 penalty, logistic regression
        'PL2_LLR_D1': 7,  # L2 penalty, logistic regression, dual form
    }

    @abstractmethod
    def __init__(self, penalty='l2', loss='l2', dual=True, tol=1e-4, C=1.0,
                 multi_class='ovr', fit_intercept=True, intercept_scaling=1,
                 class_weight=None, verbose=0, random_state=None):

        self.penalty = penalty
        self.loss = loss
        self.dual = dual
        self.tol = tol
        self.C = C
        self.fit_intercept = fit_intercept
        self.intercept_scaling = intercept_scaling
        self.multi_class = multi_class
        self.class_weight = class_weight
        self.verbose = verbose
        self.random_state = random_state

        # Check that the arguments given are valid:
        self._get_solver_type()

    def _get_solver_type(self):
        """Find the liblinear magic number for the solver.

        This number depends on the values of the following attributes:
          - multi_class
          - penalty
          - loss
          - dual
        """
        if self.multi_class == 'crammer_singer':
            solver_type = 'MC_SVC'
        else:
            if self.multi_class != 'ovr':
                raise ValueError("`multi_class` must be one of `ovr`, "
                                 "`crammer_singer`")
            solver_type = "P%s_L%s_D%d" % (
                self.penalty.upper(), self.loss.upper(), int(self.dual))
        if not solver_type in self._solver_type_dict:
            if self.penalty.upper() == 'L1' and self.loss.upper() == 'L1':
                error_string = ("The combination of penalty='l1' "
                                "and loss='l1' is not supported.")
            elif self.penalty.upper() == 'L2' and self.loss.upper() == 'L1':
                # this has to be in primal
                error_string = ("penalty='l2' and ploss='l1' is "
                                "only supported when dual='true'.")
            else:
                # only PL1 in dual remains
                error_string = ("penalty='l1' is only supported "
                                "when dual='false'.")
            raise ValueError('Not supported set of arguments: '
                             + error_string)
        return self._solver_type_dict[solver_type]

    def fit(self, X, y):
        """Fit the model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples]
            Target vector relative to X

        Returns
        -------
        self : object
            Returns self.
        """
        self._enc = LabelEncoder()
        y = self._enc.fit_transform(y)
        if len(self.classes_) < 2:
            raise ValueError("The number of classes has to be greater than"
                             " one.")

        X = atleast2d_or_csr(X, dtype=np.float64, order="C")

        self.class_weight_ = compute_class_weight(self.class_weight,
                                                  self.classes_, y)

        if X.shape[0] != y.shape[0]:
            raise ValueError("X and y have incompatible shapes.\n"
                             "X has %s samples, but y has %s." %
                             (X.shape[0], y.shape[0]))

        liblinear.set_verbosity_wrap(self.verbose)

        rnd = check_random_state(self.random_state)
        if self.verbose:
            print('[LibLinear]', end='')

        # LibLinear wants targets as doubles, even for classification
        y = np.asarray(y, dtype=np.float64).ravel()
        self.raw_coef_ = liblinear.train_wrap(X, y,
                                              sp.isspmatrix(X),
                                              self._get_solver_type(),
                                              self.tol, self._get_bias(),
                                              self.C,
                                              self.class_weight_,
                                              rnd.randint(np.iinfo('i').max))
        # Regarding rnd.randint(..) in the above signature:
        # seed for srand in range [0..INT_MAX); due to limitations in Numpy
        # on 32-bit platforms, we can't get to the UINT_MAX limit that
        # srand supports

        if self.fit_intercept:
            self.coef_ = self.raw_coef_[:, :-1]
            self.intercept_ = self.intercept_scaling * self.raw_coef_[:, -1]
        else:
            self.coef_ = self.raw_coef_
            self.intercept_ = 0.

        return self

    @property
    def classes_(self):
        return self._enc.classes_

    @property
    @deprecated("The ``label_`` attribute has been renamed to ``classes_`` "
                "for consistency and will be removed in 0.15.")
    def label_(self):
        return self._enc.classes_

    def _get_bias(self):
        if self.fit_intercept:
            return self.intercept_scaling
        else:
            return -1.0


libsvm.set_verbosity_wrap(0)
libsvm_sparse.set_verbosity_wrap(0)
liblinear.set_verbosity_wrap(0)