/usr/share/pyshared/sklearn/svm/base.py is in python-sklearn 0.14.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 | from __future__ import print_function
import numpy as np
import scipy.sparse as sp
import warnings
from abc import ABCMeta, abstractmethod
from . import libsvm, liblinear
from . import libsvm_sparse
from ..base import BaseEstimator, ClassifierMixin
from ..preprocessing import LabelEncoder
from ..utils import atleast2d_or_csr, array2d, check_random_state, column_or_1d
from ..utils import ConvergenceWarning, compute_class_weight, deprecated
from ..utils.fixes import unique
from ..utils.extmath import safe_sparse_dot
from ..externals import six
LIBSVM_IMPL = ['c_svc', 'nu_svc', 'one_class', 'epsilon_svr', 'nu_svr']
def _one_vs_one_coef(dual_coef, n_support, support_vectors):
"""Generate primal coefficients from dual coefficients
for the one-vs-one multi class LibSVM in the case
of a linear kernel."""
# get 1vs1 weights for all n*(n-1) classifiers.
# this is somewhat messy.
# shape of dual_coef_ is nSV * (n_classes -1)
# see docs for details
n_class = dual_coef.shape[0] + 1
# XXX we could do preallocation of coef but
# would have to take care in the sparse case
coef = []
sv_locs = np.cumsum(np.hstack([[0], n_support]))
for class1 in range(n_class):
# SVs for class1:
sv1 = support_vectors[sv_locs[class1]:sv_locs[class1 + 1], :]
for class2 in range(class1 + 1, n_class):
# SVs for class1:
sv2 = support_vectors[sv_locs[class2]:sv_locs[class2 + 1], :]
# dual coef for class1 SVs:
alpha1 = dual_coef[class2 - 1, sv_locs[class1]:sv_locs[class1 + 1]]
# dual coef for class2 SVs:
alpha2 = dual_coef[class1, sv_locs[class2]:sv_locs[class2 + 1]]
# build weight for class1 vs class2
coef.append(safe_sparse_dot(alpha1, sv1)
+ safe_sparse_dot(alpha2, sv2))
return coef
class BaseLibSVM(six.with_metaclass(ABCMeta, BaseEstimator)):
"""Base class for estimators that use libsvm as backing library
This implements support vector machine classification and regression.
Parameter documentation is in the derived `SVC` class.
"""
# The order of these must match the integer values in LibSVM.
# XXX These are actually the same in the dense case. Need to factor
# this out.
_sparse_kernels = ["linear", "poly", "rbf", "sigmoid", "precomputed"]
@abstractmethod
def __init__(self, impl, kernel, degree, gamma, coef0,
tol, C, nu, epsilon, shrinking, probability, cache_size,
class_weight, verbose, max_iter, random_state):
if not impl in LIBSVM_IMPL: # pragma: no cover
raise ValueError("impl should be one of %s, %s was given" % (
LIBSVM_IMPL, impl))
self._impl = impl
self.kernel = kernel
self.degree = degree
self.gamma = gamma
self.coef0 = coef0
self.tol = tol
self.C = C
self.nu = nu
self.epsilon = epsilon
self.shrinking = shrinking
self.probability = probability
self.cache_size = cache_size
self.class_weight = class_weight
self.verbose = verbose
self.max_iter = max_iter
self.random_state = random_state
@property
def _pairwise(self):
kernel = self.kernel
return kernel == "precomputed" or callable(kernel)
def fit(self, X, y, sample_weight=None):
"""Fit the SVM model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like, shape (n_samples,)
Target values (class labels in classification, real numbers in
regression)
sample_weight : array-like, shape (n_samples,)
Per-sample weights. Rescale C per sample. Higher weights
force the classifier to put more emphasis on these points.
Returns
-------
self : object
Returns self.
Notes
------
If X and y are not C-ordered and contiguous arrays of np.float64 and
X is not a scipy.sparse.csr_matrix, X and/or y may be copied.
If X is a dense array, then the other methods will not support sparse
matrices as input.
"""
rnd = check_random_state(self.random_state)
self._sparse = sp.isspmatrix(X) and not self._pairwise
if self._sparse and self._pairwise:
raise ValueError("Sparse precomputed kernels are not supported. "
"Using sparse data and dense kernels is possible "
"by not using the ``sparse`` parameter")
X = atleast2d_or_csr(X, dtype=np.float64, order='C')
y = self._validate_targets(y)
sample_weight = np.asarray([]
if sample_weight is None
else sample_weight, dtype=np.float64)
solver_type = LIBSVM_IMPL.index(self._impl)
# input validation
if solver_type != 2 and X.shape[0] != y.shape[0]:
raise ValueError("X and y have incompatible shapes.\n" +
"X has %s samples, but y has %s." %
(X.shape[0], y.shape[0]))
if self.kernel == "precomputed" and X.shape[0] != X.shape[1]:
raise ValueError("X.shape[0] should be equal to X.shape[1]")
if sample_weight.shape[0] > 0 and sample_weight.shape[0] != X.shape[0]:
raise ValueError("sample_weight and X have incompatible shapes:"
"%r vs %r\n"
"Note: Sparse matrices cannot be indexed w/"
"boolean masks (use `indices=True` in CV)."
% (sample_weight.shape, X.shape))
if (self.kernel in ['poly', 'rbf']) and (self.gamma == 0):
# if custom gamma is not provided ...
self._gamma = 1.0 / X.shape[1]
else:
self._gamma = self.gamma
kernel = self.kernel
if callable(kernel):
kernel = 'precomputed'
fit = self._sparse_fit if self._sparse else self._dense_fit
if self.verbose: # pragma: no cover
print('[LibSVM]', end='')
seed = rnd.randint(np.iinfo('i').max)
fit(X, y, sample_weight, solver_type, kernel, random_seed=seed)
# see comment on the other call to np.iinfo in this file
self.shape_fit_ = X.shape
# In binary case, we need to flip the sign of coef, intercept and
# decision function. Use self._intercept_ internally.
self._intercept_ = self.intercept_.copy()
if self._impl in ['c_svc', 'nu_svc'] and len(self.classes_) == 2:
self.intercept_ *= -1
return self
def _validate_targets(self, y):
"""Validation of y and class_weight.
Default implementation for SVR and one-class; overridden in BaseSVC.
"""
# XXX this is ugly.
# Regression models should not have a class_weight_ attribute.
self.class_weight_ = np.empty(0)
return np.asarray(y, dtype=np.float64, order='C')
def _warn_from_fit_status(self):
assert self.fit_status_ in (0, 1)
if self.fit_status_ == 1:
warnings.warn('Solver terminated early (max_iter=%i).'
' Consider pre-processing your data with'
' StandardScaler or MinMaxScaler.'
% self.max_iter, ConvergenceWarning)
def _dense_fit(self, X, y, sample_weight, solver_type, kernel,
random_seed):
if callable(self.kernel):
# you must store a reference to X to compute the kernel in predict
# TODO: add keyword copy to copy on demand
self.__Xfit = X
X = self._compute_kernel(X)
if X.shape[0] != X.shape[1]:
raise ValueError("X.shape[0] should be equal to X.shape[1]")
libsvm.set_verbosity_wrap(self.verbose)
# we don't pass **self.get_params() to allow subclasses to
# add other parameters to __init__
self.support_, self.support_vectors_, self.n_support_, \
self.dual_coef_, self.intercept_, self._label, self.probA_, \
self.probB_, self.fit_status_ = libsvm.fit(
X, y,
svm_type=solver_type, sample_weight=sample_weight,
class_weight=self.class_weight_, kernel=kernel, C=self.C,
nu=self.nu, probability=self.probability, degree=self.degree,
shrinking=self.shrinking, tol=self.tol,
cache_size=self.cache_size, coef0=self.coef0,
gamma=self._gamma, epsilon=self.epsilon,
max_iter=self.max_iter, random_seed=random_seed)
self._warn_from_fit_status()
def _sparse_fit(self, X, y, sample_weight, solver_type, kernel,
random_seed):
X.data = np.asarray(X.data, dtype=np.float64, order='C')
X.sort_indices()
kernel_type = self._sparse_kernels.index(kernel)
libsvm_sparse.set_verbosity_wrap(self.verbose)
self.support_, self.support_vectors_, dual_coef_data, \
self.intercept_, self._label, self.n_support_, \
self.probA_, self.probB_, self.fit_status_ = \
libsvm_sparse.libsvm_sparse_train(
X.shape[1], X.data, X.indices, X.indptr, y, solver_type,
kernel_type, self.degree, self._gamma, self.coef0, self.tol,
self.C, self.class_weight_,
sample_weight, self.nu, self.cache_size, self.epsilon,
int(self.shrinking), int(self.probability), self.max_iter,
random_seed)
self._warn_from_fit_status()
n_class = len(self._label) - 1
n_SV = self.support_vectors_.shape[0]
dual_coef_indices = np.tile(np.arange(n_SV), n_class)
dual_coef_indptr = np.arange(0, dual_coef_indices.size + 1,
dual_coef_indices.size / n_class)
self.dual_coef_ = sp.csr_matrix(
(dual_coef_data, dual_coef_indices, dual_coef_indptr),
(n_class, n_SV))
def predict(self, X):
"""Perform regression on samples in X.
For an one-class model, +1 or -1 is returned.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Returns
-------
y_pred : array, shape (n_samples,)
"""
X = self._validate_for_predict(X)
predict = self._sparse_predict if self._sparse else self._dense_predict
return predict(X)
def _dense_predict(self, X):
n_samples, n_features = X.shape
X = self._compute_kernel(X)
if X.ndim == 1:
X = array2d(X, order='C')
kernel = self.kernel
if callable(self.kernel):
kernel = 'precomputed'
if X.shape[1] != self.shape_fit_[0]:
raise ValueError("X.shape[1] = %d should be equal to %d, "
"the number of samples at training time" %
(X.shape[1], self.shape_fit_[0]))
svm_type = LIBSVM_IMPL.index(self._impl)
return libsvm.predict(
X, self.support_, self.support_vectors_, self.n_support_,
self.dual_coef_, self._intercept_, self._label,
self.probA_, self.probB_, svm_type=svm_type, kernel=kernel,
degree=self.degree, coef0=self.coef0, gamma=self._gamma,
cache_size=self.cache_size)
def _sparse_predict(self, X):
X = sp.csr_matrix(X, dtype=np.float64)
kernel = self.kernel
if callable(kernel):
kernel = 'precomputed'
kernel_type = self._sparse_kernels.index(kernel)
C = 0.0 # C is not useful here
return libsvm_sparse.libsvm_sparse_predict(
X.data, X.indices, X.indptr,
self.support_vectors_.data,
self.support_vectors_.indices,
self.support_vectors_.indptr,
self.dual_coef_.data, self._intercept_,
LIBSVM_IMPL.index(self._impl), kernel_type,
self.degree, self._gamma, self.coef0, self.tol,
C, self.class_weight_,
self.nu, self.epsilon, self.shrinking,
self.probability, self.n_support_, self._label,
self.probA_, self.probB_)
def _compute_kernel(self, X):
"""Return the data transformed by a callable kernel"""
if callable(self.kernel):
# in the case of precomputed kernel given as a function, we
# have to compute explicitly the kernel matrix
kernel = self.kernel(X, self.__Xfit)
if sp.issparse(kernel):
kernel = kernel.toarray()
X = np.asarray(kernel, dtype=np.float64, order='C')
return X
def decision_function(self, X):
"""Distance of the samples X to the separating hyperplane.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
X : array-like, shape = [n_samples, n_class * (n_class-1) / 2]
Returns the decision function of the sample for each class
in the model.
"""
if self._sparse:
raise NotImplementedError("Decision_function not supported for"
" sparse SVM.")
X = self._validate_for_predict(X)
X = self._compute_kernel(X)
kernel = self.kernel
if callable(kernel):
kernel = 'precomputed'
dec_func = libsvm.decision_function(
X, self.support_, self.support_vectors_, self.n_support_,
self.dual_coef_, self._intercept_, self._label,
self.probA_, self.probB_,
svm_type=LIBSVM_IMPL.index(self._impl),
kernel=kernel, degree=self.degree, cache_size=self.cache_size,
coef0=self.coef0, gamma=self._gamma)
# In binary case, we need to flip the sign of coef, intercept and
# decision function.
if self._impl in ['c_svc', 'nu_svc'] and len(self.classes_) == 2:
return -dec_func
return dec_func
def _validate_for_predict(self, X):
X = atleast2d_or_csr(X, dtype=np.float64, order="C")
if self._sparse and not sp.isspmatrix(X):
X = sp.csr_matrix(X)
if self._sparse:
X.sort_indices()
if sp.issparse(X) and not self._sparse and not callable(self.kernel):
raise ValueError(
"cannot use sparse input in %r trained on dense data"
% type(self).__name__)
n_samples, n_features = X.shape
if self.kernel == "precomputed":
if X.shape[1] != self.shape_fit_[0]:
raise ValueError("X.shape[1] = %d should be equal to %d, "
"the number of samples at training time" %
(X.shape[1], self.shape_fit_[0]))
elif n_features != self.shape_fit_[1]:
raise ValueError("X.shape[1] = %d should be equal to %d, "
"the number of features at training time" %
(n_features, self.shape_fit_[1]))
return X
@property
def coef_(self):
if self.kernel != 'linear':
raise ValueError('coef_ is only available when using a '
'linear kernel')
if self.dual_coef_.shape[0] == 1:
# binary classifier
coef = -safe_sparse_dot(self.dual_coef_, self.support_vectors_)
else:
# 1vs1 classifier
coef = _one_vs_one_coef(self.dual_coef_, self.n_support_,
self.support_vectors_)
if sp.issparse(coef[0]):
coef = sp.vstack(coef).tocsr()
else:
coef = np.vstack(coef)
# coef_ being a read-only property it's better to mark the value as
# immutable to avoid hiding potential bugs for the unsuspecting user
if sp.issparse(coef):
# sparse matrix do not have global flags
coef.data.flags.writeable = False
else:
# regular dense array
coef.flags.writeable = False
return coef
class BaseSVC(BaseLibSVM, ClassifierMixin):
"""ABC for LibSVM-based classifiers."""
def _validate_targets(self, y):
y = column_or_1d(y, warn=True)
cls, y = unique(y, return_inverse=True)
self.class_weight_ = compute_class_weight(self.class_weight, cls, y)
if len(cls) < 2:
raise ValueError(
"The number of classes has to be greater than one; got %d"
% len(cls))
self.classes_ = cls
return np.asarray(y, dtype=np.float64, order='C')
def predict(self, X):
"""Perform classification on samples in X.
For an one-class model, +1 or -1 is returned.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns
-------
y_pred : array, shape = [n_samples]
Class labels for samples in X.
"""
y = super(BaseSVC, self).predict(X)
return self.classes_.take(y.astype(np.int))
def predict_proba(self, X):
"""Compute probabilities of possible outcomes for samples in X.
The model need to have probability information computed at training
time: fit with attribute `probability` set to True.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
X : array-like, shape = [n_samples, n_classes]
Returns the probability of the sample for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute `classes_`.
Notes
-----
The probability model is created using cross validation, so
the results can be slightly different than those obtained by
predict. Also, it will produce meaningless results on very small
datasets.
"""
if not self.probability:
raise NotImplementedError(
"probability estimates must be enabled to use this method")
if self._impl not in ('c_svc', 'nu_svc'):
raise NotImplementedError("predict_proba only implemented for SVC "
"and NuSVC")
X = self._validate_for_predict(X)
pred_proba = (self._sparse_predict_proba
if self._sparse else self._dense_predict_proba)
return pred_proba(X)
def predict_log_proba(self, X):
"""Compute log probabilities of possible outcomes for samples in X.
The model need to have probability information computed at training
time: fit with attribute `probability` set to True.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
X : array-like, shape = [n_samples, n_classes]
Returns the log-probabilities of the sample for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute `classes_`.
Notes
-----
The probability model is created using cross validation, so
the results can be slightly different than those obtained by
predict. Also, it will produce meaningless results on very small
datasets.
"""
return np.log(self.predict_proba(X))
def _dense_predict_proba(self, X):
X = self._compute_kernel(X)
kernel = self.kernel
if callable(kernel):
kernel = 'precomputed'
svm_type = LIBSVM_IMPL.index(self._impl)
pprob = libsvm.predict_proba(
X, self.support_, self.support_vectors_, self.n_support_,
self.dual_coef_, self._intercept_, self._label,
self.probA_, self.probB_,
svm_type=svm_type, kernel=kernel, degree=self.degree,
cache_size=self.cache_size, coef0=self.coef0, gamma=self._gamma)
return pprob
def _sparse_predict_proba(self, X):
X.data = np.asarray(X.data, dtype=np.float64, order='C')
kernel = self.kernel
if callable(kernel):
kernel = 'precomputed'
kernel_type = self._sparse_kernels.index(kernel)
return libsvm_sparse.libsvm_sparse_predict_proba(
X.data, X.indices, X.indptr,
self.support_vectors_.data,
self.support_vectors_.indices,
self.support_vectors_.indptr,
self.dual_coef_.data, self._intercept_,
LIBSVM_IMPL.index(self._impl), kernel_type,
self.degree, self._gamma, self.coef0, self.tol,
self.C, self.class_weight_,
self.nu, self.epsilon, self.shrinking,
self.probability, self.n_support_, self._label,
self.probA_, self.probB_)
@property
@deprecated("The ``label_`` attribute has been renamed to ``classes_`` "
"for consistency and will be removed in 0.15.")
def label_(self):
return self.classes_
class BaseLibLinear(six.with_metaclass(ABCMeta, BaseEstimator)):
"""Base for classes binding liblinear (dense and sparse versions)"""
_solver_type_dict = {
'PL2_LLR_D0': 0, # L2 penalty, logistic regression
'PL2_LL2_D1': 1, # L2 penalty, L2 loss, dual form
'PL2_LL2_D0': 2, # L2 penalty, L2 loss, primal form
'PL2_LL1_D1': 3, # L2 penalty, L1 Loss, dual form
'MC_SVC': 4, # Multi-class Support Vector Classification
'PL1_LL2_D0': 5, # L1 penalty, L2 Loss, primal form
'PL1_LLR_D0': 6, # L1 penalty, logistic regression
'PL2_LLR_D1': 7, # L2 penalty, logistic regression, dual form
}
@abstractmethod
def __init__(self, penalty='l2', loss='l2', dual=True, tol=1e-4, C=1.0,
multi_class='ovr', fit_intercept=True, intercept_scaling=1,
class_weight=None, verbose=0, random_state=None):
self.penalty = penalty
self.loss = loss
self.dual = dual
self.tol = tol
self.C = C
self.fit_intercept = fit_intercept
self.intercept_scaling = intercept_scaling
self.multi_class = multi_class
self.class_weight = class_weight
self.verbose = verbose
self.random_state = random_state
# Check that the arguments given are valid:
self._get_solver_type()
def _get_solver_type(self):
"""Find the liblinear magic number for the solver.
This number depends on the values of the following attributes:
- multi_class
- penalty
- loss
- dual
"""
if self.multi_class == 'crammer_singer':
solver_type = 'MC_SVC'
else:
if self.multi_class != 'ovr':
raise ValueError("`multi_class` must be one of `ovr`, "
"`crammer_singer`")
solver_type = "P%s_L%s_D%d" % (
self.penalty.upper(), self.loss.upper(), int(self.dual))
if not solver_type in self._solver_type_dict:
if self.penalty.upper() == 'L1' and self.loss.upper() == 'L1':
error_string = ("The combination of penalty='l1' "
"and loss='l1' is not supported.")
elif self.penalty.upper() == 'L2' and self.loss.upper() == 'L1':
# this has to be in primal
error_string = ("penalty='l2' and ploss='l1' is "
"only supported when dual='true'.")
else:
# only PL1 in dual remains
error_string = ("penalty='l1' is only supported "
"when dual='false'.")
raise ValueError('Not supported set of arguments: '
+ error_string)
return self._solver_type_dict[solver_type]
def fit(self, X, y):
"""Fit the model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vector, where n_samples in the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples]
Target vector relative to X
Returns
-------
self : object
Returns self.
"""
self._enc = LabelEncoder()
y = self._enc.fit_transform(y)
if len(self.classes_) < 2:
raise ValueError("The number of classes has to be greater than"
" one.")
X = atleast2d_or_csr(X, dtype=np.float64, order="C")
self.class_weight_ = compute_class_weight(self.class_weight,
self.classes_, y)
if X.shape[0] != y.shape[0]:
raise ValueError("X and y have incompatible shapes.\n"
"X has %s samples, but y has %s." %
(X.shape[0], y.shape[0]))
liblinear.set_verbosity_wrap(self.verbose)
rnd = check_random_state(self.random_state)
if self.verbose:
print('[LibLinear]', end='')
# LibLinear wants targets as doubles, even for classification
y = np.asarray(y, dtype=np.float64).ravel()
self.raw_coef_ = liblinear.train_wrap(X, y,
sp.isspmatrix(X),
self._get_solver_type(),
self.tol, self._get_bias(),
self.C,
self.class_weight_,
rnd.randint(np.iinfo('i').max))
# Regarding rnd.randint(..) in the above signature:
# seed for srand in range [0..INT_MAX); due to limitations in Numpy
# on 32-bit platforms, we can't get to the UINT_MAX limit that
# srand supports
if self.fit_intercept:
self.coef_ = self.raw_coef_[:, :-1]
self.intercept_ = self.intercept_scaling * self.raw_coef_[:, -1]
else:
self.coef_ = self.raw_coef_
self.intercept_ = 0.
return self
@property
def classes_(self):
return self._enc.classes_
@property
@deprecated("The ``label_`` attribute has been renamed to ``classes_`` "
"for consistency and will be removed in 0.15.")
def label_(self):
return self._enc.classes_
def _get_bias(self):
if self.fit_intercept:
return self.intercept_scaling
else:
return -1.0
libsvm.set_verbosity_wrap(0)
libsvm_sparse.set_verbosity_wrap(0)
liblinear.set_verbosity_wrap(0)
|