This file is indexed.

/usr/share/pyshared/sklearn/random_projection.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
# -*- coding: utf8
"""Random Projection transformers

Random Projections are a simple and computationally efficient way to
reduce the dimensionality of the data by trading a controlled amount
of accuracy (as additional variance) for faster processing times and
smaller model sizes.

The dimensions and distribution of Random Projections matrices are
controlled so as to preserve the pairwise distances between any two
samples of the dataset.

The main theoretical result behind the efficiency of random projection is the
`Johnson-Lindenstrauss lemma (quoting Wikipedia)
<http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma>`_:

  In mathematics, the Johnson-Lindenstrauss lemma is a result
  concerning low-distortion embeddings of points from high-dimensional
  into low-dimensional Euclidean space. The lemma states that a small set
  of points in a high-dimensional space can be embedded into a space of
  much lower dimension in such a way that distances between the points are
  nearly preserved. The map used for the embedding is at least Lipschitz,
  and can even be taken to be an orthogonal projection.

"""
# Authors: Olivier Grisel <olivier.grisel@ensta.org>,
#          Arnaud Joly <a.joly@ulg.ac.be>
# License: BSD 3 clause

from __future__ import division
import warnings
from abc import ABCMeta, abstractmethod

import numpy as np
from numpy.testing import assert_equal
import scipy.sparse as sp

from .base import BaseEstimator, TransformerMixin
from .externals import six
from .externals.six.moves import xrange
from .utils import check_random_state
from .utils.extmath import safe_sparse_dot
from .utils.random import sample_without_replacement
from .utils.validation import check_arrays


__all__ = ["SparseRandomProjection",
           "GaussianRandomProjection",
           "johnson_lindenstrauss_min_dim"]


def johnson_lindenstrauss_min_dim(n_samples, eps=0.1):
    """Find a 'safe' number of components to randomly project to

    The distortion introduced by a random projection `p` only changes the
    distance between two points by a factor (1 ± eps) in an euclidean space
    with good probability. The projection `p` is an eps-embedding as defined
    by:

      (1 - eps) ||u - v||^2 < ||p(u) - p(v)||^2 < (1 + eps) ||u - v||^2

    Where u and v are any rows taken from a dataset of shape [n_samples,
    n_features], eps is in ]0, 1[ and p is a projection by a random Gaussian
    N(0, 1) matrix with shape [n_components, n_features] (or a sparse
    Achlioptas matrix).

    The minimum number of components to guarantee the eps-embedding is
    given by:

      n_components >= 4 log(n_samples) / (eps^2 / 2 - eps^3 / 3)

    Note that the number of dimensions is independent of the original
    number of features but instead depends on the size of the dataset:
    the larger the dataset, the higher is the minimal dimensionality of
    an eps-embedding.

    Parameters
    ----------
    n_samples : int or numpy array of int greater than 0,
        Number of samples. If an array is given, it will compute
        a safe number of components array-wise.

    eps : float or numpy array of float in ]0,1[, optional (default=0.1)
        Maximum distortion rate as defined by the Johnson-Lindenstrauss lemma.
        If an array is given, it will compute a safe number of components
        array-wise.

    Returns
    -------
    n_components : int or numpy array of int,
        The minimal number of components to guarantee with good probability
        an eps-embedding with n_samples.

    Examples
    --------

    >>> johnson_lindenstrauss_min_dim(1e6, eps=0.5)
    663

    >>> johnson_lindenstrauss_min_dim(1e6, eps=[0.5, 0.1, 0.01])
    array([    663,   11841, 1112658])

    >>> johnson_lindenstrauss_min_dim([1e4, 1e5, 1e6], eps=0.1)
    array([ 7894,  9868, 11841])

    References
    ----------

    .. [1] http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma

    .. [2] Sanjoy Dasgupta and Anupam Gupta, 1999,
           "An elementary proof of the Johnson-Lindenstrauss Lemma."
           http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.3654

    """
    eps = np.asarray(eps)
    n_samples = np.asarray(n_samples)

    if np.any(eps <= 0.0) or np.any(eps >= 1):
        raise ValueError(
            "The JL bound is defined for eps in ]0, 1[, got %r" % eps)

    if np.any(n_samples) <= 0:
        raise ValueError(
            "The JL bound is defined for n_samples greater than zero, got %r"
            % n_samples)

    denominator = (eps ** 2 / 2) - (eps ** 3 / 3)
    return (4 * np.log(n_samples) / denominator).astype(np.int)


def _check_density(density, n_features):
    """Factorize density check according to Li et al."""
    if density == 'auto':
        density = 1 / np.sqrt(n_features)

    elif density <= 0 or density > 1:
        raise ValueError("Expected density in range ]0, 1], got: %r"
                         % density)
    return density


def _check_input_size(n_components, n_features):
    """Factorize argument checking for random matrix generation"""
    if n_components <= 0:
        raise ValueError("n_components must be strictly positive, got %d" %
                         n_components)
    if n_features <= 0:
        raise ValueError("n_features must be strictly positive, got %d" %
                         n_components)


def gaussian_random_matrix(n_components, n_features, random_state=None):
    """ Generate a dense Gaussian random matrix.

    The components of the random matrix are drawn from

        N(0, 1.0 / n_components).

    Parameters
    ----------
    n_components : int,
        Dimensionality of the target projection space.

    n_features : int,
        Dimensionality of the original source space.

    random_state : int, RandomState instance or None (default=None)
        Control the pseudo random number generator used to generate the
        matrix at fit time.

    Returns
    -------
    components : numpy array of shape [n_components, n_features]
        The generated Gaussian random matrix.

    See Also
    --------
    GaussianRandomProjection
    sparse_random_matrix
    """
    _check_input_size(n_components, n_features)
    rng = check_random_state(random_state)
    components = rng.normal(loc=0.0,
                            scale=1.0 / np.sqrt(n_components),
                            size=(n_components, n_features))
    return components


def sparse_random_matrix(n_components, n_features, density='auto',
                         random_state=None):
    """Generalized Achlioptas random sparse matrix for random projection

    Setting density to 1 / 3 will yield the original matrix by Dimitris
    Achlioptas while setting a lower value will yield the generalization
    by Ping Li et al.

    If we note :math:`s = 1 / density`, the components of the random matrix are
    drawn from:

      - -sqrt(s) / sqrt(n_components)   with probability 1 / 2s
      -  0                              with probability 1 - 1 / s
      - +sqrt(s) / sqrt(n_components)   with probability 1 / 2s

    Parameters
    ----------
    n_components : int,
        Dimensionality of the target projection space.

    n_features : int,
        Dimensionality of the original source space.

    density : float in range ]0, 1] or 'auto', optional (default='auto')
        Ratio of non-zero component in the random projection matrix.

        If density = 'auto', the value is set to the minimum density
        as recommended by Ping Li et al.: 1 / sqrt(n_features).

        Use density = 1 / 3.0 if you want to reproduce the results from
        Achlioptas, 2001.

    random_state : integer, RandomState instance or None (default=None)
        Control the pseudo random number generator used to generate the
        matrix at fit time.

    Returns
    -------
    components: numpy array or CSR matrix with shape [n_components, n_features]
        The generated Gaussian random matrix.

    See Also
    --------
    SparseRandomProjection
    gaussian_random_matrix

    References
    ----------

    .. [1] Ping Li, T. Hastie and K. W. Church, 2006,
           "Very Sparse Random Projections".
           http://www.stanford.edu/~hastie/Papers/Ping/KDD06_rp.pdf

    .. [2] D. Achlioptas, 2001, "Database-friendly random projections",
           http://www.cs.ucsc.edu/~optas/papers/jl.pdf

    """
    _check_input_size(n_components, n_features)
    density = _check_density(density, n_features)
    rng = check_random_state(random_state)

    if density == 1:
        # skip index generation if totally dense
        components = rng.binomial(1, 0.5, (n_components, n_features)) * 2 - 1
        return 1 / np.sqrt(n_components) * components

    else:
        # Generate location of non zero elements
        indices = []
        offset = 0
        indptr = [offset]
        for i in xrange(n_components):
            # find the indices of the non-zero components for row i
            n_nonzero_i = rng.binomial(n_features, density)
            indices_i = sample_without_replacement(n_features, n_nonzero_i,
                                                   random_state=rng)
            indices.append(indices_i)
            offset += n_nonzero_i
            indptr.append(offset)

        indices = np.concatenate(indices)

        # Among non zero components the probability of the sign is 50%/50%
        data = rng.binomial(1, 0.5, size=np.size(indices)) * 2 - 1

        # build the CSR structure by concatenating the rows
        components = sp.csr_matrix((data, indices, indptr),
                                   shape=(n_components, n_features))

        return np.sqrt(1 / density) / np.sqrt(n_components) * components


class BaseRandomProjection(six.with_metaclass(ABCMeta, BaseEstimator,
                                              TransformerMixin)):
    """Base class for random projections.

    Warning: This class should not be used directly.
    Use derived classes instead.
    """

    @abstractmethod
    def __init__(self, n_components='auto', eps=0.1, dense_output=False,
                 random_state=None):
        self.n_components = n_components
        self.eps = eps
        self.dense_output = dense_output
        self.random_state = random_state

        self.components_ = None
        self.n_components_ = None

    @abstractmethod
    def _make_random_matrix(n_components, n_features):
        """ Generate the random projection matrix

        Parameters
        ----------
        n_components : int,
            Dimensionality of the target projection space.

        n_features : int,
            Dimensionality of the original source space.

        Returns
        -------
        components : numpy array or CSR matrix [n_components, n_features]
            The generated random matrix.

        """

    def fit(self, X, y=None):
        """Generate a sparse random projection matrix

        Parameters
        ----------
        X : numpy array or scipy.sparse of shape [n_samples, n_features]
            Training set: only the shape is used to find optimal random
            matrix dimensions based on the theory referenced in the
            afore mentioned papers.

        y : is not used: placeholder to allow for usage in a Pipeline.

        Returns
        -------
        self

        """
        X, y = check_arrays(X, y)

        if not sp.issparse(X):
            X = np.atleast_2d(X)

        n_samples, n_features = X.shape

        if self.n_components == 'auto':
            self.n_components_ = johnson_lindenstrauss_min_dim(
                n_samples=n_samples, eps=self.eps)

            if self.n_components_ <= 0:
                raise ValueError(
                    'eps=%f and n_samples=%d lead to a target dimension of '
                    '%d which is invalid' % (
                        self.eps, n_samples, self.n_components_))

            elif self.n_components_ > n_features:
                raise ValueError(
                    'eps=%f and n_samples=%d lead to a target dimension of '
                    '%d which is larger than the original space with '
                    'n_features=%d' % (self.eps, n_samples, self.n_components_,
                                       n_features))
        else:
            if self.n_components <= 0:
                raise ValueError("n_components must be greater than 0, got %s"
                                 % self.n_components_)

            elif self.n_components > n_features:
                warnings.warn(
                    "The number of components is higher than the number of"
                    " features: n_features < n_components (%s < %s)."
                    "The dimensionality of the problem will not be reduced."
                    % (n_features, self.n_components))

            self.n_components_ = self.n_components

        # Generate a projection matrix of size [n_components, n_features]
        self.components_ = self._make_random_matrix(self.n_components_,
                                                    n_features)

        # Check contract
        assert_equal(
            self.components_.shape,
            (self.n_components_, n_features),
            err_msg=('An error has occurred the self.components_ matrix has '
                     ' not the proper shape.'))

        return self

    def transform(self, X, y=None):
        """Project the data by using matrix product with the random matrix

        Parameters
        ----------
        X : numpy array or scipy.sparse of shape [n_samples, n_features]
            The input data to project into a smaller dimensional space.

        y : is not used: placeholder to allow for usage in a Pipeline.

        Returns
        -------
        X_new : numpy array or scipy sparse of shape [n_samples, n_components]
            Projected array.

        """
        X, y = check_arrays(X, y)

        if self.components_ is None:
            raise ValueError('No random projection matrix had been fit.')

        if X.shape[1] != self.components_.shape[1]:
            raise ValueError(
                'Impossible to perform projection:'
                'X at fit stage had a different number of features.'
                '(%s != %s)' % (X.shape[1], self.components_.shape[1]))

        if not sp.issparse(X):
            X = np.atleast_2d(X)

        X_new = safe_sparse_dot(X, self.components_.T,
                                dense_output=self.dense_output)
        return X_new


class GaussianRandomProjection(BaseRandomProjection):
    """Reduce dimensionality through Gaussian random projection

    The components of the random matrix are drawn from N(0, 1 / n_components).

    Parameters
    ----------
    n_components : int or 'auto', optional (default = 'auto')
        Dimensionality of the target projection space.

        n_components can be automatically adjusted according to the
        number of samples in the dataset and the bound given by the
        Johnson-Lindenstrauss lemma. In that case the quality of the
        embedding is controlled by the ``eps`` parameter.

        It should be noted that Johnson-Lindenstrauss lemma can yield
        very conservative estimated of the required number of components
        as it makes no assumption on the structure of the dataset.

    eps : strictly positive float, optional (default=0.1)
        Parameter to control the quality of the embedding according to
        the Johnson-Lindenstrauss lemma when n_components is set to
        'auto'.

        Smaller values lead to better embedding and higher number of
        dimensions (n_components) in the target projection space.

    random_state : integer, RandomState instance or None (default=None)
        Control the pseudo random number generator used to generate the
        matrix at fit time.

    Attributes
    ----------
    ``n_component_`` : int
        Concrete number of components computed when n_components="auto".

    ``components_`` : numpy array of shape [n_components, n_features]
        Random matrix used for the projection.

    See Also
    --------
    SparseRandomProjection

    """
    def __init__(self, n_components='auto', eps=0.1, random_state=None):
        super(GaussianRandomProjection, self).__init__(
            n_components=n_components,
            eps=eps,
            dense_output=True,
            random_state=random_state)

    def _make_random_matrix(self, n_components, n_features):
        """ Generate the random projection matrix

        Parameters
        ----------
        n_components : int,
            Dimensionality of the target projection space.

        n_features : int,
            Dimensionality of the original source space.

        Returns
        -------
        components : numpy array or CSR matrix [n_components, n_features]
            The generated random matrix.

        """
        random_state = check_random_state(self.random_state)
        return gaussian_random_matrix(n_components,
                                      n_features,
                                      random_state=random_state)


class SparseRandomProjection(BaseRandomProjection):
    """Reduce dimensionality through sparse random projection

    Sparse random matrix is an alternative to dense random
    projection matrix that guarantees similar embedding quality while being
    much more memory efficient and allowing faster computation of the
    projected data.

    If we note `s = 1 / density` the components of the random matrix are
    drawn from:

      - -sqrt(s) / sqrt(n_components)   with probability 1 / 2s
      -  0                              with probability 1 - 1 / s
      - +sqrt(s) / sqrt(n_components)   with probability 1 / 2s

    Parameters
    ----------
    n_components : int or 'auto', optional (default = 'auto')
        Dimensionality of the target projection space.

        n_components can be automatically adjusted according to the
        number of samples in the dataset and the bound given by the
        Johnson-Lindenstrauss lemma. In that case the quality of the
        embedding is controlled by the ``eps`` parameter.

        It should be noted that Johnson-Lindenstrauss lemma can yield
        very conservative estimated of the required number of components
        as it makes no assumption on the structure of the dataset.

    density : float in range ]0, 1], optional (default='auto')
        Ratio of non-zero component in the random projection matrix.

        If density = 'auto', the value is set to the minimum density
        as recommended by Ping Li et al.: 1 / sqrt(n_features).

        Use density = 1 / 3.0 if you want to reproduce the results from
        Achlioptas, 2001.

    eps : strictly positive float, optional, (default=0.1)
        Parameter to control the quality of the embedding according to
        the Johnson-Lindenstrauss lemma when n_components is set to
        'auto'.

        Smaller values lead to better embedding and higher number of
        dimensions (n_components) in the target projection space.

    dense_output : boolean, optional (default=False)
        If True, ensure that the output of the random projection is a
        dense numpy array even if the input and random projection matrix
        are both sparse. In practice, if the number of components is
        small the number of zero components in the projected data will
        be very small and it will be more CPU and memory efficient to
        use a dense representation.

        If False, the projected data uses a sparse representation if
        the input is sparse.

    random_state : integer, RandomState instance or None (default=None)
        Control the pseudo random number generator used to generate the
        matrix at fit time.

    Attributes
    ----------
    ``n_component_`` : int
        Concrete number of components computed when n_components="auto".

    ``components_`` : CSR matrix with shape [n_components, n_features]
        Random matrix used for the projection.

    ``density_`` : float in range 0.0 - 1.0
        Concrete density computed from when density = "auto".

    See Also
    --------
    GaussianRandomProjection

    References
    ----------

    .. [1] Ping Li, T. Hastie and K. W. Church, 2006,
           "Very Sparse Random Projections".
           http://www.stanford.edu/~hastie/Papers/Ping/KDD06_rp.pdf

    .. [2] D. Achlioptas, 2001, "Database-friendly random projections",
           http://www.cs.ucsc.edu/~optas/papers/jl.pdf

    """
    def __init__(self, n_components='auto', density='auto', eps=0.1,
                 dense_output=False, random_state=None):
        super(SparseRandomProjection, self).__init__(
            n_components=n_components,
            eps=eps,
            dense_output=dense_output,
            random_state=random_state)

        self.density = density
        self.density_ = None

    def _make_random_matrix(self, n_components, n_features):
        """ Generate the random projection matrix

        Parameters
        ----------
        n_components : int,
            Dimensionality of the target projection space.

        n_features : int,
            Dimensionality of the original source space.

        Returns
        -------
        components : numpy array or CSR matrix [n_components, n_features]
            The generated random matrix.

        """
        random_state = check_random_state(self.random_state)
        self.density_ = _check_density(self.density, n_features)
        return sparse_random_matrix(n_components,
                                    n_features,
                                    density=self.density_,
                                    random_state=random_state)